Math 446: Homework 5 Due: Monday, April 6th

- **1** (100 β) Show that a polynomial f over a field F and its formal derivative f' have a common root α in F if and only if α is a multiple root of f, that is, $(x \alpha)^2$ divides f.
- **2** (100 δ) Show that every element of a finite field with q elements is a root of the polynomial $x^q x$.
- **3 (100** ι) Let f(x) be a polynomial over a field F whose derivative is 0. Show that if $\operatorname{char}(F) = 0$, then f(x) is a constant polynomial. What can one say in the case when $\operatorname{char}(F) = p$?
- **4** (101 α) Show that every polynomial of positive degree over \mathbb{R} can be factored as a product of polynomials over \mathbb{R} with degrees 1 or 2.
- **5** (-) A field F is called **algebraically closed** if every polynomial in F[x] whose degree is one or greater has a root in F. For example, \mathbb{C} is algebraically closed but \mathbb{R} is not. Prove that every algebraically closed field has an infinite number of elements.
- 6 (102 γ) Prove that there are an infinite number of irreducible polynomials over any field.
- **7** (102 δ) Compute the number of irreducible polynomials of degrees 1, 2, and 3 over \mathbb{Z}_p where p is a prime.
- **8 (102\zeta)** Prove that a polynomial f(x) over a field is irreducible if and only if the polynomial g(x) defined by g(x) = f(x+a) is irreducible over the same field.
- **9 (103** ε) Show that the field $\mathbb{Q}[x]/(x^2-2)$ is isomorphic to the field $\mathbb{Q}(\sqrt{2})$.
- 10 (103 η) Construct a field with 9 elements. Explain your construction.

- 11 (-) Determine whether the following polynomials are irreducible. For those are are reducible, give their factorizations into irreducible polynomials. For those that are irreducible, give a proof explaining your conclusion.
 - (a) $x^2 + x + 1$ over \mathbb{Z}_2 .
 - (b) $x^3 + x + 1$ over \mathbb{Z}_3 .
 - (c) $x^4 + 1$ over \mathbb{Z}_5 .
 - (d) $x^2 + x + 4$ over \mathbb{Z}_{11} .
 - (e) $x^5 + 9x^4 + 12x^2 + 6$ over \mathbb{Q} .
 - (f) $17x^3 7x^2 + 34x + 1$ over \mathbb{Q} .
 - (g) $x^4 + 10x + 1$ over \mathbb{Q} .
 - (h) $x^4 + 10x^2 + 1$ over \mathbb{Q} .
 - (i) $4x^3 3x 1/2$ over \mathbb{Q} .