Math 446: Homework 6 Due: Monday, April 20th

- 1 (108 α) Prove that the sum, $c + \alpha$, and the product, $c\alpha$, of a rational number c and and algebraic number α are algebraic numbers.
- **2** (109 α) Let f be an irreducible polynomial over F, and let E be an extension field of F in which f has a root α . Show that f is a minimal polynomial for α over F.
- **3 (109** β) Let $F \subseteq E \subseteq D$ be a tower of fields. Let $\alpha \in D$, and let g be a minimal polynomial for α over E and f a minimal polynomial for α over F. Show that $g \mid f$, considering both as polynomials over E.
- **4** (109 γ) Find minimal polynomials over \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$ for the numbers $\sqrt{2} + \sqrt{3}$ and $i\sqrt{2}$.
- **5 (110)** Let f be a minimal polynomial for α over \mathbb{Q} and g be a minimal polynomial for β over $\mathbb{Q}(\alpha)$. Prove that:

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = \deg(f) \cdot \deg(g)$$

- **6 (110)** Prove that if $[F(\alpha):F]$ is odd, then $F(\alpha)=F(\alpha^2)$. Hint: What is the set theoretic relationship between $F, F(\alpha)$, and $F(\alpha^2)$?
- **7** (112 α) Prove that the set of all algebraic numbers is a subfield of \mathbb{C} . Show that the set of all algebraic numbers is countable. Note that since \mathbb{C} is not countable, this proves the existence of transcendental numbers.
- **8 (112** β) Prove that if α and β are transcendental numbers, then $\alpha + \beta$ or $\alpha\beta$ is transcendental.
- **9 (121)** Is the regular 9-gon constructible? If so give a construction. If not, give a proof that it is not constructible.