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Notation and Terminology

All rings are commutative and contain multiplicative identity, moreover we will
always insist that ring homomorphisms respect the multiplicative identity ele-
ment. Local rings are assumed to be Noetherian. Additionally, all modules are

unitary modules. We have made an attempt to be consistent with our notation:
1) Rings are often denoted by A and B.
2) Modules are often denoted by M or N.

3) Fields are often denoted by k, K, L, or F.

(1)
(2)
3)
(4) Ideals are denoted by I, J, a, and b, with m usually reserved for maximal

ideals. We will try to reserve p, q, P, and @ for prime ideals.

(5) X is often used to denote indeterminants and in general X := X;,..., X,
and x := x1,...,x, with the value of n (which is possibly infinite) being
given by the context.

The symbol 1, will denote the identity map L, : M — M.
The letter n will be often used to denote the canonical or natural map.

)
)
8) If ¢ is a map, ¢ will often stand for the map induced by .
) We use the notation C for set inclusion and use C for strict inclusion.
)

The notion < is used to denote an injective map and — denotes a sur-
jective map. If a commutative diagram is drawn, the induced map will be
dashed.

If A is a domain, Frac(A) will stand for the field of fractions of A.
If (A,m) is a local ring, A will often stand the m-adic completion of A.
If A is a ring, A will often stand for the integral closure of A.

If k is a field, k will often stand for the algebraic closure of k.



Chapter 0

Background

0.1 Operations on Ideals
Definition  Given two ideals I, J C A, the sum of I and J is defined as
I+J={x+y:xe€landyeJ}

Exercise 0.1  Show that if I and J are ideas in a ring A, then I+ J is an ideal.
Definition  Given two ideals I, J C A, the product of I and J is defined as
I-J:{in-yi:xiEIandyieJ}.

i=1
Exercise 0.2 Show that if I and J are ideas in a ring A, then I - J is an ideal.

Definition  Given two ideals I, J C A, the intersection of I and J is defined
as the set-theoretic intersection of I and J.

Exercise 0.3  Show that if I and J are ideas in a ring A, then INJ is an ideal.
Exercise 0.4 Ifa,b,c are ideals of A, show that

a(b+c¢) = ab + ac.
Exercise 0.5 Ifa and b are ideals of A and M is an A-module, show that

(a+b)M

a(M/bM) = i

Exercise 0.6 Assuming that a,b, ¢ are ideals of A and that a O b or a D ¢,
prove the modular law:

an(b+c¢)=anb+anec.



0.1. OPERATIONS ON IDEALS

Definition Two ideals I, J C A are called comaximal if I + J = (1).

Remark Sometimes people use the term coprime for comaximal. We will
refrain from doing this to avoid confusion later on with coprimary ideals.

Exercise 0.7 Show that if I and J are comaximal ideals of A, then IJ =1NJ.

Definition An element z of a ring is called nilpotent if there exists n € N
such that " = 0.

Definition The set of nilpotent elements of a ring A is called the nilradical
of A. We will use v/0 to denote this set. Note that +/0 is an ideal.

We can generalize the idea of the nilradical as follows:

Definition The radical of an ideal I is denoted by v/T and is defined to be
the set
VI ={xeA:z" el for somen € N}.

Note that /I is an ideal.

Proposition 0.8 (Properties of Radicals) If I, J are ideals of A, the following
hold:

(1) I CVI.

2) VI=VVI
(3) VIT=VINnJ=VINVJ.
(4) Vp* =p.

Proposition 0.9 Given a ring A, the radical of an ideal I is equal to the
intersection of all the prime ideals which contain I.

Proof (C) Suppose that 2 € v/I. Then 2" € I and for each prime ideal
containing I, 2™ € p. Since p is prime, z € p. Thus

VIC (P

p21

(2) By the Correspondence Theorem, the prime ideals of A containing I
correspond bijectively to the ideals of A/I, hence we reduce to the case where
1=(0).

Suppose that x is not nilpotent. We’ll show that

x ¢ np.

p2(0)
Consider the set of ideals of A:

S={a:z'¢afori>0}
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Note that (0) € S and that S may be ordered by inclusion. Now let C be any
chain of ideals in §. This chain has an upper bound in S, namely the ideal:

Ua
aeC

Hence by Zorn’s Lemma, S has a maximal element, call it p. We claim that p is
prime. Suppose that a,b ¢ p. Hence (a)+p and (b) +p are ideals not contained
in §. Thus for some m,n € N:

™€ (a)+p and 2" e ) +p

Moreover,
g™ € (ab) +p

and so we see that ab ¢ p. Hence p is prime and = ¢ p. Thus z is not in the
intersection of the prime ideals of A. |

WARNING 0.10 The union of two ideals is not generally an ideal.

Example 0.11  Consider k[X,Y]| where k is a field. Now (X) U (Y') is not an
ideal as it contains X, Y, but not X + Y.

Despite this fact there are some things we can say about unions of ideals.

Lemma 0.12 (Prime Avoidance) Let A be a ring and I be an ideal of A. If
P1,...,Ppn are prime ideals such that

I'Zp; for all 4,

then B
I¢ U pi.
i=1

Remark The above lemma is called prime avoidance as if I ¢ p; for all 4, then
there is some element of a € I which avoids being contained in any p;.

Definition If a and b are ideals of A, then the colon ideal (b : 4 a) is defined
as follows:
(b:aa)={re€A:zal b}

Moreover if M is an A-module and N is a submodule of M, then this can be
generalized to modules by defining the colon submodule (N :j; a) as follows:

(NZ]\/[C():{IEMZLIJCIQN}

Remark Sometimes the colon ideal is called the ideal quotient. However, we
will refrain from using that terminology as the word quotient is overused in
mathematics.



0.2. CHAIN CONDITIONS

Definition If M is an A-module, the annihilator of M over A, is defined as:
Annpg(M):=0:a M)={x € A:x2m =0 for all m € M}

Proposition 0.13 (Properties of the Colon Ideal) If a,b are ideals of A, the
following hold:

(1) bC (b:a )

(2) (b:aa)aCh

(3) ((c:ab):a)=(c:aba)=((c:aa):ab).
(4) (N;bi:aa) =;(b; 14 a).

(5) (6:4 3, a:)=0,(b:a @)

0.2 Chain Conditions

Definition Given a ring A, an A-module M is Noetherian if it satisfies the
following equivalent conditions:

(1) Every non-empty set of submodules has a maximal element.
(2) M satisfies the ascending chain condition (ACC) on submodules.
(3) Every submodule in M is finitely generated.

Definition A ring A is Noetherian if it is a Noetherian A-module. Note that
the only A-submodules of A are the ideals of the ring A.

Definition Given a ring A, an A-module M is Artinian if it satisfies the
following equivalent conditions:

(1) Every non-empty set of submodules has a minimal element.
(2) M satisfies the descending chain condition (DCC) on submodules.

Definition A ring A is Artinian if it is an Artinian A-module. Note that the
only A-submodules of A are the ideals of the ring A.

Example 0.14 Z is a Noetherian ring which is not an Artinian ring.

Example 0.15 Ifk is a field k[z1,...,x,,...], is neither Artinian nor Noethe-
rian.

Example 0.16 Any field is an Artinian ring.
Remark  As we will soon state, every Artinian ring is also a Noetherian ring.

Example 0.17 A finite Abelian group is a Z-module which is both Noetherian
and Artinian.
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Proposition 0.18 If A is Noetherian and M is a finitely generated A-module,
then M is Noetherian.

Example 0.19 A = k[xy,...,2,,...] is a finitely generated k[z1,..., Ty, ...]-
module which is not Noetherian.

Example 0.20 Z,~ is an Artinian Z-module which is not a Noetherian Z-
module. Recall that Zye is the Z-submodule of Q/Z generated by

{1/p" : p is a prime in Z}.
Definition A chain of A-modules
M=Mo2 M 22 M,=(0)

is a Jordan-Holder chain, also known as a composition series, if for each
i, M;/M;+1 ~ A/m for some maximal ideal m in A.

Proposition 0.21  Each composition series for M has the same length.

Definition The length of an A-module, denoted by £4(M), is the length of a
composition series for M. That is, if

M=Mo2 M Q-2 M,=(0)
is a composition series, then £4(M) = n.

Proposition 0.22 M has finite length if and only if M is both Artinian and
Noetherian.

Proposition 0.23  Given a short exact sequence of A-modules
0—-M —M-—M"—0
we have that:
(1) M is Noetherian if and only if both M’ and M" are Noetherian.
(2) M is Artinian if and only if both M' and M" are Artinian.
Proposition 0.24  Given a short exact sequence of A-modules
0—-M —M-—M"—0
such that €4 (M) is finite, then length is an additive function, that is,
Ca(M) = La(M') + La(M").
In particular, £4(M) is finite if and only if £4(M’) and £4(M") are finite.

Theorem 0.25 (Hilbert’s Basis Theorem) If A is a Noetherian ring, then
Alx] is a Noetherian ring.



0.3. FLAT MODULES

Corollary 0.26
(1) Zlxy,...,x,] is Noetherian.
(2) Ifk is a field, then k[x1,...,x,] is Noetherian.
Exercise 0.27  Show that if A is Noetherian, then A[x] is Noetherian.

Lemma 0.28 If A is a ring with an ideal I which is not prime, then there
exist Iy and Iy each containing I such that I O I 1.

Lemma 0.29 If A is a Noetherian ring with an ideal I, I must contain a finite
product of prime ideals.

Lemma 0.30 Every Artinian domain is a field.

Theorem 0.31 A ring A is Artinian if and only if A is Noetherian and every
prime ideal is maximal.

Proof See [17]. |

Corollary 0.32 If A is an Artinian ring, then A is Noetherian.

0.3 Flat Modules
Definition An A-module F is flat if
M — M’

implies that
M@y F — M ®a F.

Remark 1If F is flat then — ® 4 F' and F' ® 4 — are exact functors from the
category of A-modules to the category of A-modules.

Proposition 0.33 An A-module F is flat if and only if for all finitely generated
A-modules M and M', M — M’ implies that

M@y F— M @4 F.

Proposition 0.34 If A and B are rings, with B an A-module, B is flat over A
if and only if any solution x € B of homogeneous equations

Zaiﬁjxj =0 where acA

is a linear combination of solutions in A.
Proposition 0.35 Every free module is flat.

Example 0.36 Q is flat over Z but Q is not free over Z.



CHAPTER 0. BACKGROUND

0.4 Localization

Let U be a subset of A which is closed under multiplication and contains 1.

Given an A-module M, we may now write “fractions”
m

u
where m € M and u € U. For m’ € M and v’ € U, we will say

m m

— = — when (mu —m'u)z=0

u U
for some z € U. This defines an equivalence relation and we denote the set
of equivalence classes by U~!M. We can put the canonical module structure
on U"'M. If M is an A-algebra, we may put the canonical ring structure on
U™tM.

WARNING 0.37  The homomorphism A — U~ A defined via x — /1 is not
generally injective, consider A = 7Z/6Z and U = {1, 3}.

Proposition 0.38 (Universal Property of Localization) Ify: A — B isa
homomorphism of rings such that ¢(u) is a unit in B for all w € U, then there
exists a unique homomorphism @ : U"'A — B making the diagram below
commute.

A—"spy-1a
e

Proposition 0.39 If M is an A-module and U is a multiplicatively closed
subset of A, then there is a canonical isomorphism M @, U 1A ~ U1 M.
Moreover, this isomorphism is functorial. That is, if f : M — N, the following
diagram commutes

Mo, U A -1

f®]1U1AJ/ lUlf

N@aU'A——U"'N

where np; and ny represent the canonical isomorphisms.
Proposition 0.40 U~'A is a flat A-module.
As an immediate corollary we have:
Corollary 0.41  If the following sequence of A-modules is exact
0—-M —-M-—-M'—0,

then
0-U'M UM —->U'M"—=0

is exact.



0.4. LOCALIZATION

Definition For a € A, if U = {1,a,a?,a%, ...}, we denote U~'M by either
M, or M[1].

Definition If A is a domain, then the field of fractions is given by:
Frac(A) := (A - {0})" 4

Definition If U = A — p where p is a prime ideal of A, we denote U~'M by
M,. We say this as “M localized at p.”

Definition A ring A is local if it is Noetherian and has a unique maximal
ideal. When dealing with local rings, one often writes

(A,m) or (A,m, k)

to denote the ring and its maximal ideal or the ring, its maximal ideal, and
k = A/m respectively.

Remark Some authors do not insist that local rings are Noetherian. We will
call local rings which are not Noetherian quasilocal.

Proposition 0.42 A, is a local ring with maximal ideal p.

Definition For a ring A with a prime ideal p we define the residue field of
p, denoted k(p), by

K(p) i= Ap/pAp = (A/p)p = Frac(A/p).
Now we come to some very important properties of localization:
Proposition 0.43  Given an A-module M, the following are equivalent:
(1) M #0.
(2) My # 0 for some maximal ideal m of A.
(3) M, # 0 for some prime ideal p of A.

Corollary 0.44 Let M, M’, and M", be A-modules. The following are equiv-
alent:

(1) 0= M —- M — M" — 0 is exact.
(2) 0= My — M, — M, — 0 is exact for all prime ideals p in A.
(3) 0= M}, > Myn — M} — 0 is exact for all maximal ideals m in A.

The above corollary tells us that if we can show that an A-module homo-
morphism is injective (resp. surjective) after localizing at an arbitrary prime or
maximal ideal, then we can conclude that the homomorphism is injective (resp.
surjective). This is why it is sometimes said that the injectivity or surjectivity
of an A-module homomorphism is a local property.
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Primary Decomposition

1.1 Primary and Coprimary Modules

In this section we will mostly consider the case when A is Noetherian and A-
modules are finitely generated.

Definition Let A be a Noetherian ring. A nonzero finitely generated A-module
M is coprimary if for all a € A, the map defined via multiplication by a

M- M
is injective or nilpotent.
Proposition 1.1  If M is coprimary, then the set
p=1{acA: M- M is nilpotent}
forms a prime ideal in A.

Proof Suppose that a ¢ p and b ¢ p. Then the map defined via multiplication
by a is injective and the map defined via multiplication by b is injective. Hence
the map defined via multiplication by ab is injective and we see that ab ¢ p. W

Definition The coprimary module M which gives the above prime ideal p is
called p-coprimary.

Proposition 1.2 If N is any nonzero submodule of a finitely generated A-
module M and M is p-coprimary, then N is also p-coprimary.

Proof Exercise. |
Proposition 1.3  If an A-module M is p-coprimary, then we have an injection

Alp — M.



1.1. PRIMARY AND COPRIMARY MODULES

Proof Consider any m € M such that m # 0 and let
I=Amy(m)={a € A:am=0}.

Since A is Noetherian, p is finitely generated, and so we write p = (p1,...,pt).
Because M is p-coprimary, there exist n; such that for each ¢,

piim = 0.

Thus there exists n such that p C I C p. If p = I, we are done since we have
an injection A/I — M. If p # I, there exists a [ such that p! C I but p'~1 Z I.
Take z € p'~! — I and consider ¢ : A — M via 1 — m. We have that
Ker(p) = I. Hence
A/T — M.

Since pr C p! C I, Anna(T) = p. Hence x has a nonzero image in A/p.
Moreover, if there exists a € A such that ax € I, then since A/T — M and M
is p-coprimary, we have that ax € p and thus a € p. So

Alp < AJT — M.
This is the injection we were looking for. |
Proposition 1.4 Let M be a finitely generated p-coprimary A-module. If
Alq— M
for some prime ideal ¢ C A, then q = p.
Proof Exercise. |

Definition Let A be a Noetherian ring. Given finitely generated A-modules
N — M, N is called primary (resp. p-primary) if M/N is coprimary (resp.
p-coprimary).

Proposition 1.5  Ifp is a prime ideal, then p is p-primary.
Proof Exercise. |

Proposition 1.6 [ is a primary ideal of A if and only if whenever xy € I and
y ¢ I, we then have 2™ € I for some n € N.

Proof (=) Assume I is a primary ideal of A. So the map
AJT -2 AJT

is either injective or nilpotent. Considering xy € I where y ¢ I, we see that
2y =0 and y # 0. Thus « must be a nilpotent map, and so z" € [.
(<) Assuming whenever xy € I and y ¢ I, we have ™ € I for some n € N
clearly forces the map
AT -2 AJT

to be injective or nilpotent. |

10
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Corollary 1.7  If I is p-primary, then VI = p.

Proof This follows from Proposition 1.1 and the proof of the forward direction
of Proposition 1.6. |

Proposition 1.8 Let A be a Noetherian ring. Suppose I is an ideal and m is
a maximal ideal such that m™ C I C m. Then I is m-primary.

Proof Let a € A. We wish to show that if a € m, the map A/ —* A/I is
nilpotent and if a ¢ m, then the map is injective. If @ € m, then a™ € m™ C I.
Thus a™(A/I) = (0) and so the map is nilpotent.

Assume a ¢ m. Since m is maximal, m+aA = A. Thus there are x € m and
y € A such that x + ay = 1. Taking the nth power we get

(z+ay)" = 2" + ay
= 1,

where 3/ is some element of A. Since ™ € m™ C I, @ and y’ are units in A/I.
Thus the map defined by multiplication by a is an isomorphism. In particular,
it is injective. |

WARNING 1.9 [t is not true in general that an ideal I is p-primary if
prCIChy.

Consider the ring A = k[x,y, z]/(2*> —zy) where k is a field. Set p = (T, %), where
T=x+ (22 —ay) and Z = 2 + (2% — zy). Then A/p ~ k[z,y, z]/(x,2) ~ k[y],
which is a domain. Thus p is a prime ideal.

We claim p? is not p primary. To see this, note that x ¢ p? and y ¢ p, but
xy = 2% € p2. Thus the map A/p® N A/p? is nilpotent. It follows that p? is
not p-primary.

Exercise 1.10 Suppose A is a UFD and p = (p) where p is a prime element.
Show that p™ is p-primary for all n > 0.

Exercise 1.11  Let p = (2 — y?, 2% — yz, 2%y — 2?) in k[z,y, z] where k is a
field. Show that p is a prime ideal. Is p? p-primary?

1.2 The Primary Decomposition Theorem

Definition If M is an A-module, a proper submodule N C M is called irre-
ducible if N # N; NN, for any submodules Ny, Ny of M that properly contain
N.

Lemma 1.12 Let A be a Noetherian ring and M be a finitely generated A-
module. Any proper submodule N of M can be expressed as a finite intersection
of irreducible submodules of M.

11
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Proof Suppose not and let S be the collection of proper submodules of M
that cannot be expressed as a finite intersection of irreducible submodules of
M. By assumption, S # &. M is Noetherian, so S has a maximal element
Ny. Then Ny is not irreducible, so there are submodules Ny, Ny of M which
properly contain Ny such that Ny = N7 N Ny. Note that N7 and Ns are proper
submodules of M. Since Ny is maximal in &, N; and Ny can be expressed
as finite intersections of irreducible submodules. Thus Ny can be expressed as
a finite intersection of submodules, contradicting Ny € S. Therefore, S = @
and every proper submodule of M can be expressed as a finite intersection of
irreducible submodules of M. |

Lemma 1.13 Let A be a Noetherian ring and M be a finitely generated A-
module. Suppose N is an irreducible submodule of M. Then N is a primary
submodule of M.

Proof To show that N is a primary submodule of M, we must show that
M = M/N is coprimary. Since N is irreducible in M, (0) = N is irreducible in
M. Let a € A and consider the map ¢ : M — M given by ¢(m) = am.

Ker(p) C Ker(p?) C -

forms an ascending chain of submodules of M. Since M is Noetherian, M is
Noetherian. Thus the above chain of submodules halts; that is, there is an
integer n such that

Ker((pN) e Ker(gp”‘*l) _ Ker(ap”+2) - ...
Set g = ™. Then Ker(g) = Ker(g?) from which it follows that
Im(g) N Ker(g) = (0).

Since (0) is irreducible, either Im(g) = (0) or Ker(g) = (0). If Im(g) = (0), then
a"M = (0) and ¢ is nilpotent. If Ker(g) = (0), then Ker(p) = (0) and ¢ is
injective. Thus M is coprimary and N is a primary submodule of M. |

Lemma 1.14 Let M be a finitely generated A-module. If N1 and Ny are both
p-primary submodules of M, then N1 N Ny is also p-primary.

Proof By definition, M/N; and M /N, are p-coprimary. It follows easily from
the definition that M/N; @& M /N, is also p-coprimary. Consider the map:

@ MHM/Nl@M/NQ
m — (m+ Ny,m+ Ns)
Then Ker(¢) = N1 N Ny and we have an injection:
M/(Nl ﬂNg) — M/N1 EBM/NQ
Thus by Proposition 1.2, M/(N1 N Na) is p-coprimary. Therefore N1 N Ny is
p-primary. |

12
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Theorem 1.15 (Primary Decomposition Theorem) Let A be a Noetherian
ring. If N is a proper submodule of a finitely generated A-module M, we can

write
n
N:ﬂM
=1

such that:
(1) Each N; is p;-primary for some prime ideal p;.
(2) Ifi# j, then p; # p;.

3) If N = (;_, N/ is another such decomposition where N! is p’-primary for
i=1""17 7 i
i=1,...,8, then

{pla"'vp’n} = {p/h?p./s}

and in particular, n = s.

Proof By Lemmas 1.12, 1.13, and 1.14, we can express [N as a finite intersec-
tion of submodules ﬂ?:l N; where for each i, N; is p;-primary, with the prime
ideals {p1,...,p,} distinct.

To finish the proof, we will show:

(=) Suppose that p € {p1,...,pn}. WLOG assume p = p;. Write

Ny/NA---AN, /N~ (Nyn---NN,)/N
~ (Nl =+ (NQ n--- ﬂNn))/Nl
C M/Ny,

with the middle line following from the Second Isomorphism Theorem. Since
we have an injection

Ny/N -1 N, /N — M/Ny,

and since M/Ny is p-coprimary, No/N N ---N N, /N is p-coprimary by Propo-
sition 1.2. Thus by Proposition 1.3, we have injections

AJp < Ny/NQ---AN,/N < M/N.

(<) Now suppose we we have an injection ¢ : A/p — M/N. Consider the
map

(pM—*M/Nl@@M/Nn
m— (m+ Ny,...,m+ N,)

Clearly Ker(p) = N, and so we see that

=1

13



1.2. THE PRIMARY DECOMPOSITION THEOREM

is an injection. For i =1,...,n let m; : @) ; M/N; — M/N; be the projection
map onto the ith coordinate. Then we have the following commutative diagram:

M/NZ é M/N,

i=1

Afp— ="~ 5 M/N;

We wish to show that ¢; is injective for some i = 1,...,n. Suppose not, then
Ker(¢;) # (0) for all i. Since A/p is a domain,

(0) # Ker(e1) - - - Ker(e,) C Ker(ey) N---NKer(ty,) = Ker(g o v).

This contradicts that @o is an injection. Thus ¢; : A/p — M/N; is an injection
for some i. By assumption M/N; is p;-coprimary, so again by Proposition 1.3,
we see that A/p is p;-coprimary. By Proposition 1.4, p =p; € {p1,...,pn}t. W

1.2.1 Primary Decomposition and Localization

Proposition 1.16 Let M be a p-coprimary A-module and let U be a multi-
plicatively closed subset of A. The following hold:

(1) If pNU = @, then U= M is U~ tp-coprimary.
(2) IfpNU # @, then U= M = 0.

Proof (1) We need to show if £ € U~'p, then U~'M —% U~'M is nilpotent
whenever £ € U~'p. Since % is a unit in U~'A, we can assume u = 1. If a € p,

then M — M is nilpotent. So for some integer n > 0, M —— M is the zero

map. Thus U='M -“ U~'M is the zero map.

If a ¢ p, then M - M is injective. So U~'M —% U~'M is injective by
the exactness of localization.

(2) If pNU # &, then there is some u € pNU. Since M is p-coprimary,

M —% M is nilpotent. So there is an integer n > 0 such that M " M is the

zero map. Thus U~!M " UM is the zero map. Since u™ is a unit in U1 A4,
multiplication by 4™ is an isomorphism. Thus U~'M = (0). |

Corollary 1.17  If N is p-primary and p "\ U = @, then U~ !N is p-primary.

Theorem 1.18 Let A be a Noetherian ring and suppose N is a proper sub-
module of a finitely generated A-module M. Let

N=NnNn---NN,
be a primary decomposition for N where N; is p;-primary. Then

UIN=U''N,n---nU'N;

m

14



CHAPTER 1. PRIMARY DECOMPOSITION

is a primary decomposition of U"'N in U='M wherem < n andi; € {1,...,n}
forj=1,...,m.

Proof First note that if N = Ny N Ny, then U"'N = U'N; nU"'N,. To
see this, consider the commutative diagram of exact sequences below.

0 0

l !

OHNlﬁNgﬁNlﬁNl/(NlﬂNg)HO

l |

0 N2 M MN2*>O

| l

OHNQ/(Nl ONQ)%M/NlﬂM/(Nl'f‘NQ)%O

| | 1
0

0 0

o

e

By tensoring this diagram with U ! A and by diagram chasing, the claim follows.
Therefore, U"'N = U~ Ny N---NU~LN,. By Proposition 1.16, if {i1,...,im}
are the indices such that p;, NU = &, then U"'N = U~IN; N---NU~LN; |

m*

Exercise 1.19 Let T be a submodule of U™'M. Show that there exists a
submodule N of M such that U"'N =T.

Remark By Theorem 1.18 and the above exercise, we know how to find a
primary decomposition of any submodule of U1 M.

Lemma 1.20 Suppose that N C M is p-primary and U is a multiplicatively
closed set. Consider the canonical map:

n:M—-U'M

m
m — —

1
The following hold:

(1) IfpNU = @, thenn ' (U"!N) = N.
(2) IfpNU # @, then n ' (U"'N) = M.

Proof (1) Let z € n~Y(U~!N), thus /1 € U"!N. Hence for some y € N:

Thus there is an element v € U such that

(zu—y)v=0

TUV = Yv.

15
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From this we see that xuv € N. Since U is multiplicatively closed, uv € U.

However,
M o M

o w7
N N
is injective as M/N is p-coprimary and wv ¢ p. Since zuv € N we see that
x € N. Thus n~*(U71N) C N. The other containment is clear.
(2) This follows by Proposition 1.16. |

Using the techniques of localization and the above lemma, we are able to
say more about different primary decompositions of the same module:

Proposition 1.21  Suppose
Nin---NN, and Ni,Nn---N N/

are two primary decompositions of N C M where N; and N are p;-primary. If
p; Is a minimal prime in {p1,...,pn}, then N; = N/.

Proof Suppose p; is minimal in {p1,...,p,} and let n: M — U~LM be the
canonical map. Take U = A — p;. Then

UIIN=U'Nyn---NnU'N,=U'N/n---nU'N..

Since p; is minimal, p; N U # & for all j # i. Thus by Proposition 1.16,
U~=IN; = U7 N/. Therefore by Lemma 1.20,

Ni =0 '(UTINy) =0~ (UT'N]) = N].
]

Definition Primes appearing in a primary decomposition that are not minimal
are called the embedded primes.

Proposition 1.22  Let U be a multiplicatively closed subset of A, and consider
the canonical map:
n:M— UM
m

m = —

Suppose N is a submodule of U='M such that N is U~ 'p-primary for some
prime ideal p. Then n~'(N) is p-primary.

Proof Exercise. |
Let p be a prime ideal, and n: A — A, is the canonical map:

n:A— A,
a
a— -

1

So p™A, is a pAy-primary ideal, since pA, is maximal in A,. By Proposi-
tion 1.22, n~!(p"A,) is p-primary.

16
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Definition  Using the above notation, n~!(p™A,) is called the nth symbolic
power of p and is denoted by p(™. Note that p(™ D p™ and that p(™ is
p-primary.

Exercise 1.23  Can you find a prime ideal p such that p™ # p\™ ? If so what
is it? If not why not?

1.2.2 Primary Decomposition and Polynomial Extensions

Definition For any module M we will write denote by M |[z] the A[z]-module
M ®4 Alz].

Proposition 1.24 Let N be a proper submodule of M. Suppose N is p-
coprimary. Then N|x] is p-coprimary.
Proof Let f(z) = ag+aiz+---+az’. We wish to show that N|[x] i@ Nz]
is nilpotent if f(z) € p[x] and injective otherwise. First suppose f(z) € p[z].
Since N is p-coprimary, we can pick n > 0 such that the map N 4, N is the
zero map for i = 0,...,t. Then for m > tn, f(x)™N[z] = 0.

Now suppose f(x) ¢ p[z]. We proceed with two cases.

Case 1. Suppose ag ¢ p. Then N 2% N is injective. So for any nonzero
element of N[z]

n(x) =ng +nix + - + nga’

we may write

n(x) = ngx’ + -+ ngx®

where n; # 0 and n; = 0 for j < i. Then
f(x)n(z) = fonsx® + (higher degree terms) # 0.

So N|z] @) Nlz] is injective.
Case 2. Suppose ag € p. By assumption there is some a; ¢ p. So we may
write

f(z) = g(x) + h(z)
where g(z) and h(z) are nonzero and such that all the coefficients of g(x) are in
p and no coefficient of h(zx) is in p. Suppose there is some n(x) € N[z] such that
f(z)n(xz) = 0. Then (g(z) + h(z))n(xz) = 0. Therefore g(x)n(x) = —h(z)n(x).
Similarly:

Inductively, we get that g(z)"n(x) = (—1)™h(z)™n(z). Since g(z) € p[z], there
is some m > 0 such that g(x)™n(x) = 0. Since all coefficients of h(z) lie outside

17



1.2. THE PRIMARY DECOMPOSITION THEOREM

p, (—=1)"h(z)™n(z) # 0 by Case 1. This is a contradiction. Thus f(z)n(x) # 0

and again N|[z] @) N [x] is injective. |

Corollary 1.25 If N is p-primary, then N|[x] is p[x]-primary.

Theorem 1.26 Let A be a Noetherian ring, N be a proper submodule of a
finitely generated A-module M, and

is a primary decomposition of N[x] where N;[x] Is p;[x]-primary.

Proof Note that if N; is p;-primary, then N;[z] is p;[z]-primary by Corol-
lary 1.25. Since A[z] is a free A-module, A[z] is a flat A module. Therefore
Nlz] = Ny[z] N - N Ny [x]. |

1.2.3 Associated Primes

Definition Let A be a Noetherian ring and M be a finitely generated A-
module. If N = (\_, N; is a primary decomposition of N C M such that
N; is p;-primary, then the prime ideals pi,po,...,p, are called the essential
primes of N. If N = 0, then the prime ideals pq,...,p, are called the associ-
ated primes of M and are denoted by Ass (M), or Ass(M) when there is no
confusion.

The following are corollaries of the definition and theorems above:

Corollary 1.27 Let A be a Noetherian ring. Given a finitely generated A-
module M, a submodule N is p-primary if and only if Assa(M/N) = {p}.

Corollary 1.28 Let A be a Noetherian ring and M be a finitely generated
A-module. A prime ideal p is in Ass (M) if and only if there is an A-module
homomorphism

Alp— M
L+p—uw,

where x is a nonzero element of M which is killed by p. Note that any nonzero
x € M which is killed by p defines an injection via the above map.

18
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Exercise 1.29  What is wrong with the following argument: Consider the poly-
nomial ring klx,y| where k is a field. Since the prime ideal (x) is clearly (x)-
primary, by Corollary 1.27:

Ass(klz, yl/(z)) = {(z)}

However,
klz, y] klz, y]

~k—

(z,y) (z)
and so by Corollary 1.28, (z,y) € Ass(klz,y]/(z)). What!?
Definition A nonzero element a € A is called a zerodivisor on M if there

exists a nonzero element m € M such that am = 0. A nonzero element a € A
is called a nonzerodivisor on M if a is not a zerodivisor.

Exercise 1.30 If (A, m, k) is a local ring and x is a nonzerodivisor on m, then
show there exists a short exact sequence:

0—k—m—-myz—0
where M = m/axm and m~ is the maximal ideal of A= A/zA.

Corollary 1.31 Let A be a Noetherian ring, M be a finitely generated nonzero
A-module, and let
D ={a € A: a is a zerodivisor on M}.

Then
Du{0} = U p.

pEAssa (M)

Proof (C) Clearly 0 € Upeass,(ar) s since Assa(M) # @. Let d € D, then
there exists m € M with m # 0 and dm = 0. By the Primary Decomposition
Theorem, we have that

(0)=NiN---NN,

where each submodule N; of M is p;-primary. Since m # 0, there exists i =
1,...,n such that m ¢ N;. Hence the image of m is nonzero in M/N;. Since

M/N; is p;-primary and since M/N; 4, M/N; is not injective,

dep, U= U »

i=1 pEAssao (M)
(D) Suppose that a is a nonzero element of p € Assa(M). We have an
injection
Alp— M
l+p—=z

where x is a nonzero element of M that is killed by p. Since 0 +p = a + p, and
these elements map to 0 and az respectively, we see that a is a zerodivisor on
M and hence is an element of D. |
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Corollary 1.32  Let A be a Noetherian ring and N be a submodule of a finitely
generated A-module M. Then

Assa(N) C Assa(M) C Assa(N) U Assa(M/N).

Proof 1If p € Assa(NN), then we have injections A/p — N — M. Thus p €
Ass(M). Now suppose p € Asss(M). Then we have an injection ¢ : A/p — M.

Case 1. Suppose that t(A/p)NN # (0). For any nonzero submodule T C A/p
and any nonzero t € T, the map A/p L Tis injective since A/p is a domain.
Since T' = 1= («(A/p N N) is a nonzero submodule of A/p, we have injections
A/p — T — N. Thus p € Asss(N).

Case 2. Suppose that ¢(A/p) NN = (0). Then ¢ induces an injection A/p —
M/N and so p € Assa(M/N). |

Corollary 1.33 Let A be a Noetherian ring and M be a finitely generated
A-module such that M = M; @& M,. Then

Assa(M) = Assa (M) U Ass g (My).

Theorem 1.34 (Prime Filtration Theorem) Let A be a Noetherian ring. For
any finitely generated, nonzero A-module M, there exists a filtration of M,

M =My 2 M 22 M, = (0),

such that for alli =1,...,n, M;_1/M; ~ A/p; where each p; is a prime ideal.
Moreover, given any such filtration, Assga(M) C {p1,...,pn}

Proof Let S be the collection of submodules of M that have a prime filtration
as stated above. S # &, since for any p € Assa(M), we have an injection
t: A/p — M so that t(A/p) € S. Since M is Noetherian, S has a maximal
element, say Mj.

We claim M = M. Suppose not, then we have the exact sequence

0— My— M- M/My— 0.

By assumption M /M, # (0), so there exists a prime p’ € Assa(M/Mp). Thus
we have an injection j : A/p’ — M/My. Set T = j(A/p’) and Q = ¢~ 1(T).
Then we have a new exact sequence

0— My— Q—T— 0.

Since My has a prime filtration, and since Q/My ~ T ~ A/p’, Q has a prime
filtration. However, Q 2 My contradicts that My is maximal in §. Thus, we
must have that M = M,.

The second part of the theorem follows from Corollary 1.32. |

Proposition 1.35 Let A be a Noetherian ring, M be a finitely generated A-
module, and I = Anny(M). Then any essential prime of I is an associated
prime of M.
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Proof Since M is finitely generated, we may write M = (aq,...,a,)A. Set
0:A— @] | M defined by

a v (aaq,...,aap).

It’s easy to see that I = Ker(p), and thus A/ Ker(p) — @, M. By Corol-
lary 1.32, it follows that

i=1

Assa(A/T) C Assy (éM) C Assa(M).

By definition, associated primes of A/T are essential primes of I. Thus essential
primes of I are associated primes of M. |

Proposition 1.36 Let A be a Noetherian ring and M be a finitely generated
A-module. Define N ={a € A:a"M =0 for some n > 0}. Then

N= (] »
pEAssao (M)

Proof Exercise. |

Proposition 1.37  Let P be the collection of prime ideals of A that are minimal
in Assy(A). Then
Vo= ».
peP

Proof Exercise. |

Proposition 1.38 Let A be a Noetherian ring, M be a finitely generated A-
module, and p be a prime ideal. The following are equivalent:

(1) p is an essential prime ideal of a submodule N of M.

(2) M, #0.

(3) p 2 Anny(M).

(4) p 2 q for some prime ideal q € Assa(M).

Proof Exercise. |

Definition The set of prime ideals p satisfying the four equivalent conditions
above are called the support of M, denoted Supp 4(M).

Corollary 1.39 Let A be a Noetherian ring and M be a finitely generated
A-module. The minimal elements of Assy(M) are the minimal elements of
Supp 4 (M).
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Exercise 1.40 Let A be a Noetherian ring and
0—-M —-M-—->M'—-0
be an exact sequence of finitely generated A-modules. Show that
Supp 4 (M) = Supp 4 (M) U Supp 4 (M").
Proposition 1.41 Let A be a Noetherian ring and M be a finitely generated

A-module. M has finite length if and only if Ass s (M) consists of maximal ideals
only.

Proof (=) Suppose we have a composition series of M,
M=M,C---C M, =(0).

Then fori =1,...,n, M;/M;;1 ~ A/m,; for some maximal ideal m;. Since every

maximal ideal is a prime ideal, this is a prime filtration. Thus by the Prime

Filtration Theorem, Theorem 1.34, Ass4 (M) C {my,...,m,}.

(<) Now assume Ass4(M) consists of maximal ideals only. By the Prime
Filtration Theorem there is a prime filtration of M, say

M=My G- CM, = 0).

Then for ¢ = 1,...,n, M;/M; 11 ~ A/p; for some prime ideal p;. We want to
show p; is maximal for each . So fix p = p;. Then

(Mi/M’i+1)p = (A/p)p 7é (0)
Since (M;)p/(Miy1)p = (Mi/M;11), # (0), we have that (M;), # (0). More-
over, M; — M implies that (M;), — M, by the exactness of localization.

Therefore M, # (0). By Proposition 1.38, p O q for some prime ideal q €
Assa(M). [ |

Corollary 1.42 (Finite Length Criteria) Let (A, m) be a local ring and M a
finitely generated A-module. Then the following are equivalent:

(1) £(M) < oo.
(2) M is Artinian and Noetherian.
(3) Supp(M) = Ass(M) = {m}.

(4) There exists t € N such that m*M = 0.
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1.3 Arbitrary Modules

In this section we assume our ring A is still Noetherian but A-modules are no
longer assume to be finitely generated.

Definition Let A be a Noetherian ring. A prime ideal p is an associated
prime of M if there exists an injection A/p <— M. We denote this set of primes
by Assa(M).

Definition If a € A, the map M —% M is called locally nilpotent if for all
m € M, there is a positive integer n such that a"m = 0.

Definition Let A be a Noetherian ring. An A-module M is p-coprimary if
the map M —% M is locally nilpotent for all a € p and is injective for all a ¢ p.

Definition Let A be a Noetherian ring. Given A-modules N — M, N is
p-primary if M/N is p-coprimary.

Note that these definitions agree those in the finitely generated case, and
that the definition of a locally nilpotent map reduces to the definition of a
nilpotent map for finitely generated modules.

Proposition 1.43  Let A be a Noetherian ring. Given an A-module M, there
are submodules N (p) such that

©= (] N

pEAssa (M)
where N (p) is p-primary.
Proof Fixp € Assa(M). Let
S ={N: N is a submodule of M and p ¢ Assa(N)}.

Note § # & since (0) € S. Since A is Noetherian, S has a maximal element, say
N(p). We want to show that N(p) is p-primary. This is equivalent to saying

Assa(M/N(p)) = {p}.

Suppose that this is not the case, that is suppose there exists q € Asss(M/N(p))
and q # p. Then
Afq=M'/N(p) € M/N(p).

By Corollary 1.32
Assa(N(p)) C Assa(M') C Assa(M'/N(p)) U Assa(N(p)).

But by assumption, p ¢ Ass(N(p)) and as M'/N(p) ~ A/q and q is g-primary,
we have by Corollary 1.27 that Assa(M'/N(p)) = {q}. Thus p ¢ Asss(M’)
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which contradicts the maximality of N(p). Thus N(p) is p-primary. Further-
more, since

Assy ﬂ Np)| =2
pEAssa (M)

by construction, we have that (0) =, cags, (ar) V(P)- |
Exercise 1.44 Let A be a Noetherian ring and
S ={I:I= Anny(z) for some nonzero x € M}.

Let J be a maximal element in S§. Show that J is a prime ideal. Moreover,
conclude that J € Assa(M).

Exercise 1.45 Let f : A — B be a homomorphism of Noetherian rings. Let
M be a finitely generated B-module. Show that

Assa(M) = {f*(p) : p € Assp(M)}.

Hence Asss(M) is finite even if M is not finitely generated over A.
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Chapter 2

Filtrations and Completions

2.1 Limits

2.1.1 Direct Limits

Definition A nonempty set Z is called a directed set if (Z,<) is a partially
ordered set such that for every a, 3 € T there exists v € Z with o < v and

B <.

Definition A family of objects (X, )acz is a direct system indexed by a
directed set T if for every o, € T with @ < ( there exists a morphism
Yap : Xo — X such that:

(1) paa =1x, forall a € T.

(2) For any «, 3,7 € T where o < (8 < 7, the following diagram commutes:

Pap

Xo———— X
X"/

Definition A direct limit, which is an example of a colimit, of a direct
system (X, )aez is an object, denoted by h_II)l(Xa), with morphisms ¢, : X, —
lim(X,) such that for every o, 3 € T with a < 8 we have yg 0 pag = Ya.
Further, for every object Y with compatible morphisms ¥, : X, — Y, there
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exists a unique morphism ¢ making the diagram below commute for all a < §:

Y e - - =% - - lim(X)
Y
Vg
Xg
Pa T%" v
Xa

Example 2.1 If we consider the category of sets, where the morphisms are set
inclusion, then given Xg C X; C--- C X, C .-+

lim(X;) = | X
i=0

Example 2.2 If X, are Abelian groups, then

lim(Xa) = 25

where D is the Abelian group generated by x,, — pag(zs) where z, € X, and
xl, and @qp(xs)" are the images of x, and pas(x;) in P X,.

Exercise 2.3  Suppose we have direct systems (An)acz, (Ba)acz, and (Cy)acz,
over the directed set Z and maps (¢q) : (Aa) — (Ba) and (o) : (Ba) — (Cy)
such that for every a € T

0— A, 25 B, 0, —0

is exact. Then

ling @ g Y
0— limA, — limB, — limC, — 0
i i -

is exact. In other words, direct limit is an exact functor from the category of
direct systems of modules over a fixed directed set to the category of modules.

Exercise 2.4 Let U be a multiplicatively closed set and M be an A-module.
Let M,, denote {1,u,u?, ...} “*M. Note that the collection (M,,),cy for a direct
system since for any u,u’ € U, we have inclusions M,, — M, and M, —
M. Show that UM = lim(M,,).

Exercise 2.5 Let M be an A-module. Show that M is the direct limit of its
finitely generated submodules.
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2.1.2 Inverse Limits
An inverse limit is the dual notion of a direct limit.

Definition A family of objects (X,)aez is a inverse system indexed by
a directed set Z if for every o, € 7 with a < ( there exists a morphism
Yap : Xg — X, such that:

(1) paa =1x, forall a € 7.
(2) For any «, 3,7 € T where o < 8 < 7, the following diagram commutes:

Xﬂ Pap Xa
X’Y

Definition An inverse limit, which is an example of a limit, of a inverse sys-
tem (Xa)aez, is an object, denoted by lim(X, ), with morphisms ¢, : lim(X,) —
Xq such that for all a, 8 € 7 with o < 8 we have p,5 0 3 = ¢. Further, for
every object Y with compatible morphisms ¥, : Y — X, there exists a unique
morphism ¢ making the diagram below commute for all a < 3:

Y----—- -+ lim (X, )
©p
Vs
Xp
ve J/Sﬁaﬂ Po
Xa

Example 2.6  If we consider the category of sets, where the morphisms are set
inclusion, then given Xg 2 X1 2 --- 2 X, D -+,

lim(X;) = (] X
=0

Example 2.7 The inverse limit can be constructed as follows: For a given
inverse system, (X, )acz, Write

liLn(Xa) = {(za)aez : if @ < B, then x4 = pap(rs)} C H Xo.
acl

The reader should check that this construction agrees with the definition of an
inverse limit.

We now will define the ring of formal power series as it will be very useful
in this chapter:
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Definition Given a ring A, we can form the ring of formal power series in

X1,..., X, over A by considering all infinite sums of the form
o0
Zail ,,,,, TP, CLERRD. ¢LR where iy ,...q, € A
i=0

Sums such as these form a ring under the canonical rules for summation and
product. We denote the ring of formal power series over A in n variables by
A[Xq,..., X,].

Exercise 2.8 If B= A[Xi,...,X,]) and I = (X1,...,X,). Show (A/I") form
an inverse system. Moreover, show that

lim(B/I") ~ A[X1,..., X,].

Exercise 2.9  Suppose we have inverse systems (Ay)acz, (Ba)acz, and (Cy)acz,
over the directed set 7 and maps (0q) : (Aa) — (Bgy) and (14) : (Ba) — (Cq)
such that for every a € T

0—s A, 22 Ba&Ca—>0

is exact. Then
lim pq lim e
0— lim A, — lim B, — limC,
p— pa— —

is exact. In other words, inverse limit is a left exact functor from the category of
inverse systems of modules over a fixed directed set to the category of modules.

2.2 Filtrations and Completions

2.2.1 Topology and Algebraic Structures

Definition A group G is a topological group if there exists some topology
on G such that the maps:

GxG—G G—-G

(x,y) — xy w— ot
are both continuous maps.

Definition A ring A is a topological ring if there exists some topology on
A such that the maps:

AxA— A AxA— A A— A

(a,b) —a+b (a,b) — ab a—a!

are all continuous maps.
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Definition If A is a topological ring, an A-module M is a topological mod-
ule if there exists some topology M such that the maps:

AxA— A AxM — M

(@, y)—x+y (a,7) — ax
are both continuous maps.

Exercise 2.10 Let G be a topological group with identity element e. If (N)
is a system of basic neighborhoods of e, show that G is Hausdorff if and only if
{e} =, No. Hint: A topological space is Hausdorff if and only if the diagonal
is closed.

2.2.2 Filtered Rings and Modules
Definition If A is a ring, we call a descending chain of additive subgroups
A=ADA;D---DA,D -

a filtration of A if
AIAJ - A,‘+j.

We say that a ring with a filtration is a filtered ring.

Remark Note that from the definition above, the fact that A;4; C A;4;
necessitates that each A; is an ideal of A.

Definition If A is a filtered ring with filtration (A4,,) and M is an A-module,
then M is a filtered module if

is a descending chain of subgroups of M such that
ALM] - Mi-i-j'

Remark Note that from the definition above, the fact that A;M; C M;,;
necessitates that each M; is a submodule of M.

Definition Let M be a filtered A-module with filtration (M,,) and let N be a
submodule of M. Then setting N,, = N N M,, forms a filtration for N. This is
called the induced filtration.

Definition Let M be a filtered A-module with filtration (M,,) which surjects
onto another A-module N via a module homomorphism

p: M — N.

Setting N,, = p(M,,), we obtain the image filtration.
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Definition A module homomorphism ¢ : M — N of filtered modules is called
a filtered map if

o(M,) C N,.
Definition  Suppose that ¢ : M — N is a filtered map. Then ¢ is called strict
if:
o(M,) = @(M)NN,
—— —_—
image filtration induced filtration

2.2.3 The Topology Corresponding to a Filtration

Let M be a filtered A-module—so A and M are both filtered. Treating (M,,)
as a fundamental system of open subsets of (0) we can define a topology on M.
For any © € M, the fundamental system of neighborhoods around « is (z+ M,,).

Exercise 2.11  Show that the topology defined above makes M a topological
module.

Thus by Exercise 2.10, M is Hausdorff if and only if

(o)
() M. =o0.
n=1
Definition A function of sets d: M x M — [0, 00) is called a pseudometric

if:
(1) For all z,y € M, d(z,y) = d(y, z).
(2) For all z,y,z € M, d(z,y) + d(y, z) = d(z, z).

If in addition we have that for all z,y € M, d(z,y) = 0 if and only if z = y,
then d is called a metric.

If M has a topology defined by a filtration as above, one may define a
pseudometric on M as follows: Fix any ¢ € (0,1). For any =,y € M define

d(z,y) ="

where n is the integer such that (z —y) € M,, — M, 11, if no such integer exists,
then set d(z,y) = 0. If M is Hausdorff, then we have defined a metric. We will

define M to be the completion of M with respect to the metric defined by the
topology associated to the filtration. We have two different ways of constructing
this completion:

First Construction Recall that a Cauchy sequence is a sequence (z,,) € M
such that for all € > 0 there exists N such that n,m > N implies

d(pn, Tm) < €,
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or in other words, for every Ny there exists N such that n,m > N implies that
Ty — Ty € Mp,. Call a sequences which converges to zero a null sequence.
Thus in our metric, a null sequence is a sequence () such that for every L
there exists NV such that n > N implies that x,, € M. We first construct M as
follows:

M= {Cauchy sequences in M }/{null sequences in M}

Second Construction Since M is a filtered module, let each M, in the
filtration be an open neighborhood of 0. Thus each M, is also closed in M since

M—M,= | (z+ M,),
T ¢ M,

which is a union of open sets. Then the quotient topology on M/M,, is the
discrete topology since 0, and hence every point, is both open and closed. Thus
M /M, inherits the discrete topology from the quotient topology and is hence
complete with respect to the metric associated to the given topology. Since the
product of a complete space is complete, [[~ , M/M,, is complete under the
product topology. Define

—

M :=lim(M/M,) = {Zn € M/M, :if n < m, then Tp, — Tp}

C ﬁ M/M,.

n=0
M is then a closed subspace of a complete metric space and hence complete.

Exercise 2.12  Check that the two constructions above for the completion of
M are isomorphic as A-modules.

Recall that for X a metric space and Y a subspace of X then ¥ = 1(Y)
where the bar denotes closure and ¢ is the inclusion map ¢ : X — X.

Exercise 2.13 If M is a filtered module with filtration (M,) and N is a sub-
module of M, then show

N= ﬁ(N—FMn)
n=0

where N is the closure of N in the filtered topology.

Exercise 2.14  Let M be an A-module. Show that the following are equivalent:
(1) M is Hausdorff.
(2) My Mo = 0.

(3) M is a metric space and not just a pseudometric space.
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Exercise 2.15 If M is a filtered module with filtration (M,,), show that
M\n: u(M,)={(Z,) :T; =0 fori <n and x,y; € M, fori >1} C M.

Proposition 2.16  If M is a filtered A-module with filtration (M,,), and M is
its completion, then e
M/M, ~ M/M,

as A-modules. Moreover, ﬂzozo ﬁn =0, so M is Hausdorff even if M is not.

Proof Let m, : [[2,M/M, — M/M, denote the projection map. We leave
it to the reader to check that by restricting m,, to M C [ 2, M /M, we have:

— M,
Ker(m,) ~ M, ~lim < )
t Mn+t

The second statement then follows easily. |

Exercise 2.17 If M is a complete filtered module then the series

converges if and only if lim,,_,o(z,) = 0.

Proposition 2.18 If M is a complete filtered module, and N is a closed sub-
module of M, then M /N is complete in the quotient topology.

Proof Let (T,) be a Cauchy sequence in M/N where T = x + N for z € M.
So there is some increasing integer function f : N — N such that

Tpt1 — Ty € Mf(n) = Mf(n) + N/N.

Thus xp41 — T = Yn + 2, for some y, € N and 2, € My(,). Consider the
sequence:

r1, T1+21, T1+21+22, x1+21+ 22+ 23,

This is a Cauchy sequence in M. By hypothesis M is complete so the sequence
has a limit, say x. Therefore

T=lim (T1+Z1+ - +%,) = lim Tpy1.
— 00

n—oo n

Exercise 2.19 Let A be a Noetherian ring. Let m be a maximal ideal in A.
Give A the m-adic topology and give Ay the mAy-adic topology. Show that
A~ A
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2.2.4 Graded Rings and Modules

Definition A ring A is called a graded ring if it can be written as a direct
sum of subgroups

o0

P A,

n=0

where A;A; C A;4;. Further, elements of A; are called homogeneous elements
of degree i. Note also that a graded ring is a filtered ring with filtration (A7)

where
Al = Z A;.

Definition If A is graded ring:

A=A A DA, D
— —m——

Ay
Then A, is called the irrelevant ideal of A.
Exercise 2.20  Show that:
(1) 14 € A,.
(2) Ay is a ring.

(3) A is Noetherian if and only if Ay is Noetherian and A is a finitely gen-
erated ideal of A.

Definition A module M is called a graded module if it can be written as a

direct sum of subgroups
oo
D Mo

n=0

where AlM] - M’H—j'

Definition Given a filtered ring A with the filtration (A, ), the graded ring
associated to the filtration is defined to be

Gr(A) := EB Ai/Ais
=0

Definition  Given a filtered module M with the filtration (M,,), the graded
module associated to the filtration is defined to be

GI‘(M) = @ Mi/Mi+1
=0
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Remark  Since M\/M\n ~ M/M,,

-~

Gr(A) =~ Gr(A),
Gr(M) ~ Gr(M).

Exercise 2.21 Let A be a filtered ring that is Hausdorff under the given fil-
tration. Show that if Gr(A) is an integral domain, then so is A.

Proposition 2.22 Let A be a filtered ring and M, M’ ,M" be filtered A-
modules. If

0— M L M4 M"— 0
is exact and f and g are strict, that is,

fMy) = f(M)YNM,  and  g(M,)=g(M)NM,,

then

0— Gr(M’) % Gr(M) &4 Gr(M”) — 0

is exact.

Proof Clearly we have Im(Gr f) C Ker(Gr g) since Im(f) C Ker(g).

So let T € Ker(Grg). We can assume that T € M, /M, ; for some n
since any 7 is a finite sum of such homogeneous elements. So g(T) € M) N
g(M) = g(M,,+1) by the strictness of g. So there exists x,,+1 € M, 11 such that
g(x) = g(@n+1). So g(@ — xpy1) = 0. Since

M Lo 2 m7

is exact, there exists y € M, such that f(y) =  — xp+1 € f(M,) by the
strictness of f. Hence (Gr f)(¥) = T and so Ker(Grg) C Im(Gr f) also. To see
the injection and surjection on the ends, simply repeat the argument modifying
it as necessary. [ |

Theorem 2.23  Let M be a complete filtered module and let N be a Hausdorff
filtered module. If f is a filtered map and

Gr f: Gr(M) — Gr(N)
is surjective, then f is onto and strict. Moreover, N is complete.

Proof Let y € N. Since N is Hausdorff, there is a n € N such that y €
N,, — Np41. By assumption f,, : M,,/Mp+1 — N, /Nyy1 is onto for all n. So
there exists x, € M, such that f(x,) = 7 in N, /N,1, that is there exists
Yn+1 € Npy1 with y,11 = y— f(z,). We may apply the same argument to ¢, 11
to get xp+1 € M4 such that f(2,41) = Uny1 in Nyy1/Npto. Continuing in
this way we obtain a sequence (z;);>0 with z; € M4, such that

Yy — f(wn) - f<xn+1) - f(wnJri) € Noyit1
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for all 4. Since lim,,_, (z,) = 0, the following sum

o0

1=0

converges. We leave it to the reader to check that x € M,, and f(z) = y. Thus
f is onto, N is complete, and f(M,,) = N,, so f is strict. |

Corollary 2.24 Suppose A is complete, and M is a Hausdorff filtered A-
module. Suppose further that Gr(M) is a finitely generated Gr(A)-module.
Let x1,...,xq be elements of M such that their images generate Gr(M). Then
M is generated by x1,...,xq and M is complete.

Proof Because we can find homogeneous generators of a graded module over
a graded ring, let zq,...,24 € M such that x; € M,, — M, and such that

Mit+1
x1,...,xq generate Gr(M) over Gr(A). So we have an onto map

f:AY M

e —

We can define a filtration on A? by setting

(Ae;); = {A o
j—ns€i if 5> ny.

This filtration guarantees that f is a filtered map. Since Gr(f) is onto by con-
struction, the previous theorem tells us that f is onto and that M is complete.
Moreover, M is generated by x1, ..., zq over A. |

Corollary 2.25 Let A be complete and M be Hausdorff. If Gr(M) is Noethe-
rian, then so is M.

Proof Take N C M to be any submodule. Set N,, = N N M,,. Then the map
Gr(N) — Gr(M)

is injective by Proposition 2.22. Since Gr(M) is Noetherian, Gr(N) is finitely
generated. By the previous corollary, N is finitely generated. |

Corollary 2.26  Let A be complete and M be Hausdorff. If Gr(M) is Noethe-
rian, then every submodule of M is closed in M.

Proof By the previous corollary, every submodule of M is finitely generated

and complete. Since every complete subspace of a Hausdorff space is complete,
we are done by Corollary 2.24. |
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2.3 Adic Completions and Local Rings

One of the most useful filtrations is the I-adic filtration.

Definition If M is an A-module and I is an ideal of A, then the I-adic
filtration is the filtration:

MDIMDIPMD---D2I"M D ---
In other words, the filtration (M) is given by M,, = I"M.

Definition If I is an ideal of A, then we denote the associated graded ring by
Gr(A) =1/
i=0
Similarly, given an A-module M, we have the associated graded module
Gr (M) .= @ I'M/T ' M.

=0

Definition If M is complete with respect to the metric defined by the I-adic
filtration, then we say that M is I-adically complete.

Definition If M is an A-module, the I-adic completion is given by
M = lim(M/I"M).

If (A,m) is a local ring and M is an A-module, then by the completion of
M, denoted M, we mean the m-adic completion of M.

Exercise 2.27 If B = A[Xy,...,X,] and I = (Xq,...,X,), show that the
I-adic completion of B is

B =Ulm(B/I") ~ A[X1,...,X,].
Exercise 2.28 Ifp is a prime in Z, show that the p-adic integers are:
Z, ~ im(Z/p"Z)
Exercise 2.29 To further understand what is going on, show that:
C[X] € ClX](x) € C{X} € C[X] = C[X]

where C{ X} is the set of all convergent power series with respect to the (X)-adic
metric.

As an additional corollary to Theorem 2.23 we have:

Corollary 2.30 If A is a ring with a finitely generated ideal I such that:
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(1) A is I-adically complete and Hausdorff.
(2) A/I is Noetherian.
Then A is Noetherian.

Proof If I is generated by z1,...,24, then Gry(A) is a quotient of the poly-
nomial ring (A/I)[X1,..., X4], and hence Noetherian. Thus A is Noetherian by
Corollary 2.24. |

While many of the following theorems will be stated for nonlocal rings, and
I-adic completions, the reader should be aware that the case of a local ring with
the m-adic completion is often most important.

Lemma 2.31 (Artin-Rees) If A is Noetherian with an ideal I, and M is a
finitely generated A-module with submodule N, then there exists m > 0 such
that

NOI™™"M =I1"(NNI"M)

for all n > 0.
Proof Note in the above theorem it is always true that
NOI™™M D I"(NNI™M).
For the other containment, set
A=AololPe. -,
M=Ma&IM&I?M& -,

and _
N=NoeNNnIMeNNI’M&---.

Since A is Noetherian, I is finitely generated and hence Ais Noetherian as we
can surject A[X] onto A. Since M is finitely generated over A, M is finitely gen-
erated over g, and hence is also Noetherian. Thus N is finitely generated over
A. We may choose generators of N, 71, ..., n, such that each is of homogeneous
degree dy, ..., d} respectively, that is to say, n; € N N I% M. Set

m = max{dy,...,dg}.
Suppose x € N N I™T"M for n > 0. Then we may write
T =a1M1 + a2+ -+ aph
where deg(a;) = m+n —d; > n. Thus a; € I"™. So we can write
x = blaym + - + apm)
where b € I" and a; = ba}. Therefore N N I™+"M C I"(N NI™M). |
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Definition Let A be a ring and M be an A-module with filtration (M,,). We
say the filtration (M,,) is I-good if there exists an integer j such that for all
1> 0:

M;y; = I"M;

Remark The Artin-Rees Lemma implies that if N C M, and M is I-adically
filtered, then the induced filtration on N, (N NI"M), is I-good. Thus (I"N)
and (N NI"M) define the same topology on N and hence the completion of N
with respect to the two topologies are identical.

Definition If A is a ring we define the Jacobson radical to be

J(4) = ﬂ m.

m maximal
Exercise 2.32  Show that « € J(A) if and only if 1 — ax is a unit for all a € A.
Exercise 2.33  Show that if A is I-adically complete, then I C J(A).

Theorem 2.34 (Krull's Intersection Theorem) Let A be a ring with an ideal
I and M a finitely generated A-module such that IM = M. Then there exists
a € I such that

(I—a)M =0.

Proof Let x1,...,24 be a set of generators for M. Since IM = M we have
T; = a;1%1 + -+ Q5,dTq

for each : = 1,...,d. Therefore

1 = a1,1%1+a12T2+ -+ a1,42q
Ty = Q2,171 + Q22T+ -+ a2 4%q
Tqg = a4,1T1+aq2T2 + -+ aq,4%q-

We can write this in matrix form as

l—a1n —a1p2 -+ —a14 T 0
—az1 l—ags -+ —azq T 0
—ag,1 —ago - l—agqq| |Taq 0

Let B be the above n x n matrix. Then we see that det(B) - z; = 0 for all
i = 1,...,d. Observe that det(B) € 1 —I. Thus setting a = 1 — det(B)
completes the proof. [ ]

Corollary 2.35 (Nakayama’s Lemma) Let A be a ring and I be an ideal of A
such that I C J(A). If M is a finitely generated A-module such that IM = M,
then M = 0.
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Proof By Krull’s Intersection Theorem, Theorem 2.34, there exists a € I
such that (1 —a)M = 0. Since I C J(A) we have that 1 —a is a unit. Therefore
M =0. |

Corollary 2.36  Let (A, m) be a quasilocal ring and M be a finitely generated
A-module. If M = mM, then M = 0.

Exercise 2.37 Prove Krull’s Intersection Theorem, Theorem 2.34, assuming
you know Nakayama’s Lemma. One can start to see why Nakayama himself
said that the lemma bearing his name is a theorem of Krull and Azumaya.

Exercise 2.38 Let A be a commutative ring and let M be a finitely generated
A-module. Suppose f: M — M is surjective. Then f is an isomorphism. This
a result due to Vasconcelos.

Corollary 2.39 Let (A, m, k) be a local ring. If M is a finitely generated A-
module, then

p(M) :={the minimal number of generators of M}
=ranky (M/mM).

Proof Consider a k-basis {by,...,b,} of M ®4 k. We claim that {b,...,b,}
is a minimal set of generators for M. Write

M = zn:biA-l-mM
=1

Setting M = M/ > i | b;A we then have M = mM, and so by Corollary 2.35,
Nakayama’s Lemma, we see that M = Z?Zl b;A. To see that this is minimal,
suppose that it is not, then we have Z?:_ll ¢;A = M. But now {¢1,...,¢,_1}
form a basis for M ® 4 k, a contradiction as M ® 4 k is a free module of rank
n. |

Compare Corollary 2.39 with the following exercise:

Exercise 2.40 Let (A,m,k) be a complete local ring and let M be a Haus-
dorff A-module. Suppose there exist z1,...,x, € M such that Ty, ...,T, gen-
erate M/mM over A/m. Then z1,...,x, generate M over A. In particular
if ranky, (M/mM) < oo, then M is finitely generated over A. Hint: Consider
Corollary 2.24.

To see how the Krull Intersection Theorem gets its namesake read the fol-
lowing corollaries:

Corollary 2.41 Let A be a Noetherian ring and I C J(A). If M is finitely
generated, then
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Proof Let N = ﬂj; I"M. By the Artin-Rees Lemma, Lemma 2.31, there
exists k > 0 such that for all n we have

N=NNI"""M =" (NNI*M)=1I"N.
Thus by Nakayama’s Lemma, N = 0. ]

Corollary 2.42 Let A be a domain. If I is a proper ideal of A, then

oo

(1" =o.

n=1

Proof Let J = ()I" Then we have J = IJ. By Krull’s Intersection The-
orem, Theorem 2.34, there exists a € I such that (1 —a)J = 0. Since A is a
domain and since [ is proper we must have that J = 0. |

Exercise 2.43 Let A be a Noetherian ring and let I C J be two ideals of A.
Suppose that A is J-adically complete. Show that A is also I-adically complete.

Lemma 2.44 If A is Noetherian with an ideal I and
0O—-N—-M-—-T—0

is an exact sequence of finitely generated A-modules, then
0-N—->M-—>T-=0

is exact, where (/—\) denotes I-adic completion.

Proof By the Artin-Rees Lemma, Lemma 2.31, (I"N) and (NNI™"M) define
the same topology on N. Hence the completions are identical. For all n we have
the following exact sequence

0— N/NAI"M L™ M/I"M -2 T/1"T — 0.
Since by Exercise 2.9, taking the inverse limit of an inverse system of exact
sequences is left exact, we get the following exact sequence by Proposition 2.22:

0— lim N/N 0 I"M L lim M/I"M % im T/I"T.
P P i

This can also be checked directly and in fact, the last map is onto. To see this
take (2,,) € imT'/I"T. We build a preimage of (z,,) by induction. Suppose we
have (y;)1<ign Where y; € M/I™M and such that g,(y;) = x;. By the above
remarks we have the commutative diagram with exact rows

0 N/N A I 0y i 20 pypiip g

| | |
0— s N/NAI"M " mjrmm — /17T 0.
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Note that the vertical maps are all surjective. Using this fact, a simple diagram
chasing argument produces y,41 € M/I"™*M such that ¢(y,41) = vy, and
In+1(Ynt+1) = Tnt1. So by induction we get (y,) € @M/I”M that maps to
(zy,) via g. [ |

WARNING 2.45 If A is not Noetherian and I is an ideal in A, then the I-adic
completion is in general neither left nor right exact.

Corollary 2.46  If A is Noetherian with A-modules M and N, and I is an ideal
of A, then
M/N ~ M/N,

where (—) denotes I-adic completion.
Proof This follows from Lemma 2.44. |

Proposition 2.47  Let A be a Noetherian ring and I is an ideal of A. If M is
a finitely generated A-module and A and M denote the I-adic completion, then

]/\4\ ~M®y A\
Proof Consider the map

@:M@AA\HM\,

x® (an) — (apx).

Note that using the properties of tensor product and inverse limits we get that

®-, A~ (B, A). Suppose M is generated by d elements. Then there is an
exact sequence of the form

A® — AT - M — 0.

Then we have the following commutative diagram with exact rows
A ®AA\HAT®AA\*>M®A;{*>O

Lok

o~ —~

As Ar M 0.

The exactness of the first row follows from the fact that — ®4 Aisa right exact
functor. The exactness of the second row follows from Lemma 2.44. Since ¢
and v are isomorphisms, 6 is also an isomorphism by the Five Lemma. |

Theorem 2.48 Let A be Noetherian and I an ideal of A. If A is the I-adic
completion of A, then R
A— A

is flat. That is, A is A-flat.
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Proof This is clear in light of the previous propositions. |

Corollary 2.49 Let M be a finitely generated A-module and let N1, No C M
be submodules. Then

(1) NiNN, =N NN,
(2) Ni + Ny =Ny + N,

Exercise 2.50 Let A be the I-adic completion of A for I a proper ideal of A.
Then

(1) For any ideal J of A, J ~ JA.
(2) TC3(A).

(3) The maximal ideals of A are in bijective correspondence with the maximal
ideals of A that contain I. Further, if m is a maximal ideal with I Z m.
Then m = A.

2.4 Faithfully Flat Modules

Definition If A is a ring and M is an A-module we call M faithfully flat if
it satisfies any of the equivalent conditions of the following theorem.

Theorem 2.51 If A is a ring and M is an A-module then the following are
equivalent:

(1) The sequence of A-modules
N — N — N"
is exact if and only if
M@AN - M@sN—M®cosN"
is exact.
(2) The sequence of A-modules
0—-N —-N-—=N"—=0
is exact if and only if
0= M@aN - M@sN—-MosN"—=0
is exact.
(3) M is A-flat and for all A-modules N,

M®aN=0 = N =0.
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(4) M is A-flat and for all ideals I of A,

M@sAJIT=0 =  A=1I

(5) M is A-flat and for all maximal ideals m of A,

mM C M.

Proof (1) = (2) Obvious.
(2) = (3) Clearly condition (2) implies that M is A-flat. Consider the
sequence of A-modules 0 — N — 0. Then

N=0«<0— N — 0 is exact,
< 0— N®g M — 0 is exact,
S M®a N=0.

(3) = (4) Take N = A/I.

(4) = (5) Let m be a maximal ideal. Since m C A we must have that
M/m>~M®y A/m #0. Thus mM C M.

(5) = (3) Let N be a nonzero A-module. We must show that M ® 4 N # 0.
Let 0 # x € N and define

p:A— N,

at— a-x.

Let I = Ker(yp). If I is a proper ideal we can find a maximal ideal m containing
I. Then

IM C mM C M.

Thus M/IM # 0 and we have an injection A/I < N. Since M is flat, M/IM —
M ®4 N. Therefore M ®4 N # 0.
(3) = (1) Now suppose that we have a sequence of modules

N L N N

and that

M &4 N/A%fM(@A N@QMQ@A N

is exact. We have the following commutative diagram:
gof

\ —

N/Ker(go f)

/ "
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Since M is flat and since M ®4 (g o f) = 0 we get the following commutative
diagram after applying M ®4 —:

M @4 N’ M ®4 N”

M) ( /M®A(g0f)

M ®4 (N/Ker(go f))

Therefore M @4 (N/Ker(go f)) = 0. By assumption then N/ Ker(go f) = 0.
So Ker(go f) = N and thus go f = 0.

Now set X =Im(M ®4 f) = Ker(M ®4 g). Since Im(f) C Ker(g) C N and
since M is flat we have the following commutative diagram

~

M ®4 Im(f)C M ®4 Ker(g)

In M ® 4 N we have then
X CIm(a) CIm(B) C X.

Thus
00— M®aIm(f) - M ®4Ker(g) — 0

is an exact sequence. Therefore so is

0 — Im(f) — Ker(g) — 0.
Therefore Im(f) = Ker(g), our original sequence is exact. |
Example 2.52 If F' is a free A-module, then F is faithfully flat. To see this

note
F=pA,

acl

and so if
0=FosN=EN
a€el

we see that N = 0.
WARNING 2.53 Recall that a module M is called faithful if

Anny (M) =0.

It should be easy to see that if an A-module is faithfully flat, then it is both
faithful and flat over A. However, the converse is not true! Consider Q as a
Z-module. We know that Q is Z-flat, and Annz(Q) = 0 so Q is faithful, however

Q®zZ/3Z =0 but 7/37Z # 0.
Hence Q is not faithfully flat over Z.
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Lemma 2.54 If

0O—-M-—-N-—->P—0

is an exact sequence of A-modules and if P is flat, then for any module T

0—=TRAM —-TRUN-—-TR 4P —0

is exact.

Proof Let T be any A-module. Let F be a free module that maps surjectively
onto 1" so that we have the exact sequence

0—-K—->F—->T-—0.

Then we have the following commutative diagram

K@aM-— KN —KQu P——0

00— Fa M —F®

0———TRA M —T®®

0 0

AN —F®

AN—— T

AaP——0

AP——0

0

The first two columns are clearly exact and last column is exact because P is
flat. Free modules are flat, so the middle row is exact. Clearly the first row
is exact also. It remains to check that the bottom row is exact (and not just
right exact). Since K ® 4 P — F ®4 P is injective, one can check by a diagram

chasing argument that T ® 4 M — T ®4 N is injective.

Theorem 2.55 If f: A — B is a homomorphism of rings, then the following

are equivalent:

(1) A — B is faithfully flat.

(2) B is A-flat and for every ideal I of A, f~1(IB) = 1I.

(3) B is A-flat and for every A-module M, the map

M — M®y, B,

r—r®l,

is injective.
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2.4. FAITHFULLY FLAT MODULES

(4) f is injective and B/Im(f) is A-flat.

Proof (1) = (2) By assumption B is A-flat. So let I be an ideal of A. Set
J = f~Y(IB) so that JB = IB. Since I C J we have the exact sequence

0—-1—J—J/I—0.
Since B is A-flat, the sequence
0—-1®4B—>J®saB—J/I®sB—0
is also exact. Thus

J/I®s B=JB/IB
= 0.

Since B is faithfully flat, we get by Theorem 2.51 that J/I =0 and so J = I.
(2) = (3) Consider the map

f:M— M4 B,
rT—T®a 1.

Let m € Ker(f) and consider the map

p:A—mA,

1—m.

Now let I = Ker(y) so that A/I ~ mA. Then since B is A-flat we have the
following commutative diagram:

A/l ~mA—F

nA/I®ABi \ lf

A/To, B— 22212 Thre, B

Since f~1(IB) = I, we get that the map 1,4,;®a B on the left must be injective.
This contradicts that f o o = 0. Therefore f must be injective.

(3) = (4) By (3) the map A — A®y4 B sending a — a ® 1 is injective. So
let

0—-M —-M-—-M'—0

be an exact sequence of A-modules. Then we have the following commutative
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diagram

0 M’ M M" 0

0—— M@y B——>MUuB——M'"®4B——0

0—— M ®sB/A—— M ®4 BJA—— M" ®4 B/JA——0

0 0 0

where all columns are exact (check it!) and the first two rows are exact by
assumption and by the flatness of B. The last row is also right exact by the
right exactness of — ®4 B/A. A simple diagram chasing argument shows that
the last row is indeed exact and hence that B/A is A-flat. We leave this to the
reader to check, this diagram chase is sometimes called the Nine Lemma.
(4) = (1) Let
0—-M —-M-—-M'—0

be an exact sequence. We then have the same commutative diagram as in the
proof of (3) = (4). Now we have that the columns are exact by assumption, the
first row is exact by assumption, and the last row is exact since B/A is A-flat.
A diagram chasing argument shows that the middle row is exact and hence B
is A-flat.

We now show that for any A-module M, if M ® 4 B = 0 then M = 0 from
which it follows from Theorem 2.51 that B is faithfully flat over A. Consider
the exact sequence

0—-A—B— B/A—D0.

Let M be an A-module. Since B/A is A-flat, the sequence
0-M-—->M®uB—M®®yuB/A—0
is exact. Thus if M ® 4 B =0 then M = 0. |

Theorem 2.56 If A is a Noetherian ring with an ideal I, and A denotes the
I-adic completion of A, then the following are equivalent:

(1) A — A is faithfully flat.

(2) T C3J(A) where J(A) is the Jacobson radical of A.
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Proof (1) = (2) Suppose A — Ais faithfully flat. Take any maximal ideal m
of A. Then mA #+ A by the previous theorem. Suppose m 2 I. Then m+1 = A,
so we can write 1 = x +y with » € m and y € I. Since y € I, the element
u=>3 .2 y' is a convergent, well-defined element of A. But then

o0
xuz(l—y)Zylzl.
=0

Thus z is a unit in A. But 2z € m = mA - 121\, a contradiction. We conclude
m 2 I.SolI - mm maximal W = 3(‘4)

(2) = (1) Suppose now that I C J(A). Then for every finitely generated
A-module M we have (JI™"M = 0. So the I-adic topology on M is Hausdorff.
Therefore M — ]\Z is injective. Since M is finitely generated, M~Me a4 A
So M — M ®a A is injective for all finitely generated A-modules M. Thus
M ®4 A # 0. It remains then to show this for an arbitrary A-module M.

Let M now be any A-module. We can write M as a direct limit of its
finitely generated submodules, M = h_rr)le Since each x € M is contained in
M; for some 4, and since M; — M; ® 4 Ais injective for all i, M — M ® 4 Ais
injective. |

Corollary 2.57 If A is a local ring and A is the m-adic completion then A — A
is a faithfully flat extension.

Definition If (A,m) and (B,n) are local rings, a homomorphism ¢ : A — B
is called local if p(m) C n.

Exercise 2.58 If f: A — B is a local homomorphism of local rings, f is flat
if and only if f is faithfully flat.

Example 2.59 If A =C[Xy,...,X,] and I = (X4,...,X,,), then the I-adic
completion of A is C[X1,...,X,]. Is

CiX] — C[X]]

faithfully flat? To answer this we should ask ourselves, is I C J(C[X])? The
answer to this question is “No!” Thus, C[X] «— C[X] is flat but not faithfully
flat. However, the canonical injection (show that this is an injection)

CiX]x) — CIX]

is in fact faithfully flat by the above exercise.
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Chapter 3

Dimension Theory

In this chapter, we will develop the notion of the dimension of a module three
different ways. The Dimension Theorem will then show that over a local ring,
the three notions are actually equivalent.

3.1 The Graded Case

Definition If f:Z — 7Z is a function, we say that f is essentially polyno-
mial or polynomial-like if there exists P € Q[z] such that f(n) = P(n) for
sufficiently large n.

Remark Note that it is an easy exercise to see that such a P as in the above
definition is unique. Moreover, we define the degree of f to be the degree of
the polynomial P. If P = 0, then we say f has degree —1.

Definition  Given the function f : Z — Z, define
Af(n):=f(n+1)— f(n).

Definition We denote by By (z) : Z — Z for k > 0 the function defined by

x) .: x! () (z—1)---(z—k+1)
= M@ R M



3.1. THE GRADED CASE

Note that By(x) is essentially polynomial for all & > 0. Also note that
ABg(n) = By(n +1) — Bi(n)

_ (n41) n!
T k(n—k+1)! kl(n—k)!
_ _(n+Dnl (n—k+1)n!
S kl(n—k+1)! Ekl(n—k+1)
(k)n!
T k(n—k+1)!
n!
(k= 1)i(n— (k= 1))
= By-1(n),

for k> 1.
Exercise 3.1 Let f € Q[X]. Then the following are equivalent:
(1) f(n) is a Z-linear combination of the By(x).
(2) f(n) € Z for alln > 0.
(3) f(n) € Z for n sufficiently large.
(4) Af(n) is a Z-linear combination of the By (x).

Lemma 3.2 Let P be the set of essentially polynomial functions and let f :
Z — 7. The following are equivalent:

(1) feP.
(2) AfeP.
(3) A™f =0 for some r > 0.

Proof (1) = (2) = (3) Clear from the definitions.

(2) = (1) First note that if Af(n) = 0 for sufficiently large n, we have that
f(n+1)— f(n) = 0, which implies that f(n+1) = f(n) for sufficiently large n.
Because f : Z — Z, we see that f must be constant for large n, showing f € P.

Now suppose that Af(n) = P(n) for n sufficiently large, where P(z) € Q[z].
By the exercise,

t
= Zain ZalABk+1 (Z asz+1 > )
=0

where ag,...,a; € Z. Let Q(x) = Zi:O a;Br1+1(n). Then if we set g(n) =
f(n) — Q(n) then for n sufficiently large, we have that

Ag(n) = Af(n) — AQ(n) = P(n) — P(n) = 0.
Hence f(n) = Q(n)+c for n sufficiently large and for some constant ¢. Therefore

fepr.
(3) = (1) This follows from (2) = (1) applied r times. |
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CHAPTER 3. DIMENSION THEORY

3.1.1 The Hilbert Polynomial
Theorem 3.3 (Hilbert-Serre) Let Ay be an Artinian ring and A be the graded

ring

A=A DAL DA, D

[ —
Ay
where A is generated by x1,...,x, € A;. We see that we may think of A as
the algebra A = Ag[z1,...,x,]. Let M be a finitely generated graded A-module,
M:MO@Ml@"‘@MnEB"',

where each M, is a finitely generated Ag-module. The following are true:

(1) £a,(My,) < oo for alln > 0.

(2) Define the Hilbert function x(M,n) := {4,(M,). Then x(M,n) is
essentially polynomial of degree at most r — 1.

(3) Suppose that My generates M over A. Then
A" (M, n) < £a,(Mo)
with equality holding if and only if

"LZ)ZMO ®A0 Ao[Xl,...,Xr] HM

mo®@aXit- - X —a-xtxlmg

is an isomorphism where the X;’s are indeterminates.

Proof We will show this in several parts:

(1) To show £4,(M,) < oo, it is enough to show that each M, is finitely
generated over Ag, as Ag is both Artinian and Noetherian. Take any M, and
suppose that a1, ..., as generate M over A with each a; homogeneous of degree
d;. Each element in M,, is then a sum of elements of the form

LR
axy T, o

where a € Ay and >_,_, it + d; = n. Given n and d; only finitely many 4;’s can
be found, so M, is finitely generated over Ag.

(2) Proceeding by induction on r. If r = 0, then we have A = A, and
since M is finitely generated over A this implies that M,, = 0 for n sufficiently
large. Thus x(M,n) = 0 for n sufficiently large and we have that the degree of
x(M,n) =—1.
Now suppose our statement is true up through r» — 1. Consider the exact
sequence
0—wN—MIM—L—0
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where N = (0:p 2,,) and L = M/x,. M. So both N and L are killed by z, and
hence are both graded modules over

A= Ag[x]/r Ag[x] = AJz, A,

a graded ring with A, generated by r — 1 elements over Ag.
Now for each n we have an exact sequence

0— N, — M, =% M, 1 — L, — 0.
Since length is additive we get
lag(Lnt1) —lag(Mpt1) + Lay, (M) — £a,(N,) = 0.
And so we see that
Cao(Mni1) = €ay(Mp) = Lag(Lny1) = £ag(Nn),
which shows us
Ax(M,n) = x(L,n+1) — x(N,n).

By the inductive hypothesis, the right-hand side is essentially polynomial of
degree at most 7 —2. Thus Ax(M,n) is essentially polynomial of degree at most
r — 2. By Lemma 3.2, we have the degree of x(M,n) is essentially polynomial
of degree at most r — 1. So by induction, we have proved (2).

(3) (=) Suppose that My generates M over A. That is 1, ..., as generate
M over A and each of the «;’s have degree 0. Consider the map

¢2MQ ®A0 Ao[Xl,...,X.,-] — M

11 1 71
m@aXl ...XTTHm.a.xl ...ajr

Then v is a graded map of degree 0. v is onto as M is generated by M.
Hence if F), is the free Ag-module generated by monomials X! ... X’ such
that Zij =n,

z/}n:—]\4'0®A0F‘n4’]\4'n

is onto. So we have

la, (M) < sy (Mo ®a, Fn)

</
< KAO (MO) . N7

where N is the number of monomials X' --- X/r of degree n. But what is
this value N7 Well whatever it is, it is the same as the number of monomials
X1t X! of degree n in the expression

A+X+ X+ )+ X+ X2 +--) - (1 + X, + X2 +-0)
1 1 1

T1oX, 1-X, 1-X,
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But this is nothing more than the coefficient of X™ in

1

m Where X:X1:X2:"':XT.

N = (n—i—r—l).
r—1

Alternatively one can realize that the above formula is the one for choosing with
replacement n items from r types of item. Now by (1) we know that x(M,n) is
essentially polynomial of degree at most 7 — 1. So by x(M,n) we shall instead
now mean the polynomial equal to x(M,n) for large n. Thus for n sufficiently
large,

So we see that

B B (n+r—1)!
X(M,n) = €a,(My,) < La,(Mo) - N = £, (M) - T

So we see that ( )

n+r—1)!

M,n) < M) o )

X(M.m) < 4, (1) -

and so
(n+r—1)!

(r = DIX(M,n) < £a, (M) -

Taking the limit as n goes to infinity of both sides, we get
AT (M, n) < £a,(Mo).
Now if ¢ as described above is an isomorphism it is clear that
AT (M, n) = €4, (My).

(<) Conversely, suppose that A"~y (M, n) = £4,(Mp). We will show that
¢ as described above is an isomorphism. Proceed by induction on £4,(My).
Suppose that £4,(My) =1 and so My = Ag/my = k, where mg is some maximal
ideal of Ay. Consider the exact sequence

0— L—s k[X1,...,X,] -5 M — 0,

where L is an ideal of k[X]. Likewise we have an exact sequence
0— L, — k[X1,..., X ]n = M, — 0.

Now we have
er (k[X]n) = EAO (Lﬂ) + ng (Mn)

and so
X(k’[X], n) = X(L7n) + X(Ma n)
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From here we see
A" I (E[X],n) = A" (L, n) + ATy (M, n).

However, by (2) we see that A" 1x(k[X],n) and A"~1x(M,n) are both of degree
zero, and since £4,(My) = 1, we have that they are both 1. Thus

A" x(L,n) =0

We claim that if L # (0), then A" !x(L,n) > 0. Suppose there exists
nonzero f € L and set d = deg(f). Since L is an ideal of k[X],,, we have that
/- k[X], C L. Thus

KAO (Ln) = EAO((k[X]f)n)
Since k[X] is a domain, multiplication by f is injective. Therefore, f - k[X] ~
k[X] as k-modules. Thus

Cag (K[X]f)n) = €ay (E[X]n—q) = <

and so A" 1x(L,n) > 0.
Now suppose that £4,(Mp) > 1 and look at

n—d+r—1
r—1 '

OHLHMO[X]LMHO

where L = Ker(M). So we need to show that L = (0). Supposing L # (0), we
then have
X(MO[X]? n) = X(L7 TL) + X(Ma n)7

and so
Ar_lx(Mo[X],n) = Ar_lx(L, n) + Ar_l)((M7 n).

But A" Ix(My[X],n) = £a,(My) = A" 1x(M,n). Hence A" y(L,n) = 0.
We claim that this shows that L = (0). Suppose that L # (0). Consider a
Jordan-Hoélder chain, that is

Mo 2 My 2 -+ 2 Mg = (0)

such that M@;/MéJr1 ~ Ay/m; ~ k; where k; is a field. Now we have the exact
sequence: ‘ '
0— Mt — ME — k; — 0

Applying — ®4, Ao[X1,...,X,] we obtain the exact sequence
0 — My [X] — Mg[X] — k[X] — 0 (%)

as Ao[X1,..., X;] is a free, hence flat, Ap-module. Since L # (0), there exists

i such that L € M{[X] but L ¢ Mt [X]. By (%), the image of L in k;[X] is

nonzero, call it L;. Now we have the surjection L — L; and hence we have
AT_lX(L'h ’I’L) < AT_lX(L TL),
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but by an argument similar to the one above we see that A" 1x(L;,n) > 0 and
hence that A""1x(L,n) > 0. So we see that L = 0 and hence our map  is an
isomorphism. [ |

Definition The polynomial representative of the Hilbert function x(M,n) =
la,(M,,) is called the Hilbert polynomial of M. We will abuse notation and
simply denote this polynomial by x(M,n).

Remark  The previous theorem is saying that if A = k[z1,...,z,] and if M is
defined as above, then:

(1) Each M; is a finite dimensional vector space since ¢y (M,,) = dimy (M,,) <
0.

(2) The dimensions of the vector spaces M; exhibit polynomial growth.

Definition If x(M,n) is of degree d, then the Hilbert multiplicity of M is
en(M) := A% (M, n) = d! ag,

where x(M,n) = agz® + ag_1297 1 + -+ + a1z + ap.

3.1.2 The Hilbert-Samuel Polynomial

As we have seen, if A is a graded ring and M is a finitely generated graded A-
module, then we can define the Hilbert function x(M,n) of M. In this section,
we will investigate the Hilbert polynomial of a canonical grading that can be
put on any Noetherian ring. We will call this polynomial the Hilbert-Samuel
polynomial. However, before this can be done, we need more tools.

Lemma 3.4 If A is a quasi-local ring with maximal ideal m, and M, N, are
nonzero finitely generated A-modules, then M ® 4 N # 0.

Proof Arguing by contradiction, suppose M # 0, N # 0, and M @4 N = 0.
Then

0=(MRsN)@aA/m=M®@4 (N ®@4 A/m)
=M ®4 N/mN
=M®sA/m@4/m N/mN
= M/mM ®4/m N/mN.

At this point note that M/mM is a finite dimensional vector space over A/m. We
claim that M # 0 implies that M/mM # 0, for if M/mM = 0, then M = mM,
and hence by Nakayama’s Lemma, Corollary 2.35, M = 0. Since M/mM # 0
as a finite dimensional vector space over A/m and since N/mN # 0 as a finite
dimensional vector space over A/m, we see that M/mM ® 4/ N/mN # 0, a
contradiction. |
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Lemma 3.5 If A is Noetherian and M, N are finitely generated A-modules,
then
Supp(M @4 N) = Supp(M) N Supp (V)

Proof (C) Suppose that p € Supp(M ® 4 N). Write

0#(M®aN)y M4 N ®4 A,
~M®aN,
~M®a Ay ®a, Np
:Mp@)APNp.

This shows us that M, # (0) and that N, # (0).

(D) If p € Supp(M) N Supp(N), M, # 0 and N, # 0 we see by Lemma 3.4
that M, ®4, N, # 0. This shows us that (M ®4 N), # 0 and so we see that
p € Supp(M ®4 N). |

Lemma 3.6 Let A be a Noetherian ring and M a finitely generated A-module
such that for some ideal a of A, {(M/aM) < co. Suppose (M;) is a filtration of
M with respect to a, that is a™ M C M,, for each n. Then we have the following:

(1) ¢(M/M,) < .
(2) If N — M, then {(N/aN) < cc.

Proof (1) First note that /(M /aM) < oo if and only if Supp(M /alM ) consists
entirely of maximal ideals. Write

Supp(M/aM) = Supp(M ®4 A/a) = Supp(M) N Supp(4/a),
and
Supp(M/a" M) = Supp(M ®4 A/a™) = Supp(M) N Supp(A/a™).

But Supp(A/a) = Supp(A/a™). Thus, ¢{(M/a"M) < oo for each n if and only
if (M /aM) < co. By construction we have the following exact sequence

M/a"M — M/M, — 0.

Hence ¢(M/M,,) < oo for all n > 0.
(2) Now if N — M,

Supp(N/aN) = Supp(N) N Supp(A4/a) C Supp(M) N Supp(4/a).

But Supp(M) N Supp(A/a) = Supp(M/aM), hence Supp(N/aN) consists only
of maximal ideals and we see that ¢(N/aN) < occ. |

Proposition 3.7 Let A be Noetherian, M finitely generated with a an ideal
of A such that £(M/aM) < co. Let (M;) be an a-good filtration of M. Then

P((M;),n) := £(M/M,)

is essentially polynomial.
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Proof Write
AP((M;),n) = P((M;),n+1) = P((M;),n) = {(M/Mpy1) — £(M/M,).
Since length is additive, we see that the right-hand side is ¢(M,,/M,+1) by
looking a the exact sequence
0 — My /Myyy — M/M,yy — M/M, — 0.
Now
Gr(M)=M/My & My /My @ -+ & My /M1 & -,
Gre(A)=A/ada/a® @ - @a"/a" T @ .
Note that while Grq(A) is Noetherian, and is generated by elements of a/a?, A/a

is not necessarily Artinian, and hence we cannot use the Hilbert-Serre Theorem,
Theorem 3.3. By assumption we have ¢(M/aM) < oo. Hence

Supp(M/aM) = Supp(M) N Supp(A/a)
= Supp(A/ Ann(M)) N Supp(A/a)
= Supp(A/ Ann(M) ®4 A/a)
= Supp(A/(Ann(M) + a)),
and so we see £(A/(Ann(M)+a)) < co. But this shows us that A/(Ann(M)+a)

is Artinian. Now take B = A/ Ann(M) and b = (a+ Ann(M))/ Ann(M). Each
M, /M 41 is a B/b-module. Now

Cry(B)=B/b®b/b> @ ---pb"/b" T @

is a graded ring over B/b which is finitely generated by elements of b/b? and
B/b is Artinian. Moreover, Gr(M) is a finitely generated Grp(B)-module
and €4 (M,) = £p(M,). Hence by the Hilbert-Serre Theorem, Theorem 3.3,
X(Eo(M),n) = £(M,,/M,+1) is essentially polynomial and hence AP((M;),n)
is essentially polynomial, which shows us that P((M;),n) is essentially polyno-
mial. |

Theorem 3.8 (Samuel) If A is Noetherian, M is a finitely generated A-
module, a is an ideal of A such that ¢(M/aM) < oo, and (M;) is a filtration of
M such that a® M C M,,, then define

Py(M,n) :=£(M/a"™M).
The following are true:
(1) Po(M,n) = P((M;),n).
(2) Suppose that (M;) is a-good. Then
Py(M,n) = P((M;),n) + R(n)

where the degree of R(n) is strictly less than the degree of Py((M;),n).
In particular, Py(M,n) and P((M;),n) have the same degree and same
leading coefficient. Moreover the leading coefficient of R(n) is nonnegative.
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Proof First we will prove (1). Since a” M C M,, we have the exact sequence:
0—M,/a"M — M/a"M — M/M, — 0

Thus
((M/a™M) = €(M/M,) (%)

and so by definition P,(M,n) > P,((M;),n).
Now for (2) we will start by defining

R(n) =4(M/a"M) — ¢(M/M,,) = {(M,/a™M).
Since (M;) is a-good, we see that there exists m > 0 such that
"t M C Myt = a" M, Ca"M
for some large n. Thus we have the exact sequence
0 — My ipm/a" ™M — M/a™ ™M — M/M, . — 0.
and so {(M/a" ™M) > ((M/M,,1,,). By (%) we see that
Py(M,n+m) = Py((M;),n+m) = Py(M,n) = Py((M;),n)

for large n. Hence P,(M,n) has the same degree as P,((M;),n) with the same
leading coefficient. So deg(R(n)) is strictly less than that of P,(M,n). Since
R(n) > 0 for every n, we see that the leading coefficient of R(n) must be
nonnegative. |

Definition If A is Noetherian, M is a finitely generated A-module, a is an
ideal of A such that ¢(M/aM) < oo, then P,(M,n) as defined above by

Py(M,n) :=£(M/a"™M).
is called the Hilbert-Samuel polynomial of M with respect to a.

Definition (First Notion of Dimension) If (4, m) is a local ring and M is a
finitely generated A-module denote

A(M) := deg(Pn (M, ).
Corollary 3.9  Properties of the Hilbert-Samuel polynomial Py(M,n):

(1) deg(Py(M,n)) < m where m is the minimal number of generators of
(a+ Ann(M))/ Ann(M).

(2) Suppose r is the minimal number of generators of a. Then
A"Py(M,n) < (M/aM).

Moreover, equality holds if and only if the canonical homomorphism

oo

n M
M/aM[Xy,.... X, = P ——
n=0

anti M

is an isomorphism.
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Proof Follows from the Hilbert-Serre Theorem, Theorem 3.3. |
Proposition 3.10 If A is Noetherian, and a is an ideal of A let
0—-L—-M-—>N=—=0

be an exact sequence of finitely generated A-modules such that {(M/aM) < oo.
Then
P,(M,n) = P,(L,n) + P,(N,n) — R(n)

where deg(R(n)) < deg(Py(L,n)).

Proof Since {(M/aM) < oo, we know that L/aL and N/aN both have finite
length, hence the equation we wish to show is well-defined. We have an exact
sequence:

L M N
— — —
Lna"M  a®™M  a"N
Write L, = LN a™M. By the Artin-Rees Lemma, Lemma 2.31, (L;) is a-good.
Thus ¢(Ma"M) = ¢(N/a"N) + {(L/LNa"M) and so

0 — 0

Py(M,n) = P,(N,n) + P,((L;),n)
= Py(N,n) 4+ Py(L,n) — R(n),

by the previous theorem. [ |
Corollary 3.11  If (A, m) is local, let
0—-L—-M-—>N=—=0

be an exact sequence of finitely generated A-modules such that {(M/mM) < co.
Then
d(M) = max{d(L),d(N)}.

Proposition 3.12 Let A be Noetherian, M finitely generated, a an ideal of
A, and ¢(M/aM) < co. Then the degree of Py(M,n) depends only on M and
Supp(M/aM).

Proof Let o’ be an ideal such that Supp(M/aM) = Supp(M/a’'M). We will
show that deg(Py(M,n)) = deg(Py (M, n)). Note that

Supp(M/al) = Supp(A/(Ann(M) + a)

and that
Supp(M/a’M) = Supp(A/(Ann(M) + a')).

Moreover note that we have that

Ann(M) 4+ a = m p= ﬂ p=+Am(M)+a'.
pO(Ann(M)+a)  pD(Ann(M)+a’)
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3.1. THE GRADED CASE

Since A is Noetherian, and so Ann(M) + a and Ann(M) + o’ are both finitely
generated ideals show us that there exists m and m’ greater than zero such that:

(Ann(M) +a')™ C Ann(M) +a
(Ann(M) 4+ a)™ C Ann(M) +a’.

We leave it as an exercise to now check that:
deg(Pa (M7 TL)) = deg(P(Ann(]W)-‘ra) (Aa ’fl))

deg(Pann(am)+a)(A,n)) = deg(Pann(m)+a) (A, 1))
deg(P(Ann(M)+a’)(A7 n)) = deg(Pa'(M7 n))

With the three above equalities proved, the proposition is proved. |

Definition We define the Hilbert-Samuel multiplicity of a module M with
respect to a by
ea(M) := AYP,(M,n),

where d > 0 is the degree of the Hilbert-Samuel polynomial P,(M,n).
Corollary 3.13 If A is Noetherian, and a is an ideal of A let
0—-L—-M-—>N=—=0

be an exact sequence of finitely generated A-modules such that ¢(M/aM) < oo.
Then
ea(M,n) = eq(L,n) 4+ eq(N, n).

Proof This follows from Proposition 3.10. |

Proposition 3.14  If A is Noetherian, M is a finitely generated with ¢(M/aM) <
oo where a is an ideal of A, and my,..., m, are the maximal ideals containing
Ann(M) + a in A, then setting a; = aAn, we have

Py(M,n) = Py, (Mp,,n).
i=1
In other words, to study the Hilbert-Samuel polynomial, it suffices to work over

local rings.

Proof Tostart, note that since Py (M, n) = Pann(a)4a(M, n), we may assume
that M is an A/ Ann(M)-module. Thus we will assume that Anns (M) = 0,
and that ¢(A/a) < co. Hence

Assa(A/q) = {mq,...,m,}

is a set containing only maximal ideals. Now use the Primary Decomposition
Theorem, Theorem 1.15, to write

a=qiN---Na,
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where each q; is m;-primary. Since A is Noetherian, for each i there exists t;
such that mf" C q; and so the g;’s are pairwise comaximal. Thus

a=gq;---q, andso a"=q7---q.

Thus by the Chinese Remainder Theorem,
Al =~ Afql & - @ Alg)l.
Now apply — ®4 M to obtain
M/a"M ~M/q} ©--- & M/q; (%)

and define
a; = 0Am, = qiAm,.

Since A/q; is a local ring with maximal ideal m;, we see that

Alai = A, /9iAm, = Aw, /0.
Similarly we see that A/q} ~ An,/al. Applying — ® 4 M we see that

M/qi M >~ My, /o] M,

and so by (%) we obtain

M/a" M ~ P My, /a} My,

i=1

Thus Po(M,n) =.._; Pa,(Mu,,n). |

The previous theorem shows us that the degree of P,(M,n) is a local prop-
erty and thus when ¢(M/aM) < oo, so is the Hilbert-Samuel multiplicity of M
with respect to a.

3.2 The Topological Approach

3.2.1 Basic Definitions

We will first recall some basic definitions from topology.

Definition If X is a set, a topology on X is a collection of subsets of X such
that:

1) The union of any number of the sets in the collection is again in the
g
collection.

(2) The intersection of any two of the sets in the collection is again in the
collection.
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3.2. THE TOPOLOGICAL APPROACH

(3) X is in the collection.
(4) The empty set is in the collection.
Definition A topological space is a set X equipped with a topology.

Definition A set Y is open in a topological space X if it one of the sets of
the topology of X.

Definition A set Y is closed in a topological space X if it is the complement
of an open set in X.

Definition Let X be a topological space, Y C X is called irreducible if
Y # Y7 UYs, where Y1, Y; are two proper closed subsets of Y and Y # @.

Definition The closure in a topological space of a subset Yﬁg X is the
intersection of all the closed sets containing Y and is denoted by Y.

Proposition 3.15 The following are true:
(1) IfY is irreducible, then Y is irreducible.

(2) Y is irreducible if and only if any two nonempty proper open subsets of
Y must have a nonempty intersection.

(3) If x € X, then {z} is an irreducible closed set.

(4) Y is irreducible if and only if every nonempty open set is dense in Y.
Proof Exercise. |

Definition A closed set is called a maximal set if it is not contained in a
larger closed set.

Note that every irreducible closed set is contained in a maximal irreducible
set by Zorn’s Lemma.

Definition A maximal irreducible set in X is called a component of X.

Definition If X is a topological space, X is called Noetherian if any of the
following equivalent conditions hold:

(1) Every nonempty family of open sets has a maximal element.
(2) Any increasing family of open sets terminates.

(3) Every nonempty family of closed sets has a minimal element.

(4) Any decreasing family of closed sets terminates.

Definition A topological space is called compact if every open cover of X
has a finite subcover.
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Remark  Our definition of compact above does not include the assumption that
X is Hausdorff—recall that a Hausdorff space is one where given any two points
you can find open sets containing those points such that the intersection of the
open sets is empty. It used to be the case that all compact topological spaces
were taken to be Hausdorff and topological spaces that would be otherwise be
compact had they been Hausdorff were called quasicompact. However, the
restriction that compact spaces be Hausdorff is becoming less common and so
we will not require compact spaces to be Hausdorff.

Proposition 3.16 Let X be a Noetherian topological space. The following are
true:

(1) Any subset of X is Noetherian.
(2) X is compact.
(3) Any open subset of X is compact.

(4) If in addition X is Hausdorff, then X is a finite set with the discrete
topology.

Proof Exercise. |

Proposition 3.17  If X is Noetherian, then X = X U---UX,,, where each X, is
a component of X. Moreover, this decomposition is unique and any irreducible
closed set of X is contained in one of the X;’s as above.

Proof 1If X is Noetherian, then by Proposition 3.16 every subset of X is
Noetherian. Hence let

S — {Y cCX: Y is closed in X and for Y the above}'

" proposition does not hold

Suppose that S # @. Then S has a minimal element, call it Z. Z is not
irreducible as Z € S. Thus Z = Z; U Z5, where neither Z; nor Z are elements
of S. Hence

Z1=VinUVigU---UVi,,
Zy=Vo1UVaoU---UVy,,

where each V; ; is a component of Z; and each V5 ; is a component of Z,. Hence
Y:V1,1U"'le,rU"'UVz,lU"'UVQ,s-

Now throw out V;; if it is contained in V5 ; and vice versa. Hence S has no
minimal elements and thus must be empty.
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3.2. THE TOPOLOGICAL APPROACH

To see the second part of the proposition, let Y be an irreducible closed set
in X. Then

Y=YNnX
=YnNnX1uU---uUX,)

n
:UYﬁX,L-.

i=1

Since Y N X, is closed and Y is irreducible, we see that Y N X; = & for each ¢
except one. |

Definition Let X be a topological space, the dimension of X, denoted by
dim(X) is defined as

i i Do D
dim(X) := sup {d : there exists a chain Xg 2 D X4 Of}

length d of irreducible closed subsets of X,
Proposition 3.18 If X is a Noetherian topological space,
dim(X) = sup dim(X;)

where X; is a component of X .

3.2.2 The Zariski Topology and the Prime Spectrum

Definition If A is a commutative ring, the prime spectrum of A, denoted
by Spec(A), is defined as

Spec(A) := {p : p is a prime ideal of A}.
Similarly, the set of maximal ideals of a ring A is denoted by
MaxSpec(A) := {m: m is a maximal ideal of A}.
Example 3.19
(1) Ifk is a field, Spec(k) = {(0)}.
(2) Spec(Z) = {(0),(2),3), (5), (7), (11), (13), (17), ... }.
(3) Spec(ClX]) ={(0)} U{(X —a) :a e C}.
(4) Ifk is an algebraically closed field, Spec(k[X]) = {(0)}U{(X —a) : a € k}.

We should note that in general, the prime spectrum of a ring is not easy to
compute.

Definition Let a be any ideal of A. Define

V(a):= {p € Spec(A) : p D a}.
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We define the Zariski topology on Spec(A) as follows: Define V'(a) to be the
closed sets of Spec(A). One should check that:

(1) V(Cll) U V(az) = V(Cll N a2) = V(alaz).
(2) M Via) =V, @)

Now define the open sets to be the complement of the closed sets, that is, the
open sets of Spec(A) are sets of the form

_ _ . p does not contain the generators
Spec(4) —V(a) = {p € Spec(4) : of the ideal a }

for some a C A.

On one hand the Zariski topology is very nice. It applies to all rings. How-
ever, there is a price to be paid. The Zariski topology is not Mr. Roger’s
Neighborhood. In general, Spec(A) under the Zariski topology is not Hausdorff.
In particular if A contains a unique minimal prime ideal, then then only closed
set containing it is all of Spec(A). This sort of point is everywhere dense and is
called a generic point.

Definition Let f be any element of A. Define

D(f) := Spec(A) = V(f) = {p € Spec(4) : f ¢ p}.
Proposition 3.20 {D(f): f € A} form a basis of Spec(A).

Proof First we need to check

Spec(4) = | D(/)

feA

and this is clear.
Next we should check if whenever p € D(f) and p € D(g), does there exist
h such that
p € D(h) € D(f) N D(g)?

This is true as we merely need to set h = fg. ]

Exercise 3.21  Show that Spec(C[X]) = {(0)}.

Definition Let Z be any subset of Spec(A). Define

1(Z):=()».

pez

Proposition 3.22  For any ideal a of A,

I(V(a) =) p=Va.
poa
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Proof Exercise. |
Proposition 3.23 If Z; C Z, are two closed subsets of Spec(A), then

1(Zy) C I(Z).
Proof Exercise. |
Proposition 3.24  For any subset Z of Spec(A),

V(I(Z))=Z.
Proof Exercise. |

Remark From the previous propositions, one sees that there is a bijective in-
clusion reversing correspondence between closed sets of Spec(A) and the radical
ideals of A.

Proposition 3.25 If Z is a closed subset of Spec(A), then Z is irreducible if
and only if I(Z) is a prime ideal.

Proof (=) If I(Z) is not prime, then there exists a,b € I(Z) such that
a,b ¢ I(Z) such that ab € I(Z). Set
L =1(2) +a,
I, =1(Z)+b.
Hence V(I;) € Z and V(I3) € Z and more importantly V(I;) UV (l2) C Z.
HOWGV@I‘, Il . IQ g I(Z) Hence Z Q V(Il . 12) = V(Il) U V(I2) Thus
Z =V (I;)UV(Is) is not irreducible.

(<) Now suppose that I(Z) is prime. Since this is a point in the topological
space Spec(A), it is irreducible. [ ]

Proposition 3.26 If A is a Noetherian ring, then Spec(A) is a Noetherian
topological space.

Proof Suppose A is Noetherian, then by the Primary Decomposition Theo-
rem, Theorem 1.15, we have

0)=aqn---Na

where each q; is p;-primary and so V(g;) = V(p;). Eliminate those V(p;) for
which p; is not minimal in Ass(A4). Then reindexing we have

Spec(A) =V (0) =V (p1) U--- UV (ps).

Since the V' (p;) are the irreducible components of Spec(A) this proves the propo-
sition. m
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WARNING 3.27  The converse of the above proposition is not true. We leave
it as an exercise to show that if k is a field, then

35 CHTED. S

A:
(X2,...,X2,.)

is not a Noetherian ring but Spec(A) is a Noetherian topological space.

Definition (Second Notion of Dimension) If A is a ring, the Krull dimen-
sion, denoted by dim(A), is the dimension of the topological space Spec(4). To
be explicit:

dim(A) = sup{d : there exists pg C p1 S -+ C pq such that p, € Spec(4)}.

This notion of dimension is often simply referred to as the dimension of a ring.
If M is an A-module, then

dim(M) := dim(A/ Ann(M)).

Exercise 3.28 Given a ring A and an A-module M, show that the dimension
of M is the dimension of the topological space Supp 4 (M) C Spec(A).

Example 3.29 While
dim(A) = sup{d : there exists pg C p1 S -+ C pq such that p; € Spec(4)}.

Nagata gives an example of a ring A such that A is Noetherian but with infinite
dimension in [14].

Example 3.30 In the ring C[X4,...,X,] we have the chain of prime ideals
(0) - (Xl) G- C (Xl,...,Xn).
Thus the dimension of C[X1,...,X,] is at least n.

Suppose that a ring A has finite dimension. If my,..., m, are maximal prime
ideals in Spec(A), then dim(A) = d implies that there exists a chain of length d
ending at one of the m;’s. Thus for some ¢,

dim(Ap,) = dim(A).

Hence we see that some questions about the dimension of a ring can be reduced
to questions about local rings.

Remark  We can characterize dimension in two useful ways:
(1) dim(A) = supdim(Ay,) where m € MaxSpec(A).

(2) dim(A) = supdim(A/p) where p is a minimal prime ideal of A.
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3.3 Systems of Parameters and the Dimension
Theorem

Recall that a local ring is a ring that is Noetherian with a unique maximal ideal.

Definition (Third Notion of Dimension) Let A be a local ring and M a

finitely generated A-module. Define

s(M) — inf{d ) there exists z1,...,2q € m Such}

“that ¢(M/(z1,...,2q)M) < o0

If M is finitely generated as an A-module then, M /mM is finitely generated
as an A/m module. Hence as a vector space over A/m, M/mM has finite
dimension. If A is Noetherian, then we see that M/mM has finite length. This
idea helps motivate our next definition.

Definition Let A be Noetherian and M be a finitely generated A-module.
Then if (M) = n, then any sequence z1,...,z, such that

UM/ (x1,...,20)M) < 0
is called a system of parameters of M.

Theorem 3.31 (The Dimension Theorem) Let A be a local ring and M a
finitely generated A-module. Then

dim(M) = d(M) = s(M).

Proof We will show dim(M) < d(M) < s(M) < dim(M).

dim(M) < d(M) Proceeding by induction on d(M). Suppose that d(M) =
0. Then
d(M) = Py(M,n) =4(M/m"M)

is constant for n sufficiently large. Thus for large enough n,
(M /™M) = 6(M/m" M)

which shows us that ¢(m™M/m"*1M) = 0. Hence m"M/m" 1M = 0. So,
m" M =m" "M = m(m" M)

and hence by Nakayama’s Lemma, Corollary 2.35, m"M = 0 and hence m™ C
Ann 4 (M). Since

dim(M) = dim(A/ Ann(M)) = dim(A/+/Ann(M)) = dim(A/m),

we see that dim(M) = 0.
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Now assume d(M) =n > 0. Take any maximal chain
PoGPL G & Pm

in Supp(M). We need to show m < n. We know that pg is a minimal element of
Supp(M) and hence is a minimal element in Ass4(M). So we have an injection

Set N = A/pg. By Corollary 3.11, d(N) < d(M). So it suffices to show that
m < d(N). Let € p; — po. Consider the short exact sequence

0— N-% N— N/zN — 0.
By Proposition 3.10, we have that
Pu(N,n) = Pu(N,n) + Pa(N/xN,n) — R(n),
where deg(R(n)) < deg(Pm(N,n)) = d(N). But then
Pun(N/xN,n) = R(n).

Thus d(N/zN) = deg(Pn(M,n)) = deg(R(n)) < n. By the inductive hypothe-
sis, dim(N/zN) < d(N/zN). Since

R
is a strict chain of prime ideals in Supp(N/xzN), we have that
m—1<dim(N/aN) < d(N/xzN) <n—1.
Hence dim(M) =m < n =d(M).
d(M) < s(M) 1If n = s(M), consider z1,...,x, a system of parameters for
M. In this case we have by definition that
La(M/(x1,...,2q)M) < oc0.

Consider a = (z1,...,z,). Now if we consider the image of a in M/ Ann, (M),
we have that
a= (flv s 75'”)

where Z; is the image of ; € M/ Anun 4 (M). By Proposition 3.12, d(M) depends
only on M and
Supp(M/mM) = Supp(M/aM),

and thus we see that
d(M) = deg(Pn(M,n)) = deg(Py(M,n)) < n,

using that a is generated by n elements and applying Corollary 3.9.
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s(M) < dim(M) Proceed by induction on dim(M). Write
dim(M) =0 < Assa(M) = {m},
S la(M) < 0,

and so we see s(M) = 0.

Now assume that dim(M) = n. Let p; be the minimal prime ideals in
Supp(M). By Corollary 1.39, these primes are also minimal in Ass(M) so
there are only finitely many such primes. By the Prime Avoidance Lemma,
Lemma 0.12, we may pick € m such that z is not in any of these minimal
primes. Thus

dim(M/xM) < dim(M)

and thus by induction, s(M/zM) < dim(M/xzM). But s(M) — 1 < s(M/xM)
and so
s(m) < s(M/azM) + 1 < dim(M/xM) + 1 < dim(M).

Putting the above steps together we have shown
dim(M) < d(M) < s(M) < dim(M),
and hence dim(M) = d(M) = s(M). |
Corollary 3.32  If (A, m) is a local ring, then it is has finite dimension.

Proof Since A is Noetherian, m is finitely generated, thus s(A) = dim(A4) is
less than or equal to the number of generators of m. |

Corollary 3.33  If(A,m) is a local ring and M is a finitely generated A-module,
then L
dimA(M) = dimg(M).

Proof We know from Proposition 2.16
M/m"M ~ M /m*M ~ M /@"M,
and so Pm(M,n):Pa(]\//f,n). |
Corollary 3.34 If (A, m) is a local ring, then
dim(A) = min{s : (a1, ...,a;) = a where a is m-primary}.

Proof Let dim(A) = n, then there exists z1,...,z, a system of parameters
of A such that ¢(A/x) < oo. Thus (x1,...,2,) is m-primary. Since s(4) = n,
we see that we cannot obtain yq,. ..,y with ¢ < n such that ¢(A4/y) < co. So
for any yi,...,ys with t <n, (y1,...,%:) is not m-primary. |

Corollary 3.35 If A is a Noetherian ring, not necessarily local, consider any
decreasing chain of prime ideals in A

Po2P 2 2pi 2

Then there exists n such that p, = pp41 =---.
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Proof If we localize at pg, then dim(A,,) < co. So for some n
pnApo = anrlAPo ="
and so P, =Ppy1 = - -. |

Definition If A is a Noetherian ring and p is a prime ideal of A, then the
height of p is

ht(p) = sup {n

_there exists a chain of prime ideals
PoGEPL G Pl G =D

Remark Note that ht(p) = dim(A,).

Definition If A is a Noetherian ring and [ is any ideal of A, then the height
of I is

ht(I) = inf{ht(p) : I C p}
= inf{ht(p) : p is minimal in Ass,(A/I)}.

Definition If A is a Noetherian ring and I is any ideal, then the coheight,
denoted coht([) is defined as

coht(I) = dim(A/I).
Exercise 3.36  Check that for any ideal I, ht(I) 4+ dim(A/T) < dim(A).
WARNING 3.37 Even if I is a prime ideal, the above inequality may be strict.

Corollary 3.38 (Krull's Ideal Theorem) Let A be a Noetherian ring and p is
a prime ideal. Then ht(p) < n if and only if there exist ay, .. .,a, € p such that
p is a minimal prime containing (a1, ..., a,).

Proof Since ht(p) = dim(A4,), dim(A4,) < n if and only if there exists

T Tn

o
in A, such that

€ T

o
is pAp-primary. This is the case if and only if there exist z1,...,z, € p and p
contains (z1,...,z,) minimally. |

Corollary 3.39 (Krull's Principal Ideal Theorem) Let A be a Noetherian ring
and x be an element of A which is not a unit or a zerodivisor. Then every prime
which contains () minimally has height 1.
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Proof By Corollary 3.38 the minimal prime containing (z) has height at most
one. The prime p containing (x) cannot have height zero, as then p € Ass(A)
by Corollary 1.39 and hence then every element of p is a zero divisor, which is
not the case. |

Remark The above corollary to the Dimension Theorem is sometimes called
Krull’s Hauptidealsatz.

Corollary 3.40 Let (A, m) be a local ring and x be an element of m which is
not a zerodivisor. Then dim(A/zA) = dim(A4) — 1.

Proof This follows from the previous corollary and the definition of dimen-
sion. |

Exercise 3.41 If (A, m) is a local ring and M is a finitely generated A-module
with x1,...,x; € m, then

dim(M/(z1,...,z;)M) > dim(M) — 1.

Equality holds if and only if x1,...,x; form part of a system of parameters for
M.

Exercise 3.42 Let A be a Noetherian ring of dimension at least 2. Then A
has infinitely many prime ideals of height 1.

Example 3.43 A ring A is Artinian if and only if dim(A) = 0.
Example 3.44 A PID has dimension one.

Example 3.45 dim(Z) = 1.

Example 3.46 Ik is a field, then dim(k[X]) = 1.

Example 3.47 Ifk is a field, then dim(k[z]) = 1.

Lemma 3.48 If A is a ring and P, C P, are two prime ideals of A[X] such
that
PlﬁA:PQHA:p,

then P, = p[X].
Proof Suppose not. Then
pXIC P C P,
and so
0) ¢ (P1/p)[X] S (Po/p)[X]
in (A/p)[X]. Set U = A—p. Since P,NU = P,NU = &, and since localizations

are exact, we have
0) U P /p)X] S U (Po/p)X]

is a strict chain of prime ideals in (A,/pAy)[X] = U~'(A/p)[X]. But this
contradicts that dim(k[X]) = 1 when k is a field as k[X] is a PID, hence all
primes are principal and so are of height one or zero. Thus P, = p[X]. |

72



CHAPTER 3. DIMENSION THEORY

Lemma 3.49 If A is Noetherian and I is an ideal of A, then
ht(I) = ht(I - A[X]).
Proof By the Primary Decomposition Theorem, Theorem 1.15,

Ass (ﬁé{l}) — {pi]X] : pi € Ass(A/T)},

as A/I injects into A/I[X]. So it is enough to show that if p is a prime ideal in
A, then
ht(p) = ht(p[X]).

Suppose that ht(p) = n. Then there exist aj,...,a, € p such that p 2D
(ai,...,ay,) minimally. By the Primary Decomposition Theorem, Theorem 1.15,
we see that p[X] D (a1,...,a,)[X] minimally. Thus ht(p[X]) < n.

On the other hand, if
PoGCPL G GCPn=p
is a chain of prime ideals where ht(p) = n, then
Po[X] & pi[X] & - & pn[X] = p[X]

is a chain of prime ideals in A[X]. Thus ht(p[X]) > ht(p) and so we see that
ht(p[X]) = ht(p). ]

Theorem 3.50 If A is a Noetherian ring, dim(A[X]) = dim(A4) + 1.

Proof First note that given a chain of primes pyg C --- C p, in A, we can
construct the chain of primes poA[X] € -+ € p,A[X] € p,A[X] + zA[X] in
A[X]. It is then clear that dim(A[X]) > dim(A4) + 1, so it is enough to show
dim(A[X]) < dim(A) + 1. If dim(A4) = oo, then there is nothing to prove. We
will proceed by induction on the dimension of A. If dim(A) = 0, then for P; a
prime ideal in A[X] write p; = P, N A. So if

PBChGC---CP

then since dim(A) = 0, we have pg = p; = - = p,,. Thus by Lemma 3.48, we
have
po[x] :Po :Pl = "':Pn—l Cpn

=

Thus n < 1 and so we see that dim(A[X]) = 1.

Now suppose that dim(A) =n > 0 and let Py C P, € --- C P, be a strict
chain of prime ideals in A. Set p; = P; N A.

Case 1: Suppose that p,—1 C p,,. Then

dim(A,,_,) < dim(A).
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By induction we then have that dim(4,, ,[X]) = dim(A,, ,) + 1 < dim(A4).
In A,, ,[X] we have a strict chain

POApnfl - PlApn—l g e g Pn—lApn—l

=

and thus
n—1<dim(4,, ,)[X] < dim(A).

Thus n < dim(A) 4+ 1 and so dim(A[X]) = dim(A) + 1.

Case 2: Suppose that p,_1 = p,. By Lemma 3.48, we have P,,_1 = p,_1[X].
By Lemma 3.49, we have ht(p,,—1[X]) = ht(p,—1). Thus

dim(A) > ht(pp—1) = ht(P,—1) > n— 1.
Thus n < dim(A) + 1 and so we see that dim(A[X]) = dim(A4) + 1. |
Exercise 3.51 If A is Noetherian, show that
dim(A[[X]) = dim(4) + 1

Hint: Does every maximal ideal in A[[X]| contain X ?

Corollary 3.562  We have that if k is a field, then

dim(k[X1, ..., X)) = dim(k[X1, ..., X.]) = n.
dim(Z[X1, ..., X)) = dim(Z[X1,..., X,]) =n+1,
dlm(Z(p) [Xl, . ,Xn]) = dlm(Z(p) [[Xl, e ,Xn]] =N
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Chapter 4

Integral Extensions

4.1 Basic Properties

Definition Let A C B be commutative rings. An element b € B is called
integral over A if b satisfies a monic equation of the form

B 4+ ap " P4+ bag +ap=0

where ag, ...,a,_1 € A. If every element of B is integral over A, we say that B
is integral over A.

Proposition 4.1 Let A C B be commutative rings and let b € B. Then the
following are equivalent:

1) b is integral over A.

(

(2) A[b] is a finitely generated A-module.

(3) Alb] is contained in a subring of B which is a finitely generated A-module.

(4) There exists an A[b]-submodule of B which is faithful as an A[b]-module
and is finitely generated as an A-module.

Proof (1) = (2) Suppose z is integral over A. Then
B+ ap " P4+ tab+ag=0

for some ag,...,a,_1 € A. Thus A[b] is generated by 1,b,b% ... 6"} as an
A-module.

(2) = (3) If A[D] is finitely generated, then taking B = A[b] gives A[b] as a
subring of a ring that is finitely generated as an A-module.

(3) = (4) If A[b] C C C B where C is a subring of B, then C' is faithful as
an A[b]-module and C'is finitely generated over A.

(0]
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(4) = (1) Suppose there exists an A[b]-submodule C' of B which is faithful
as an A[b]-module and finitely generated over A. Let cy,...,c, be generators
for C over A. Since C is an A[b]-module, be; € C for all i. So we may write

bcr = ayicr +ajpce + -+ ay pcp,

bcy = ap1c1 +agace + -+ ag pcy,

be, = Gn,1C1 + Qp2C2 + -+ + Gp nCn-

We can write this in matrix form as

b—ain —ai2 - —ain c1 0
—a1 b— azz2 - —a2.n C2 0
—0Qnp,1 —Qn,2 e b— An,n Cn 0

Let X be the n x n matrix shown. Let Y; be the identity n X n matrix with the
1th column replaced by the column in the above equation with entries ¢y, . .., c,.
Then by the above equation, the ¢th column in the product X - Y; will be the 0
column for all 4. Thus det(X -Y;) = 0. Therefore

det(X)e; = det(X) det(Y;) = det(X - Y;) =0

for all i. Since C is a faithful A[z]-module, det(X) € Ann,p)(C) = 0. So
det(X) = 0 and this monic equation in b gives an integral dependence for b over
A. |

Example 4.2 If X is an indeterminate over Z, it is clear that Z[X] is not an
integral extension of Z. However, Z|X]/(X? + 1) ~ Z[i] is an integral extension
of 7.

Corollary 4.3 Suppose B = Alzy,...,x,] is a finitely generated A-algebra,
and suppose each x; is integral over A. Then B is a finitely generated A-module.
In this case we say that B is a module finite A-algebra.

Proof Clear from the proposition above. |
Definition Let A C B be commutative rings. Let
B’ ={b € B :bis integral over A}.

Then B’ is a subring of B called the integral closure of A in B. If B’ = A we
say A is integrally closed in B. By the above proposition, B’ is a subring of B.

If A is a domain, the integral closure of A, without reference to another

ring, means the integral closure of A in Frac(A). We denote the integral closure
of A by A and when A = A, we say that A is integrally closed.
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Exercise 4.4 If A is a UFD, then A is integrally closed.

Exercise 4.5 If A is integrally closed in B, and if U is a multiplicatively closed
subset of A, then U~'A is integrally closed in U~!B.

Exercise 4.6 Let A C B C C be rings where A C B and B C C are both
integral extensions. Then A C C' is an integral extension.

Proposition 4.7 Let A be a domain. Suppose that for every maximal ideal m
of A, Ay, is integrally closed. Then A is integrally closed.

Proof First we show that

A=()A4n

m

where m € MaxSpec(A). Note that for every maximal ideal m, A C A, C K
where K = Frac(A). So
AC()Am.
m

Now take
T e ﬂ An
m

and let I = (A :4 x). Suppose I # A. Then I C m for some maximal ideal m.
Since x € An we can write x = a/b with b ¢ m. But bx = a € A implies that
b € I C m; a contradiction. Therefore I = A. In particular z € A, so we have

A=A

Now let « € K be integral over A. Then z is integral over Ay, for all maximal
ideals m. Since Ay, is integrally closed for every maximal ideal m, we have that

xeﬂAm:A.

So A is integrally closed. ]

Remark By the previous proposition, we see that the property of being inte-
grally closed is a local property.

Proposition 4.8 Suppose A C B is an integral extension with B a domain.
Then A is a field if and only if B is a field.

Proof (=) Suppose A is a field and consider some nonzero b € B. Then b is
integral over A. So there is a minimal relation of the form

B 4+ Ay b L AMb 4+ Ao =0,
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where Ag,...,Ap—1 € A and A9 # 0. If A\g = 0, then by factoring out b and
using that B is a domain, we would get an integral relation of smaller degree.
So we can write

1 1
3= _To(bn_l F A DT ).

Therefore B is a field.
(<) Suppose B is a field and consider some nonzero a € A. Then a~* € B.
So a~! is integral over A, meaning we may write

1\" 1\"* 1
<) +>\n_1(> +~--+)\1<>+)\00,
a a a

where Ao, ..., \n_1 € A. Multiplying by a"~! we have

1
a = A1 — Aol — -+ — )\oa"_l € A.

Therefore A is a field. [ |

Definition Let f: A — B be a map of rings and let and let a and b be ideals
in A and B respectively. We say that b lies over a if a = f~1(b).

Remark This will usually be used in the case where a and b are prime ideals
and A — B is an integral extension. Then f~1(b) = a becomes bN A = a.

Proposition 4.9 Suppose A C B is an integral extension and suppose that P
lies over p. Then P is maximal if and only if p is maximal.

Proof A/p — B/P is an integral extension. The rest then follows from
Proposition 4.8. |

Proposition 4.10 Suppose A C B is an integral extension and let x be a
nonzerodivisor in B. Then xtB N A # 0.

Proof Pick an integral equation for x of least degree, say
"+ ap 12" P4 ag =0, a; € A.

Then
(" + -+ a1) = —ao.

We must have ag # 0, for otherwise, using that = is a nonzerodivisor we have
that 2" ! 4+ --- 4+ a; = 0, which is an integral dependence of smaller degree.
Therefore 0 # ap € xB N A. |

Proposition 4.11  Suppose A C B is an integral extension. Suppose P is a
prime ideal of B, I is an ideal of B and P CI. f PNA=1NA then P=1.
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Proof Letp=PnNA. Then A/p — B/P is an integral extension. If I # P,
then I/P # 0. Solet 0 # x € I/P. Since B/P is a domain z is a nonzerodivisor
on B/P. So by the previous proposition z(B/P)NA/p # 0. But this contradicts
INA=p. Therefore I = P. |

Proposition 4.12  Suppose A C B is an integral extension and suppose P lies
over p. Then P contains pB minimally.

Proof Suppose there exists a prime ideal @ such that pB C Q C P. Then

pBNA=PnNA
—QnNA
:p'

By the previous proposition @) = P. |
Proposition 4.13  Suppose A C B is an integral extension and suppose
PICP G- CP,
is a strict chain of prime ideals in B. Then
PNACPNAC---CP,NA
is a strict chain of prime ideals in A. In particular dim(B) < dim(A).
Proof Follows from the previous proposition. |

Definition Let f: A — B be a map of rings. We say f has the Lying-Over
Property if for every prime ideal p of A there exists a prime ideal P of B such
that p = f~1(P).

Definition Let f: A — B be a map of rings, a an ideal of A, and b an ideal
of B such that f~1(b) = a. We say f has the Going-Up Property if given a
chain of ideals a C p where p is a prime ideal, then there exists a prime ideal
P in B containing b such that f~'(P) = p. Pictorially, the situation can be
described by:

A— B

U U
p——m3P
U U
a——b

Remark Note that if Ker(f) € v/0, then the Going-Up Property implies the

Lying-Over Property as we may take b = (0) and a = Ker(f). In particular,
the Going-Up Property implies the Lying-Over Property when f is injective.
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For the purposes of integral extensions, f : A — B is an inclusion and
f71(P) becomes PN A. We will see through exercises later in the section that
the generality of the previous definitions will be used when discussing flat and
faithfully flat maps.

Theorem 4.14 (Lying-Over and Going-Up for Integral Extensions)  Suppose

A— B

is an integral extension. Let p be a prime ideal in A. Then there exists a prime
ideal P in B lying over p. Moreover, P may be chosen to contain any ideal I
such that I N A C p. In other words, integral extensions satisfy the Lying-Over
and Going-Up Properties.

Proof Factoring out I and AN in B and A respectively, we may assume
that I = 0. Now let U = A —p. Then A, — U~'B is an integral extension.
Pick a maximal ideal m in U~'B. Then m N A4, is a maximal ideal of A, by
Proposition 4.9. Thus m N A, = pA,. Now take P = iz'(m) C B, where ip is
the localization map ip : B — U~'B. Then P lies over p. |

Corollary 4.15 (Integral Extensions Preserve Dimension) Suppose A — B
is an integral extension, then dim(B) = dim(A).

Proof Let pg C p1 € --- € p, be a strict chain of prime ideals of A. By
Theorem 4.14 there is a prime ideal Py lying over pg. By Theorem 4.14 there is
a prime ideal P; lying over p; containing FPy. Similarly we may pick Ps,..., P,
a necessarily strict ascending chain of prime ideals lying over po,...,p,. In
particular we have a strict chain of prime ideals Py C --- C P, in B. Therefore
dim(B) > dim(A). But by Proposition 4.13, dim(B) < dim(A). Therefore
dim(B) = dim(A). |

Corollary 4.16 Suppose A C B is an integral extension. Let I be any ideal in
B lying over an ideal a in A. Then ht(I) < ht(a).

Proof Take any minimal prime p D a so that ht(a) = ht(p). By Theorem 4.14
there is a prime ideal P of B lying over p such that P O I. By Proposition 4.13
it follows that ht(P) < ht(p). Thus

hi(D) = inf ht(Q) < ht(P) < hi(p) = hi(a).

Exercise 4.17 Suppose f : A — B is a ring map that makes B a faithfully
flat A-module. Then f has the Going-Up Property.

Exercise 4.18 Suppose f : A — B is a ring homomorphism. Then the follow-
ing hold:
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(1) If we define f* as follows
f* : Spec(B) — Spec(A4),
P f7H(P),
f* is a continuous map.
(2) Spec(A) is compact.
(3) Suppose f has the Going-Up Property. Then f* is a closed map.

Proposition 4.19 Suppose A is an integral domain, K = Frac(A), L is an
algebraic extension of K, and B is the integral closure of A in L. Then:

(1) L = U™'B where U = A — {0}; that is, if z € L, then x = b/a where
be Band0#a€ A.

(2) If o € Galg (L) and if a prime P C B lies over the prime p C A, then
o(P) also lies over p.

Proof (1) We have the following diagram:
B~——L

Jo

A—— K
Let x € L. Since L is an algebraic extension of K, there is a relation of the form
2"+ A" N, =0,

where Ao, ..., A\p—1 € K. Since K = Frac(A), by taking a common denominator
we can write \; = a;/a for each i where a,ag,...,a,—1 € A. Replacing the \;’s
and multiplying by a™ we get

(az)" + an_1(az)" "t + ap_sa(ax)" 2+ - +a,a” "t = 0.

Thus ax is integral over A, and so ax € B. Hence = = Z for some b € B.
(2) Let 0 € Galg (L). Let « € B. Then

"+ an_12" "+ +ag =0.
Applying o we get
o(x)" 4 ap_10(x)" P4 +ag=0.

In particular o(B) is integral over A. Since B is the integral closure of A in L,
o(B) C B. Applying 0~! we see that o(B) = B. Hence o is an automorphism
of B. Let P be a prime ideal lying over p. Since PN A =o(P)NA=p, o(P)
also lies over p. [ ]
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For the next couple theorems we recall some ideas from basic algebra.

Definition Let L be an algebraic extension of K. Then L is said to be normal
over K if L is the splitting field over K of a finite number of polynomials.

Definition Let L be a field extension of K. Then L is said to be separable
over K if L is generated over K by a set of elements each of which is the root
of a separable polynomial in K[z], i.e. an irreducible polynomial with distinct
roots. An extension that is not separable is called inseparable.

Definition Let L be a field extension of K in characteristic p # 0. Then L is
said to be purely inseparable over K if there exists n > 0 such that o?” € K
for all « € L.

Proposition 4.20 Let L be a normal extension of K and let G = Galg(L).
Then L is separable over LE and LY is purely inseparable over K. Note that
L€ denotes the subfield of L fixed by G.

Proof See your favorite algebra text, or see [7]. |

Theorem 4.21  Let A be an integrally closed domain and K = Frac(A). Let L
be a normal extension of K, let G = Galg (L), and let B be the integral closure
of Ain L. Let p C A be a prime ideal. Then G acts transitively on the set of
prime ideals in B lying over p.

Proof First assume that [L: K| < co. Write
G= {01,...,0n}.

Let P,Q be primes of B lying over p. It is enough to show that P C 0;(Q) for
some 14, for then by Proposition 4.11, P = 0;(Q). Suppose P Z 0;(Q) for any i.
Then by prime avoidance, Lemma 0.12, P ¢ |J"_; 0;(Q). So there exists z € P
with = ¢ 0;(Q) for all 7. Let

y=o1(x) - op(x).

Since o;(y) = y for all i, we have y € L% by the previous theorem. Thus y™ € K
for some m € N by the previous proposition. But then y™ € PN K = p.
Thus y € p € Q. Thus o;(z) € @ for some i. Hence, z € 0;(Q) for some
i, a contradiction. Thus P C 0;(Q) for some i, and by the earlier remarks,
P =0;(Q).

Now assume that [L : K] = oo. Then we can write L = |J, L; where for
each i, L; is a finite normal extension of K. Let P, @ be primes of B lying over
pin A. Let P, =PNL; and Q; = QN Q,. Let G; = Galg(L;). Let us write
(Li,0:) < (Lj,05) if Ly C Lj and o;|r, = o;. This puts a partial ordering on
the set of pairs

{(Li7gi> L0; € GalK(Li) and O’i(Pi) = Qz}
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Further any chain

(Lilvgil) < (Li270i2) SR
has a least upper bound, namely (U; Li;,U; 0i;). So we may apply Zorn’s
Lemma to state the existence of a maximal element (Lg,0p). We claim that
Lo = L. So suppose Ly C L. Pick € L — Ly. Let L' be a splitting field for x
over Lg inside L. By assumption

ao(PN L) =QNLo
= Qo-

Let PP= PNL and Q' = QN L’ and let ¢’ be any extension of gy to Galx (L').
Then ¢'(P’) and @' both lie over Qg. By the finite case there exists ¢ €
Galg,(L') such that ¢”’(o'(P')) = Q'. Write 0 = ¢” o0’ € Galg(L’). Then
o(P") = Q" and (Lg,00) < (L', 0), a contradiction. |

Definition Let f: A — B be a map of rings. We say the f has the Going-
Down Property if for all for p,q € Spec(A) and @ € Spec(B) where p C q
with @ lying over q, then there exists a prime P of B such that P lies over p
and P C . Pictorially the situation can be described by:

A—1.p
U U
qg——Q
U U
p——3P

Theorem 4.22 (Going-Down for Integral Extensions) Suppose A is an inte-
grally closed domain, A — B is an integral extension of rings, and B is torsion
free over A. Then the Going-Down Property holds.

Proof There are two basic cases for the proof.

Case 1. Suppose B is a domain. Let K = Frac(A) and let L = Frac(B). Let
L to be the normal closure of L and let B to be the integral closure of B in L.
By the Lying-Over Property, we obtain @ in the following diagram:

B~——TB

U U

Q—Q
By the Going-Up Property there is a prime ideal Q' C B lying over q and
P’ C B lying over p such that P’ C Q’:

A——TB

@] @]

q9— Q'

U U
p——F
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Since @ and Q' both lie over q and since L/K is normal by Theorem 4.21,
there exists o € Galg (L) such that o(Q’') = Q. Thus o(P’) lies over p and
o(P') C o(Q') = Q. Now take P = o(P')NB. Then P C QN L = Q and
P N A =p by construction.

Case 2. Now suppose B is torsion free over A. Suppose p C q are prime.
We want to apply Case 1, so given

A—— B
U U
qg——>0Q
U
p

we first want a prime ideal P C @ such that PN A = (0). Let U; = A — {0}
and let Uy = B—Q and set U = U1Us. Since B is torsion free over A, 0 ¢ U. Tt
follows that U is a multiplicative set in B and that n: B — U~!B. Let P’ be
any prime ideal of U B. Set P = n~!(P’) C B. One should check that P C Q
and PN A= (0). Setting B = B/P we still have an injection A < B where B
is a domain. We now have the following diagram

S —

s C 2 C »
Ql C

yherg@ = Q/P is a prime in B lying over q. By Case 1 there is a prime ideal
P C B contained in Q lying over p. Finally, if ¢ : B — B, take P" = o~ 1(P)
and check that P” C @ and that P” lies over p as required. |

Exercise 4.23 To show that the both the hypotheses are necessary in the
Going-Down Theorem, we give two examples, but leave the details as an exercise.

(1) Let A = k[X,Y] and B = k[X,Y,Z]|/(Z? — Z,YZ) so that A — B is
an integral extension but B is not torsion free over A. Take Q = (Z —
1,X,)Y)CB,q=(X,Y) C A and p = (x) C A. Show that Q lies over q
but contains no prime ideal lying over p.

(2) Let A = k[X% XY,Y] and B = k[X,Y] so that A — B is an integral
extension but A is not integrally closed. Take Q = (X — 1,Y), q =
(XY,Y,X? —1) and p = (X? — 1,XY —Y). Show that Q lies over q but
contains no prime lying over p.

Corollary 4.24  Suppose A is an integrally-closed domain, A — B is an integral
extension of rings, and B is torsion free over A. If p is a prime ideal in A and
P is a prime ideal in B, then P lies over p if and only if P O pB minimally.
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Proof (=) This follows from Proposition 4.12.

(<) Suppose P D pB minimally. Let ¢ = PN A. Suppose further that q # p.
Then by the Going-Down Theorem, there exists a prime ¢ C P such that
QNA=p. Since QNA=p, Q D pB. This contradicts that P contains pB
minimally. Thus PN A = p. ]

Exercise 4.25 Suppose A is an integrally-closed domain, A — B is an integral
extension of rings, and B is torsion free over A. Let b be an ideal in B and
a=bNA. Then htb =hta.

Exercise 4.26 Let A be Noetherian, B be a finitely generated A-algebra, and
f:+ A— B be a ring homomorphism. If we suppose the Going-Down Property
holds, then f* : Spec(B) — Spec(A) is an open map.

Exercise 4.27 Let A — B be flat. Then the Going-Down Property holds.
(And hence Spec(B) — Spec(A) is an open map.)

Example 4.28 Let k be a field. Let
P = (2® —yz,y? —x2,2° — 2%2) C k[z,y, 2]

and let A = k[z,y,z]/P. What is dim A?
We note that A ~ k[t3,t*,t°] and that k[t3,t*,t5] — k[t] is an integral
extension. Since dimk[t] =1, dim A = 1.

4.2 Normal Domains and DVRs

Now we study what happens when we add the Noetherian condition into the
mix.

Definition A Noetherian integrally closed domain is called a normal do-
main.

Example 4.29 k[Xy, Xo,...,X,] and k[ X1,...,X,] are normal domains.

Definition A local PID is called a discrete valuation ring, often denoted
DVR.

Example 4.30  Z,, k[X], and k[X](x), where k is a field, are DVRs.

Proposition 4.31 (Characterization of DVRs)  Let (A, m) be a local integral
domain. Then the following are equivalent:

(1) Aisa DVR.
(2) A is normal and dim(A) = 1.
(3) A is normal and there exists 0 # x € A such that m is an essential prime

of Ax. In other words, m € Assa(A/Azx).
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(4) m # 0, and m is principal.

Proof (1) = (2) Suppose A is a DVR. Then by assumption A is a PID. Thus
dim(A4) = 1. We also know that PID = UFD = integrally closed. Since A is a
domain and local, it is thus normal.

(2) = (3) Suppose A is normal and dim(A) = 1. Take any 0 # = € m. Since
xr € m, z is a system of parameters itself. Since dim(A4) =1, {(A/zA) < co. Tt
follows that Asss(A/xA) = {m}.

(3) = (4) Suppose A is normal and there exists 0 # x € A with Ass4(A/zA) =
{m}. Then A/m — A/xA. Let § € A/xA be the image of 1 under this map.
Then my C 2A. Thus myz~—' C A where myz~! is an ideal of A.

Suppose myz~! C m. Since y ¢ zA, yr~! ¢ A. Write z = yz~!. The
maximal ideal m is finitely generated, so we can write m = (z1,...,2,). So we
can write zz; = ) A;jx; for each i. So

—@j1T1 — QjgTa + -+ (2 = ayT) + 0 = @y =0

for each ¢ = 1,...,n. Using the same determinant trick as in Proposition 4.1,
we get that det(A)x; = 0 for all 4, where A is the matrix

Z —a11 —aiz ce —Aln
—asz1 Z—G22 - —a2n
—An1 —Qn2 tee Z — Qnn

Thus det(A)m = 0. So by Nakayama’s Lemma, Corollary 2.35, det(A) = 0.
Thus z is integral over A. Since A is integrally closed, z € A. This is a
contradiction to z ¢ A. So we must have that myz~! = A. But now m = 2y~ 1A.
Thus m is principal.

(4) = (1) Exercise. |

Theorem 4.32 (Serre) Let A be Noetherian, then A is normal if and only if
both of the following hold:

(1) A, is a DVR for all primes p of height 1.
(2) For all0 #x € A, if p € Ass(A/Ax) then ht(p) = 1.

Proof (=) Suppose A is normal. Pick a prime P with ht(P) = 1. Then
dim(Ap) = 1 and Ap is integrally closed. So Ap is a DVR. Now take Q €
Assa(A/xA) for some 0 # x € A. Then QAq € Assa,(Aq/xAq). Since Aq is
normal and since QAg is an essential prime of xAg, we have by the previous
proposition that Ag is a DVR. Thus dim(Ag) = ht(Q) = 1.

(«) As a scholium to Proposition 4.7 we know that if A = (| c\faxspec(a) Am
then A is integrally closed. Since A is a domain, for every ideal P of A with
ht(P) = 1 we have A, C Ap C Frac(A) for some maximal ideal m. Thus

AC ﬂ Aw C ﬂ Ap.

meMaxSpec(A) PeSpec(A)
ht(P)=1
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Thus to show A is normal it is enough to show that A =(\p,4p)—y AP
Take z € ﬂht(P)zl Ap. We can write z = xz/y where z,y € A and y # 0.
Thus z € yAp for all P with ht(P) = 1. Let

yA=qin-ne,

be a primary decomposition of yA where q; is p;-primary. Then for each i,
p; € Assa(A/yA) and so ht(p;) = 1. Thus yA4,, = q;A4,, for each i. So z € q; Ay,
for all i. Thus x € yA. So % € A. Hence A is normal. [ |

Example 4.33  Consider f(x,y) = y* —2?*(1+x) € k[z,y], which is irreducible
by Eisenstein’s Criterion. To see this, note x + 1 is prime in k[z] and divides
all coefficients of 3y* but the leading term y? and (x + 1)? does not divide the
coefficient of y°.

Therefore, A = k[x,y]/(f(z)) is a domain. Is A normal? No, since
integral over A but is not in A. To see this, note ¥
series. It follows then that A is not normal.

8[|

is

=1+ x)% is an Infinite

8|l

Example 4.34 Consider A = klx,y,2]/(zz — y?, 2% — yz, 2%y — 2?). Note
A ~ k[t3,t*,15], and we have the nonsurjective integral extension

E[t3, 14, 1°] — K[t).
Since k[t] is the integral closure of k[t3,t* %], we see that A is not normal.
Example 4.35  k[xy,29,...,2,] is a UFD, and so it is normal.

Example 4.36  The ring k[z,y,u,v]/(xy — uv) is not normal. This is hard to
show. We will discuss this later.

4.3 Dedekind Domains

Definition  An integral domain A is called a Dedekind domain if A is normal
and dim(A) = 1.

Note then that a DVR is just a local Dedekind domain.
Throughout this section A will be an integral domain and K = Frac(A) will
denote the field of fractions.

Definition Let A be an integral domain and K = Frac(4). An A-submodule
M of K is called a fractional ideal of A if all elements of M have a common
denominator; that is,

M§A~$ for some 0 # d € A.

Theorem 4.37 A is a Dedekind domain if and only if the set of fractional
ideals form a group under multiplication.

87



4.3. DEDEKIND DOMAINS

Definition A fractional ideal M of A is called invertible if there is a fractional
ideal M~! such that MM~! = A.

Remark If M; and M, are fractional ideals of A and K = Frac(A), then the

following are again fractional ideals of A:
1) My + M-

3

)

2) My N M,
) MM,
)

(
(
(
(4) (My i My) = {x € K : My C My}

Proposition 4.38 Suppose M is an invertible fractional ideal. Then M~! =
(A ‘K M)

Proof We have that MM~ = A. Thus M~ C (A:x M).
We also have

(A:x M)=(A:x M)A
=(A:x M)MM™!
C AM™!
=M

Thus M~! = (A:x M). |

Proposition 4.39 Suppose M is an invertible fractional ideal. Then M is
finitely generated over A.

Proof Since MM~' = A we can write 1 = >, min; where m; € M and
n; € M~ for each i. Now take z € M. Then

xr = Z m;n;xT
i
= Z TiQq,
i
where a; = n;x € A. Thus M is finitely generated over A. |

Proposition 4.40 If a finite product of fractional ideals is invertible if and
only if each fractional ideal in the product is invertible.

Proof Exercise. |

Proposition 4.41 Let I be an ideal of A. Suppose I can be factored into
a product of invertible prime ideals. Then any other factorization of I into a
product of prime ideals is identical.
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Proof Suppose I = P;--- P, where each P; is an invertible prime ideal and
also I = Q1 - - - Q,, where each @); is a prime ideal. Pick a minimal prime P; in
{Py,...,P,}. Then I C P;. Since P; is prime we must have Q; C P; for some
j. Similarly we must have P, C Q); for some k. Since P; was minimal, i = k.
Therefore P; = ;. Now consider IP;1 =P - 131 ... P, and use induction on
the number of factors. |

Proposition 4.42 Let A be an integral domain. Suppose every ideal can be
expressed as a product of prime ideals. Then every nonzero prime ideal is
invertible and maximal, in particular A is Noetherian.

Proof First we show that every invertible prime ideal of A is maximal. Let
P be an invertible prime ideal. Choose a ¢ P. By assumption we can write
(P+aA)* =P Py,
P+a’A=Q1 - Qn.

Let (—) denote the image in A/P. Since (P + aA)? = P + a?A, we have that

@) =P, P,=0Q,-Q,.

Since the principal ideal (a?) is invertible, so are P; and Q; for each i,j by
Proposition 4.40. By Proposition 4.41 we must have that n = m and for each
i there exists j with P; = @j. Therefore by the Correspondence Theorem,
P, =Qj in A. Hence P+ a?A = (P + aA)?. We now have

PCP+a*A=(P+aA)’C P?+aA,

so for any y € P we may write y = z + ax where z € P? and x € A. Since
axr =y — z € P and since a ¢ P we have that © € P. Hence

PC P>+ PaCP
Thus

P=P?+Pa
= P(P + Aa).
Since P is invertible there is a fractional ideal P~! with PP~! = A. Hence
A=p7lp
=P 'P(P+ (a))
= P+ (a).

Therefore P 4 (a) = A and so P is maximal.
Now take any prime ideal P and pick some nonzero a € P. Write Aa =
Py --- P,, a product of invertible prime ideals. Since the principal ideal aA
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is invertible, so are Pi,..., P, by Proposition 4.40. It is easy to see that P
must contain one of the P;, otherwise, consider a product of elements x; where
x; € P,—P and note that 1 ... 2, € P, ... P,— P, a contradiction. By our work
above each P; is maximal since they are each invertible. Therefore P is itself
maximal. Again by Proposition 4.40 P is invertible since the P;’s are invertible.

Finally note that since any nonzero ideal I is invertible, we have I1~1 = A.
Thus we can write Z?:l a;b; where a; € I and b; € I~! for each i. Thus for
any x € I, x = Z?:l(xbi)ai. So ay,...,a, generate I. Therefore every nonzero
ideal is finitely generated and A is Noetherian. |

Theorem 4.43 Let A be a Dedekind domain. Then any fractional ideal M
can be written uniquely as M = pi* - --pI*r, where p; is a prime ideal and n; € Z
fori=1,...,r.

Proof First we show that every ideal can be written as a product of prime
ideals. Let a be an ideal. We may assume since (0) is prime that (0) # a. Let
a=g;N---Ng, be a primary decomposition with gq; being p;-primary. Since
dim(A) = 1, each p; is maximal. Thus A,, is a DVR and so q;Ap, = p;" Ap,.
Since p; is maximal, p;'* is p;-primary. So p;'* Ay, N A = p™ = ;. Therefore

a=p N Nprm =pit

Since any fractional ideal M is contained in éA for some d € A, by writing
dM and dA as products of primes we can write M is a product of primes with
possibly negative exponents. |

Definition Let A be a Dedekind domain. Given a prime p, we define for a
fractional ideal M v,(M) = n if M = p™p7* ---py~ is the factorization of M.
The function vy, is called a discrete valuation.

Proposition 4.44  Let v, be a discrete valuation for the Dedekind domain A,
with K = Frac(A). Then for fractional ideals My, Ms :

(1) vp(My + M3) = min{v, (My), vy (M)}
2
3
4) vp((My e Ma)) = vp(My My 1) = vp(My) — v (Ma)

(
(
(
(5

)
)
)
) My C My if and only if vy, (M;) < vy(Ma) for all primes p.

Proof Exercise. |

Corollary 4.45 Let My be a fractional ideal in a Dedekind domain A. Then
M is an integral ideal, My C A, if and only if v,(M;) > 0 for all primes p.

Theorem 4.46 Let A be an integral domain. Then every ideal in A is a
product of prime ideals if and only if the fractional ideals of A form a group
under multiplication.
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Proof (=) This is clear from the above.

(<) So assume the fractional ideals of A form a multiplicative group. As before
we that all nonzero ideals of A are invertible and hence finitely generated. So
A is Noetherian. Consider the family

F = {ideals a C A : a is not a product of primes.}.

Suppose F # @. Then F has a maximal element, say a. Clearly a cannot be a
maximal ideal so there exists a maximal ideal m with a C m. So am~! C A.
We clearly have a € am™!. If a = am™' then also a = am. But a is
finitely generated so by Nakayama’s Lemma, Corollary 2.35, there is m € m
such that (1 —m)a = (0). This is a contradiction as A is a domain.Therefore
a C am~! C A. Therefore, since a was maximal in F, am~! ¢ F. So we can
write am~1 = pJt - p". Soa= mp’ffl ---pir. contradicting a € F. Therefore
F=0. |

Theorem 4.47 Suppose A is an integral domain. Then A is a Dedekind
domain if and only if every ideal can be expressed as a product of prime ideals.

Proof (=) This follows from Theorem 4.43.

(<) By the previous theorem every nonzero ideal is invertible. By Propo-
sition 4.42 we have that every nonzero prime ideal is maximal. Therefore A is
Noetherian and dim(A) = 1. We must show that A is integrally closed. Set
K = Frac(A). Take x € K — A. Suppose z is integral over A. Then

2"+ an 12" P+ +ag=0
for some a; € A. Since x € K we can write x = %, where A, € A. Since we

can write

n n—1
" = —ap_12"" — -+ —ao,

and since the right hand side contains denominators p; for i at most n — 1,
we have that mu™'z™ € A. Setting d = p"~! we have that dz? € A for all
t > 0. Let P be any nonzero prime ideal. Then vp(dzt) > 0 for all ¢ > 0. By
Proposition 4.44, vp((d)) + tvp((z)) > 0 for all ¢ > 0. Thus vp((z)) > 0 for all
P € Spec(A) — {(0)}. Therefore z € A. So A is integrally closed. |

4.4 The Krull-Akizuki Theorem

Definition Given a domain A and an A-module M we define the rank of M,
denote rank 4 (M), to be the following vector space rank

rank 4 (M) := {rankx (K ® 4 M)},
where K = Frac(A). If A is not a domain we define the rank of M to be

rank 4 (M) := max{rank 4, (M/pM) : p is a minimal prime of A}
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Lemma 4.48 Let A be a Noetherian domain with dim(A) < 1 and M a torsion
free module over A of rank r < co. Then for any nonzero a € A,

U M/aM) <r-L(A]aA).

Proof We first prove the finitely generated case.

Case 1 Assume M is finitely generated over A.

Since M is torsion free over A, the localization map M < U~'M is injec-
tive, where U = A — {0}. Let a1,...,a, be a set of generators for M. Then
&l ..., % is a set of generators for U"'M. By assumption U~'M is an r
dimensional vector space over K = Frac(A). In particular we may suppose
that 9t,..., 9 form a K-basis for U ~1M by throwing away linearly dependent
elements. Thus for i > r we have

% = ZAU% where ), € K.
j=1

Finding a common denominator we may write
Hij
Aij = S where p;j,s € A

for all 7, j. So by clearing denominators we get that
T
sa; = Zu,»jozj for r<i<n.
i=1

Let F' be the free A-module generated by aq,...,a,. Then we have the exact
sequence
0—-F—-M-—Q—0

where (@ is generated by the images of a1, ..., ap. Since sa; € F for ¢ > r and
since Q ~ M/F, we have sQ = 0. Thus @ is a finitely generated module over
A/sA. Since dim(A/sA) = 0, £(Q) < oo. Tensoring the above exact sequence
with A/a™A we get the exact sequence

F/a"F — M/a"A — Q/a"Q — 0.

Therefore
L(M/a"M) < LF/a"F)+£(Q/a"Q).

Since M /aM ~ a™~*M/a™M and since M is torsion free, we have that ¢(M/a" M) =
nl(M/aM). Similarly £(F/a"F) = n-(F/aF) = nr-£(A/aA). Since £(Q) < oo,
we must have £(Q/a"Q) < ¢(Q). Thus for all n,

(M /ad) = %e(M/a"M )
< %Z(F/Q”F) + %é(@/a”@)

=r-L(A/aA) + %E(Q)
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Therefore
(M/aM) < r-L(A/aA).

Case 2 We now prove the general case. Suppose that the assertion is not true
for the module M, in other words there exists a € A such that ¢(M/aM) >
r-f(A/aA). Then we may choose a finitely generated submodule M’ C M such
that £(M'/aM’) > r¢(A/aA). But then

(M JaM") > r-L(A]aA)
> rank s (M) - £(A/aA),

a contradiction of the finitely generated case. ]

Theorem 4.49 (Krull-Akizuki) Let A be a Noetherian domain, dim(A4) < 1,
K = Frac(A), L/K a finite field extension, A C B C L, and B a subring of L.
Then B is Noetherian and dim(B) < 1.

Proof We prove this theorem in two steps:

Step 1 We first reduce to the case that Frac(A) = K = L.

WLOG we can assume that L = Frac(B). Since [L : K] < oo, we can find
bi,...,bp € B such that L = K(by,...,b,). Set x = b;. Since each b; are
algebraic over K they satisfy relations of the form

(:L‘)” + %(x)n—l 4+t %O =0,

where ag, . ..,a,_1,c € A. Therefore
(cx)" 4+ ap_1(cx)" 4+ 4 " tag = 0.

So cx is integral over A. So replacing each b; by an A-multiple which is
integral over A we can assume that by,...,b, are all integral over A. Set
D = Aby,...,b,]. Thus dim(D) = dim(A), Frac(D) = Frac(B) = L and

DCBCL.

Since D is finitely generated over A, it is Noetherian. Thus we are reduced to
the case where L = K.

Step 2 We now prove the theorem assuming L = K.

In our situation we have A C B C K = Frac(A). Thus rank4(B) = 1. So we
may apply Lemma 4.48 to get that £(B/aB) < £(A/aA) < oo for any 0 # a € A.
Let b # 0 be an ideal in B. Pick 0 # b € b. Since b is algebraic over A it satisfies
a relation of the form

Amb™ 4+ a1 8" 4+ +ay =0 with a; € A.
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Since B is a domain we can assume ag # 0. Thus 0 # a9 € bN A. So
lp(b/apB) < €a(b/agB) < £a(B/apB) < co. Thus b/agB is a finitely generated
B-module; hence b is finitely generated. Thus B is Noetherian. Further, if p
is any nonzero prime ideal of B, then B/pB is Artinian and a domain, hence a
field. So p is maximal. Therefore dim(B) = 1. |

Corollary 4.50 Let A be a Noetherian domain with dim(A) < 1. Then the
integral closure of A is Noetherian.

Remark Many extension of the above theorem that one might want are actu-
ally false. For the following A is a Noetherian domain, K = Frac(A), [L: K| <
oo and B is the integral closure of A in L.

(1) If A is as above even if dim(A4) < 1, then B is not necessarily a finitely
generated A-module.

(2) If dim(A) > 2 and C is a ring such that A C C C L then C is not
necessarily Noetherian.

(3) If dim(A) > 3 then B is not necessarily Noetherian.
See [14] for examples of these.
We include a couple of similar results:

Theorem 4.51 Let A be a Noetherian domain with dim(A) < 2. Then the
integral closure of A is Noetherian.

Proof See [14], Theorem 33.12. |

Theorem 4.52 Let A be a finitely generated k-algebra, K = Frac(A), [L :
K] < oo and let B be the integral closure of A in L. Then B is a finitely
generated A-module and is Noetherian.

Proof See [6], Chapter 13. |

Definition Given field L which is a finite extension of another field K, the
trace of an element a € L is defined as

(@)=Y o)

o€Calk (L)

Theorem 4.53 Let L/K be a finite field extension. Then L/K is separable if
and only if there exists 0 # x € L such that trp g (x) # 0.

Proof See [17]. |

Theorem 4.54 Let A be a normal domain, K = Frac(A), L/K a finite, sepa-
rable field extension, and let B be the integral closure of A in L. Then B is a
finitely generated A-module
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Proof Let eq,...,e, be a basis of L over K such that ey,...,e, € B. Let
€1,...,¢6, be the corresponding dual basis of L, that is try,x(€;e;) = ;5. Fix
b € B. Then thinking of B as a submodule of L* = Homg (L, K), we can write
b= X\e1+ -+ A\pé, where Ay, ..., A, € K. Then \; = trp x(be;) € K. But
the trace of an element is the sum of its conjugates, each of which are integral
over A. Thus )\; is integral over A for each i. So \; € A for each i. Therefore
B C Aey +---+ Ae,, C L* and so B is finitely generated over A. [ |

4.5 Noether’s Normalization Lemma
Theorem 4.55 (Noether’'s Normalization Lemma) Let k be a field, A a
finitely generated k-algebra. Let

a1 CaC---Ca. CA

be an increasing sequence of ideals in A. Then there exist x1,...,xq € A that
are algebraically independent over k such that:

(1) A is integral over C = k[x1,...,zq].
(2) Foralli=1,...,r, we have integers h(i) € [0, d] such that
a; N C= (xl, N 7xh(i))~

Proof We prove this theorem in four steps:

Step 1 Reduce to the case where A is a polynomial ring. Since A is a finitely
generated k-algebra, we may write A = k[y1,...,¥yn]. Set B = Ek[Y1,...,Y,], a
polynomial ring in n variables. Then we have the surjection

n:B— A
Yi — yi.
Hence we obtain an increasing sequence of ideals in B:
7 (0) S () S (a2) S S (ar)

Assuming the theorem is true for the polynomial ring B, we have algebraically
independent elements x1, . .., x, € B such that B isintegral over D = k[z1,...,z,]
and such that

INB= (ml,...,xh(o))

and
0 Ha) N B = (z1,...,2h0)) where for ¢ < j h(0) < h(i) < h(j).

Setting C' = (D) we see that C' = k[zj )41, - -, 2n] Where z; = n(z;). Since B
is integral over D, A is integral over C' and

a; N C = (Zn(0)+1> - - - » Zh(3))-

It is also clear that the elements z0)41, - - - , 2» Temain algebraically independent
over k. Thus we have proved the theorem for A.
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Step 2 Assuming A is a polynomial ring we prove the theorem for r = 1 and
a; = (z1) principal with z; ¢ k. (Note that the case where 1 € k is obvious.)
By assumption we can write A = k[Y7,...,Y,]. Set

z, =Y - Y™ fori=2,....n

where the a; are yet-to-be-determined constants. Then we have the inclusion
C = k[xy,...,z,] — A. I Y] is integral over C' then A would be integral over
C and we would be done. So we proceed to show that for some choice of the
«;, Y7 is integral over C.

Since 1 € A we may write

T = f(i/l7 s 7Yn) - ZailmianlY;? .. Y”;n
We then have that
f(Ylva + YloQ,Z'g +Y1(X3, BRI 7% _|_Y10¢n) =x.

We want to choose the «; so that they the highest degree term in f(Y7, 29 +
Y%, .z, + Y'ay,) is of the form ail_,,inY1i1+a2i2+"'+a"i". Pick s larger than
all exponents i, appearing in the expansion of f. We leave it to the reader to
check that setting as = s, az = s2,...,a, = s" ! satisfies the above criterion.
With this choice of «; we have that A is integral over C'. Thus we have dim(C) =

dim(A) = n.
We must also show that these elements x4, ..., x,, are algebraically indepen-
dent; in other words, we must show that C' = k[z1,...,x,] is isomorphic to a

polynomial ring. So take an onto map
]{i[Xl, PN ,Xn] _77> k[]}l, ve ,an].

Since dim(k[X7,...,X,]) = dim(C) = n, Ker(n) = 0, for otherwise dim(C) =
dim(k[X1, ..., X,]/Ker(n)) < n.

Last, we must verify that a; N C' = (x1). Clearly ay N C D (z1). But by the
Going-Down Theorem, ht(a; N C') = ht(a;) = 1. Since (z1) is a prime ideal of
height 1 inside a; N C, we must have a; N C = (z1).

Step 3 We now prove the theorem for » = 1 and a any ideal of the polynomial
ring A = k[Y1,...,Y,].

Pick nonzero x; € a and consider the ideal 1 A. Then by Step 2 there are
Xy ..., &, € Asuchthat Aisintegral over C = k[x1,...,x,] and 21 ANC = (z1).
Now consider a N C'. We proceed by induction on the number of variables n.

If n = 1 then the theorem is obvious. So we consider the ideal ank[zs, ..., x,)
in the polynomial ring B = k[za,...,z,]. By induction there are to,...,t, € B
such that B is integral over k[ta,...,t,] and aNkte,...,t,] = (t2,...,tq) for
some d < n. Setting D = k[x1,to,...,t,] we have that A is integral over D and

aﬂD:x1D+aﬂk[t2,...,tn] = (561)—|—(t2,...,tn) = (Jil,tg,...,td).
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Step 4 We now prove the general case of the theorem for the polynomial ring
A=k[Y1,...,Y,].

We proceed by induction on r. Step 3 finished the base case of r = 1. So by
induction we may assume that there exists algebraically independent elements
Z1,...,Z, such that A is integral over C' = k[z1,...,z,] and such that

a; NC = (z1,...,Th)) with h(i) < h(j) for 1 <i<j<r—1
Write d = h(r — 1). We may assume that h(r — 1) > 0. Consider a N
kg1, .- 2n] in D = k[zg41,...,2,]. By Step 3 we can find tgy1,...,tn
algebraically independent over k such that D is integral over k[t441,...,t,] and

aNkltart, .- tn] = (tas- - ta(r)) where h(r) < n.

We leave it to the reader to check that A is integral over

B= k[xl,...,xd,td+1,...,tn]
and that
a; N B = (z1,...,T53;)) fori <r
and
a.NB= (561, R I 7 R TR 7th(r))~
This completes the proof. |

Definition If & is a field, A is called an affine k-algebra if A is a finitely
generated k-algebra. If in addition A is a domain, then A is called an affine
k-domain.

Definition If K is a field extension of k, then the transcendence degree of
K over k is the cardinality of a maximal algebraically independent set S over
k. Hence, K is an algebraic extension of k(S). We denote the transcendence
degree of K over k by trdeg,, (K).

Corollary 4.56  Suppose A is an affine k-domain. Then dim(A4) = trdeg, (K),
where K = Frac(A).

Proof Let dim(A) =n and let

be a corresponding chain of prime ideals in A. By Noether’s Normalization
Lemma, Theorem 4.55, we have algebraically independent elements x;,...,24 €
A such that

k[mh...,xd] — A

is an integral extension and such that

pi Nk[zy,. .. xaq] = (T1,. .., Th())
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where ¢ < j implies that h(7) < h(j). In particular, since k[x1,...,zq] — A is
an integral extension, we have that d = n and p; N k[xy,...,2,] = (z1,...,2;).
Taking fraction fields we have

k—k(xy,...,2p) = K

where the second inclusion is an algebraic field extension. Thus trdeg, (K) < n.
If trdeg, (K) < n then we would have an integral extension

k[y17"'aym] — A

with m < n. But this would imply that dim(A) = m < n, a contradiction.
Therefore trdeg, (K) = n = dim(A4). |

Corollary 4.57 Let A be an affine k-algebra and let m be a maximal ideal of
A. Then A/m is a finite-dimensional vector space over k.

Proof By Noether’s Normalization Lemma we can find z4,...,2, € A that
are algebraically independent over k£ such that

Elxy,...,zn] — A
is an integral extension and such that
mNk[zy,...,zn] = (21,...,20).

Therefore
k=klx1,...,z)/(x1,...,2y) — A/m

is an integral extension which is finitely generated as a k-algebra. Thus A/m is
a finitely generated k-module. |

Corollary 4.58 Let A = k[X1,Xs,...,X,]. Then any maximal ideal m is
generated by n elements. Moreover, m can be written as

m = (f1(X1), f2(X1, X2), ..o, fu(Xa, o X))
Proof Let m be a maximal ideal of A. Then by the previous corollary
k— A/m
is a finite field-extension. Write a; for X; € A/m. So we have:

A/m = kla, . .., o)
= k(al,...,an).

Letting P¢(X) denote the minimal irreducible polynomial for a over k, consider
the polynomials

P (X1) where kg = k,
P2 (X2) where k; = k[ay],
P (Xn) where k,_1 = klag, ..., an_1]
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Let fi(X1,...,X;) be Py’ (X;) where a, ..., ;1 arereplaced by Xy, ..., X; 1
respectively. We now show that

m = (f1(X1), f2(X1, X2), ..., fu( X1, .0, X0)).
That
(f1(X1), fo( X1, Xa), -, fu(Xy, .., X)) Cm

is clear. The other containment will follow if we show that
K := k[Xla ... >Xﬂ}/(f1(X1)7 fQ(Xla X2)7 ey fn(Xla e 7Xn)) = A/m

Note that
kX1, .. X
(f1(X1), fo(X1, X)),y fu( Xy, .o, X0))
N kla, Xo, ..., X,
T (falar, X2), oy frlan, Xo, ..o, X))
N klag, ag, ..., X,]
“ (fs(ag,an, X3), ..., fular, s, X3, ..., X))

K =

~ ]C[Oél, e 7Ozn]
~ A/m.
So we are done. ]

Corollary 4.59  Let k be an algebraically closed field and let A = k[ X1, ..., X,].
Then every maximal ideal of A is of the form

m= (Xl *alaXZ - a27"'7Xn 7(171),
where a1, as,...,a, € k.
Proof Use the previous corollary. |

Exercise 4.60 By the previous Corollary, we have a bijective correspondence
between k™ and MaxSpec(k[X1,...,X,]) when k is algebraically closed. Show
that k™ ~ MaxSpec(k[X1,...,X,]) is dense in Spec(k[X1,..., X,]).

Corollary 4.61 Let A be an affine domain, p a prime ideal of A. Then
ht(p) + dim(A/p) = dim(A).

Proof By Noether’s Normalization Lemma we can find z1,...,x, € A which
are algebraically independent over k with A integral over k[z1, ..., z,] and such
that p N k[zq,...,2,] = (21,...,2;). By the Going-Down Theorem ht(p) =
ht((z1,...,2,)) = i. Also since k[z1,...,z,] — A is an integral extension, so is

[
ElXivt, .., xn) = K[z, .. xn]/ (21, ..., 25) — A/p.
Thus dim(A/p) = n —i = dim(A) — ht(p). |
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Remark As a special case of this corollary we get the following result:
If m is a maximal ideal in an affine domain A, then ht(m) = dim(A).

Definition Let A be aring. If any two saturated chains of primes of A between
two primes p C q have the same length, then A is called catenary.

Corollary 4.62 Let A be an affine k-algebra, then A is catenary.

Proof Let
and

be two saturated chains of prime ideals in A. By considering both chains in
A/p, which is an affine domain, we may assume p = 0. Since A/p is an affine
domain we have by the previous corollary that

dim(A4) — r = dim(A/p,)
= dim(A/q)
= dim(

(A

fi/qs)
) —

Therefore r = s. [ |

= dim

Corollary 4.63  Let A be an affine k-domain, K = Frac(A), L/K a finite field-
extension, and B the integral closure of A in L. Then B is a finitely generated
A-module.

Proof By Noether’s Normalization Lemma we can find z1,...,z, € A such
that A is integral over k[xq,...,x,]| where z1, ..., z, are algebraically indepen-
dent over k. So it suffices to show that B is a finitely generated k[z1,...,x,]-
module. Now let L be the normal closure of L in the algebraic closure of K and
let D be the integral closure of k[z1,...,x,] in L.

Set F = L% where G = Galy(x)(L). Then L is separable over F' and F is
purely inseparable over k(x1, ..., 2,) by Proposition 4.20. Let C be the integral
closure of k[z1,...,z,] in F. If we can show that C is a finitely generated
klx1,...,x,]-module, then C' would be Noetherian, and hence normal. It would
then follow from Theorem 4.54 that D was a finitely generated C-module, and
hence that B was a finitely generated A-module.

Therefore we must show that C is a finitely generated k[x1, . . ., 2,]-module in
the situation where C' C F and F is purely inseparable over E = k(z1,...,Z,).

100



CHAPTER 4. INTEGRAL EXTENSIONS

We have the following diagram:

/

D——1]

|/

c

B—L

A—K

k[x] —— E = k(x)

Since F/k(x) is purely inseparable, we can write F = E(y1,...,yq) where E =

k(x), such that there exists ¢ > 0 with yfl € E for each j = 1,...,d. Thus we

can write

ypl _ fj(.’I}l7 . ,l‘n)
J gj(xla"'axn)

where fj,g; € k[z1,...,2,]. Let S be the (finite) set of coefficients of the

ek(x)=F

.
polynomials f;,g;. Set &' =k (S pi). Since we are appending a finite number

of pi-th roots, [k : k] < co. Set
E' =K (x1,...,2,),
F' = k"(m?,...,x?),
C' = k[m{’,,xj]
Then we have the following diagram:

C/ N F/

AT

K'[x] —
k[x] E
Clearly k'[x1, ..., x,] is a finitely generated k[z1, ..., z,]-module since [k’ : k] <

0o. Also note that C” is a polynomial ring. So C” is a UFD and hence normal.
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So C' is the integral closure of k[z1,...,2,] in F’. Since C is integral over
klx1,...,2,], C' is the integral closure of C in F’. Since C’ is integral over
K'[z1,...,2,] and is finitely generated as an algebra over k'[z1, ..., x,], we have
that C” is a finitely generated as a k'[z1,...,z,]-module. It follows that C' is a
finitely generated k[z1,...,zy]-module. |

Exercise 4.64 Let f : A — B be a map of finitely generated k-algebras, where
k is a field. Suppose m is a maximal ideal of B. Then f~!(m) is a maximal
ideal of A.

Exercise 4.65 Let A be a finitely generated k-algebra, where k is a field. For
any ideal I of A we have
Vi=(m

ICm
where m runs through all maximal ideals of A.
Exercise 4.66  Suppose A is a Noetherian domain and B is a finitely generated

A-algebra. Then there exist x1,...,x, € B algebraically independent over A
and 0 # a € A such that A[X][zq,...,2,] < B[%] is an integral extension.

Exercise 4.67 Let f1,..., f; € Z[X1,...,X,]. Then fi,..., fi have a common
root over C if and only if they have a common root over finite fields of infinitely
many prime characteristics.

Exercise 4.68 Let K be an algebraically closed field and let L O K be a field-
extension. Then a set of polynomials in K[x1,...,x,] has a common solution
in L if and only if they have a common solution in K.
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Chapter 5

Homological Methods

At first, homological methods may seem very abstract. How can something so
abstract be useful? Consider the following:

Definition If (A, m) is local, A is a regular local ring if
dim(A) = p(m) := {the minimal number of generators of m}.
Example 5.1 Let A =k[Xy,...,X,]. If

m= (pl(X1)7p2(X17X2)a e 7pn<X17 cee aXn))7

where p;(X1,...,X;) Is a polynomial in exactly i variables, then ht(m) = n and
so An Is a regular local ring as

n = ht(m) = dim(An) = p(m).
Now that we have a little background, consider this statement:

Theorem If A is a regular local ring and p is a prime ideal of A, then A, is a
regular local ring.

Before the advent of homological algebra, many books and papers went
into proving this result, some taking up to 200 pages, even for the case of
A =C[Xy,...,X,]. We will develop the tools of homological algebra and kill
this problem with ease.

5.1 Complexes and Homology

Definition Let A be a ring, by a complex, we mean a sequence of A-modules
and A-module homomorphisms

dnt1 dnp,
"'—>Xn+1—> Xn—W)X’n—l—)

such that d,, od,_1 = 0 for all n € Z. We denote a complex by X,.
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Definition If X, is a complex of A-modules, then the nth homology of X,
is

_ Ker(d,)
Hy,(X,) = Tm(d 1)

Definition Let A be a ring. By a cocomplex, we mean a sequence of A-
modules and A-module homomorphisms

ldn—l dr 1
cee—y xn1e xn & Al L

such that d™ o d"*t! = 0 for all n € Z. We denote a cocomplex by X°.

Definition If X* is a cocomplex of A-modules, then the nth cohomology of
X*®is
Ker(d™)
H"(X®) = ——————.
(X°) Im(dn—1)

Since complexes and cocomplexes are dual notions, we will only discuss the
situation for complexes, and leave the rest as an exercise for the reader.

Definition Let X, and Y, be two complexes over a ring A. A map of com-
plexes

fo: Xe — Y,

is a collection of A-module homomorphisms such that the diagram below com-
mutes:

dX dx
n+1 n
Xt X, Xpg———— -+
f"n,+1J/ fnl f‘n,—lJ/
YnJrl e Yn e Ynfl
‘n+1 n

Exercise 5.2  Show that a map of complexes f, : Xo — Y,, defines a collection
of homomorphisms:

fi: Ker(df() — Ker(dz/).
fi :Im(d ) — Im(dY,,).
H,(fe): Hy(Xs) — Hy(Ys).

Definition Two maps of A-complexes

Jo: Xe =Y,
go:Xo_)}/u
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are called homotopic if there exist A-module maps h,, : X,, — Y,, 11 such that
in the diagram below

dff+1 dX
...%X?’L‘i‘l Xn X"L—];%"'

hn hp—1
fn+1llgn/ﬂllgn hqllgnl

e Yo

v n v n—1
dn+1 dn

we have

dy 10 h +hy_10dy = fu = g
for all n € Z. We denote this by fe ~ ge.
Exercise 5.3  Check that f, ~ ge implies that H,(fe) = Hp(ge)-
Definition A sequence of complexes and complex maps
0— X, I x, 2 x/ 0
is called an exact sequence if for all n € Z,
0— X/ I X, 2 X7 g
is an exact sequence of A-modules and A-module homomorphisms.

Lemma 5.4 Given an exact sequence of complexes,

0— X, L% X, 2% X! — 0

we obtain a long exact sequence of homologies:

Hn+1(f0) Hn+1(§0)
— E—

cor— Hyp 1 (X) Hpy1(Xe)

Hn+1 (Xil)
Ont1

Q Ho(x0) 9 g (x) —2 g x

LHnl(Xi) Bt () 0 ()
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Proof Consider the following commutative diagram with exact rows:

0— )(7,”'_1 fr+1 X1 In+1 X711/+1 0
diu»l dnt1 drlri+1
0 X,'/l fn Xn gn X// 0
dy, dn dy
OHXA . fn-1 Xn—l gn—1 X,/ll,1 0
First we will show that
H(X0) 0 H (X)) (X)

is exact. By the construction of H,(fe) and H,,(ge) we know that Im H,,(f,) C
Ker H,,(gs). Thus we must show that

Ker H,,(ge) C Im H,,(fo)-

Let z, € X,, and suppose that Z,, € Ker H,(gs). Then there exists ], ,; € X/,
such that

d%+1($g+1) = gn(@n).
By exactness of the rows, there exists x,,41 € X,,+1 such that
"
Int+1(Tnt1) = Thpy.-

This z,41 in turn maps down via d,4+1 to some element of X,,, call it y,,. By
the commutativity of the diagram

dn (xn - yn) =0
and so by the exactness of the rows, there exists z,, € X/ such that
fa(@y) = 20 — Yn.
However, since y, = dp4+1(Tn4+1) we have 7,, = 0 and

Ty =Tn — Y, € Hy(X,).

106



CHAPTER 5. HOMOLOGICAL METHODS

Thus, Z,, € Im H,,(fe). The method used in the above part of the proof is called
diagram chasing. Often when it is done in practice, the elements found above
are written next to the object they live in on the commutative diagram itself.

Now we need to define the 8,’s. Consider T, € H,(X]) we will define
On(Zl). Take z, € X, such that

gn(Tn) = x;;

Since z!/ € Ker(d), d!!(«!) = 0. Hence if 2,,_1 = d,,(x,,), then

In—1 (-’If'nfl) =0.

So by the exactness of the rows above, there exists z],_; € X/ _; such that

fnfl(milfl) =Tn-1-

! !/
Hence d}, _;(z!,_,

) =0. Since dp,_1(zp—1) = dp—1 0 dy(x,) =0,
dy_q(z5_1) = 0.

Now we define
Op(x) =7, 1 € H,_1(X]).

n

It is left as an exercise for the reader to check that this definition of 9,, is well
defined. Moreover, the reader should check that the sequences
Ha(X0) ™8 1, (X0) 2 Hy (X)),

an anl(f-)
—

Hn(X:I)—> nfl(X:) anl(X.),

are both exact. | |

Definition In the above proposition, the 0,’s are called connecting homo-
morphisms.

Corollary 5.5 Given a commutative diagram of complexes with short exact
rows:

0 X, X, X/ 0
0 Y, Y, Y, 0

we get a commutative diagram with long exact rows:

o — Hyp 1 (X)) — Hp (X)) — Hp(Xe) — Hy (X)) — Hyp 1 (X)) — -+

N TR T T

o Hy (Y — H,(Y)) — Hp(Ye) — Hy (YY) — Hy o (Y)) — - -+
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Definition Given a map of complexes f, : Xo¢ — Y,, the mapping cone of
fe is the following complex:

e X 0Yi — X1 @Y, — X 28 Yi — -
where the degree i part is X;_; @ Y; and the differentials are defined as follows:
di : X; 10Y;, - X; 2®Y; 1
(2,y) = (=diy (2), d (y) = fim1(2))
Exercise 5.6  Show that the mapping cone of a map of complexes is a complex.

Definition Given a complex X,, X¢(j) is used to denote a shift, where
Xi(j) = Xiyj.

Exercise 5.7 Given a map of complexes fo : Xo — Y,, let Cy be the mapping
cone of fo. Then there is a short exact sequence of complexes:

0 Yo Co Xo (_1) E— 0
y——(0,y)
(,y) ———
The above short exact sequence of complexes induces a long exact sequence:

N HZ-(X.)Hﬁ?)HZ—(Y.)—> Hy(C)) — -

Remark  For more information on the mapping cone see [2, §2.6].

5.1.1 Projective Resolutions

Definition An A-module P is projective if any of the following equivalent
conditions are met:

(1) Given any right exact sequence M — N — 0 of A modules and a homo-
morphism ¢ : P — N, there exits ¢ : P — M such that the diagram
below commutes:

M——N——0

(2) Homyu (P, —) is an exact functor.
(3) Every short exact sequence 0 — M’ — M — P — 0 is split exact.
(4) There is a free module F' such that F' ~ P @ @ for some A-module Q.

Exercise 5.8 Show that the conditions in the above definition are actually
equivalent.
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Exercise 5.9 Show that if A — B is a ring homomorphism and P is a projec-
tive A-module, then P ® o B is a projective B-module.

Definition If M is an A-module, a projective resolution of M is a complex
of projective modules P, and a map «w : Py — M such that

PP S M0

is exact.

Given a ring A, every module M has a projective resolution. Firstly, note
that given any module M, we may map a free module Fy onto M. Set

Sy := Ker(Fy — M).

Now we may map another free module onto S;. Hence we may inductively
define

Si+l = Ker(Fi — Sz)
Now we may inductively write the exact sequences:

0— S — Fy— M —0,
0H51+14>F1H514>0

Now we put the above short exact sequences together letting each S; connect
the short exact sequences:

****** %F1**@*%F0L>MHO

\S e
0/ \0

The d;’s above are formed by taking the composition of the relevant maps, while
7 is the canonical surjection. Hence we obtain a free resolution of M. Since
every free module is projective, we obtain a projective resolution of M. Note
that if M were a finitely generated module over a Noetherian ring, then we
could insist that each F; be a finitely generated free module.

Lemma 5.10 Let f : M — N be a homomorphism of A-modules. If P, is
a complex of projective A-modules such that Ho(P,) = M and Q. is an exact
complex with Ho(Qe) = N, then there exists a map of complexes fo : P — Qo
lifting f.
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Proof Here is the situation in question:

! ™M
P P M 0
Jf
dy ™
Q1 Qo N 0

Since Py is projective, we can obtain fy by:

P

Ve
f(; ’ JfOﬂ'M

¥
QQ?NHO

Now since S = Ker(ny) = Im(d)), we can obtain f; by:

Py
7/
f1
. 7 food}!
1’4

Ql?k%*ﬂ)
1

Note that fy o d? maps into S; since it is in Ker(7y). Working inductively, we
repeat a similar procedure to find f,. |

Remark Note that the lift f, is not unique.

Lemma 5.11 Let f : M — N be a homomorphism of A-modules, P, be a
complex of projective A-modules such that Ho(P,) = M, and Q. be an exact
complex with Hy(Qes) = N. If fo and ge are two lifts of the map f, then fo ~ ge.

Proof Here is the situation in question:

! ™M
P Py M 0
f{lm f{lgo fl
Q— 5 Co— N 0

1
Since both f, and g, are chain maps, we have that
Jomm =mNo fo=7N o go,

and so we see
0=nnofo—7mNnogo=mno(fo—9go)
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Thus Im(fy — go) € Ker(ny) = Im(dy). By the projectivity of Py, we obtain
ho
P

-
ho -~
- fo—g0

e
K

such that hg : Py — Q1. Set h_; to be the zero map and dé\/f = 7. Now
dY ohg+h_yodd = fo — go.

Working inductively, suppose that we have constructed homotopy maps for
1 < n. We must show

dp'y1 0 b+ hny 0 dy! = fo = gn.

By the definition of a map of complexes, we have that:
d'{yofn :fn—lodi\;[v
dq];[ ©9n = Ggn—-1° dﬁ/[,

and so by the inductive hypothesis,

df:[ © (fn - gn) = (fn—l - gn—l) o dTAL/[

=(d ohp_1+hyood )odM
=dY ohy_10d +hp_god,od

—_ N M
—dn Ohn—lodn .

Thus
AN o (fo—gn—hn_10d)=dY o(fn—gn) —dY o hy_q0dl
=dNoh, 10d” —dN oh, 1o0d¥
=0.
Therefore

m(fr = gn = hn—y 0 dy) € Ker(dy) = Tm(dy, ).
Now we obtain h,, as before
P,

e
h, -~
P - J/fngnhnlodi/f

Qn1 —+ Im(d), ) ——0
n+1

such that h,, : P, — Qn+1 and dﬁﬂrl ohp+hy10d™ = f, — g, Thus f, is
homotopic to g,. ||
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Lemma 5.12 (Horseshoe Lemma) Let
0—-M —-M-—M"—0

is an exact sequence of A-modules, and P, — M’ and P) — M" be projective

resolutions. Then, there exists a projective resolution P, — M such that the
rows in the diagram below are exact:

0 P, P, P/ 0
0 M’ M M 0

Proof Take projective resolutions (P,,7') and (P),7") of M’ and M" re-

e

spectively and consider the following commutative diagram:

!

d’l’ e p

"
Pl

0 0 0

First we must define 7 : Py — M such that the diagram commutes. Since P is
projective, there exist ng : P} — M such that g o g = 7. Define

m(z', ") == for'(a') +no(x").

This makes the diagram above commute.
Now we will define d; and then complete the construction by induction.
Since " o d{ = 0, we have that

Im(ng o df) C Ker(g) = Im(f).
Thus we have the commutative diagram:

p
p 1
m
Ve
K for’
P, ——Im(f) ——0

noody
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And so
for'on =myod.
By changing the sign of n; we see that
for om +mod =0,
and so we define
di(2',2") = (dy (') + m(2"),d{ (2")).

Plugging everything in we see that m o d; = 0. Following the diagram around
we see that Im(d;) = Ker(r).
Now working inductively, consider the diagram:

gt — Py Bs

dn dn_1
S T T TN N

d// d”i
" n " n—1 1"
P Pn 1 Pn72
0 0 0

Here we have inductively defined n,—1 : P/_; — PY_, similarly to how we
defined n; and we can write

dn-1(2', ") = (dyy_1 () + 1-1(2"), d 1 (7).
We must now define d,,. By construction we have that
d;z—2 0MNp—1+MNn—20 dgfl =0,
and so we see
d;z—Q OMn—-10° d;: = —Mn-10° d;:_1 o d{,i = 0.

Thus Im(n,—1 o d)) € Ker(d],_,) = Im(d],_;). Again we are in the following
situation:
P//
n

7
n 7
"o ln od!!

e
K

Py ——Im(d, ) ——0
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So we may now define
dn (2, ") := (dy, (2") + mn(2"), i (a")).

with the sign of 7, chosen so that:

(dy, (1 () + M1 (&) + (1 (27)), iy (1 (27)))
= (dy,(m-1(2")) + mn(d,, 1 (")), 0)
=0.

dypod,_1(2',2")

Since the direct sum of two projective modules is projective, and since we can
see that Im(d,,) = Ker(d,,—1), we see that we have constructed the needed exact
sequence. |

Compare the above construction to the construction of the mapping cone as
described in the previous section.

Exercise 5.13 Show that given the following commutative diagram of A-
modules with exact rows:

0 M’ M M 0
0 N’ N N 0

Then there exist associated projective resolutions that form a commutative di-
agram of A-complexes with exact rows:

0 Py P, Py 0

L]

0 Q, Q. QY 0

Hint: Do you know how to draw cubes?

5.1.2 Injective Resolutions

Definition An A-module F is injective if any of the following equivalent
conditions are met:

(1) Given any left exact sequence 0 — M’ — M of A-modules and a homo-
morphism ¢ : M’ — FE, there exits ¢ : M — E such that the diagram
below commutes:

0—— M —— M
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(2) Homyu(—, E) is an exact functor.
(3) Every short exact sequence 0 —» E — M — M" — 0 is split exact.

Exercise 5.14 Show that the conditions in the above definition are actually
equivalent.

Theorem 5.15 (Baer’s Criterion)  Let A be aring. An A-module E is injective
if and only if given any ideal I of A, a module homomorphism ¢ : [ — FE can
be extended to a module homomorphism ® : A — E.

Proof (=)If Eisinjective, and ¢ : I — E, then apply the functor Hom 4 (—, E)
to
0—1— A

Since Hom 4 (—, E) is an exact functor, ¢ : I — E can be extended to a module
homomorphism ¢ : A — E.

(<) Suppose that every A-module homomorphism I — E can be lifted to a
homomorphism A — FE. Consider the diagram:

0O——L—M

d
E
Let L' be a submodule of M containing L and ¢’ : L' — FE be a lift of ¢. In
this case, the ordering: (L', ') < (L”, ") if L' C L” and ¢"|1 = ¢', partially
orders the set S,
S={(L,¢): ¢ lifts p to L'}.

Note that S # @ as (L,p) € S. Now considering any chain C in S, it is clear
that
U @.¢)
(L',p")ec
is an upper bound. Hence by Zorn’s Lemma this set contains a maximal element,
(M’, @). We will show that M’ = M. Suppose that m € M — M’. Consider the
ideal (M’ :4 m). Note that
(M':gm)— E,
a— p(am),

is an A-module homomorphism from (M’ :4 m) to E, thus there exits an A-
module homomorphism ® : A — E which restricts to the one above. Consider

the submodule
M +Am C M

and define

f:M+Am — E,
m' + am — @(m) + ®(a).
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To check that f is well defined, consider my + a;m = mg + agm. Then
(a1 —az)m =my —my
and so (a1 —ag) € (M’ :4 m). Thus
(a1 — az) = p((a1 — az)m) = $(ma — my).

So we see that
P(m1) + ®(a1) = p(me2) + (az).

Thus f is well defined and it is a lift extending ¢ to M’ + Am, which contradicts
the maximality of (M’, ¢), and so we must conclude that M’ = M. |

Definition If A is a PID, an A-module M is divisible if given any m € M
and nonzero a € A, there exists ¢ € M such that

m
m=a-q which essentially says — =q.
a

From the above definition, we obtain the following corollary to Baer’s Cri-
terion, whose proof we will leave as an exercise to the reader.

Corollary 5.16 Let A be a PID. An A-module is injective if and only if it is
divisible.

Example 5.17  Q is an injective Z-module as it is divisible. Moreover, Q/Z is
an injective Z-module as well.

Theorem 5.18 If A is a ring, then every A-module can be embedded into an
injective A-module.

Proof Step 1. We will show that every A-module M can be embedded into
a divisible Z-module. First note that while M is an A-module, it is also a Z-
module. Hence there exists a free Z-module Z surjecting onto M. Letting K
be the kernel of this surjection, we have that

Z/K ~ M.

On the other hand, Z canonically embeds into some free Q-module, call it Q.
If we denote this canonical embedding by 7 : Z — @, and set D = Q/Im(n|x)
we may write

M ~ Z/K ~TIm(n)/Im(n|x) C D.

Since D is divisible, we have completed Step 1.
Step 2. We will now embed M into Homy (A, D) where D is defined as in
Step 1. We will denote the embedding of M into D by

t: M — D.
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Applying Homy (A, —), we get an injective Z-module homomorphism
t« : Homy (A, M) — Homy(A, D),
P Lo,
Noting that there is a canonical injection of A-modules
Hom 4 (A, M) — Homg (A, M),
where the A-module structure on Homgy (A, M) is given by
a- f(x):= f(ax) for a € A and f € Homy(A, M),
we see that we have an embedding of A-modules
M ~Homy (A, M) — Homy (A, M) — Homgy(A, D).

Step 3. We will show that if D is a divisible Z-module, then Homy(A, D) is
an injective A-module. Note that this step completes the proof of the theorem.
Consider an ideal a of A. By Baer’s Criterion, Theorem 5.15, we need to show
that any A-module homomorphism

¥ : a — Homy (A, D), extends to
¥ : A — Homgz (A4, D).

Now consider the Z-module homomorphism:

p:a—D
a— ¢(a)(la)

One should check that this is indeed a Z-module homomorphism. Since D is a
divisible Z-module, by Corollary 5.16, we see that it is an injective Z-module,
and so we write

0——a——A

s
o s
7
%

and obtain a Z-module homomorphism ¢ such that the diagram above com-
mutes. Now define

U : A — Homgz(A4, D),

a f,

where f(z) = @(ax). One should check that this defines an A-module homo-
morphism. For a € a and x € A, we have

U(a)(x) = f(x) = ¢lax) = p(azx) = Y(azx)(1a).
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Since 1 is an A-module homomorphism, we have

Plax)(1a) = 2 (a)(1a) = P(a)(2),

where the right-most equality is due to the A-module structure on Homy(A, D).
Hence we have ¥ : A — Homy(A4, D) and ¥|, = ¢). Thus we see Homz(A, D) is
an injective A-module. |

Definition If M is an A-module, an injective resolution of M is a complex
of injective modules F, and a map ¢ : M — FE; such that

0 1
0—s M g9 4 gt 4 g2
is exact.

If Ais a ring and M is an A-module, we can use Theorem 5.18 to construct
an injective resolution as follows. Set

E° := {a module which M embeds into},
C! := Coker(M — E°),

and inductively define

E':= {a module which C* embeds into},
Ct! .= Coker(C* — EY).
Now we may inductively write the exact sequences:
0—-M—E">C!—o0,
0—-C"— E' — " —o.

Putting the above exact sequences together we obtain:

The d*’s above are formed by taking the composition of the relevant maps, while
¢ is the canonical injection. Hence we obtain an injective resolution of M.

We now include the corresponding results for injective resolutions that we

had for projective resolutions. The statements and proofs are precisely the duals
of the projective case.
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Lemma 5.19 Let f : M — N be a homomorphism of A-modules. If I*
is a cocomplex of injective A-modules such that H°(I*) = M and J*® is an
exact cocomplex with H°(J®) = N, then there exists a map of cocomplexes
fe:I* — J® lifting f.

Lemma 5.20 (Horseshoe Lemma) Let
0— M — My — M3 —0

is an exact sequence of A-modules, and My, — I} and Ms — I3 be injective
resolutions. Then, there exists an injective resolution Mo — I3 such that the
rows in the diagram below are exact:

0 b5 I3 I3 0
0 M, M, Mg 0

Exercise 5.21 Show that given the following commutative diagram of A-
modules with exact rows:

0 M,y Mo Ms; 0
0 Ny Ny N3 0

Then there exist associated injective resolutions that form a commutative dia-
gram of A-complexes with exact rows:

0 b& I3 I3 0
0 Jp J3 J3 0

Exercise 5.22  Consider the short exact sequence:
0-Z—-Q—Q/Z—0.
Note that this is an injective resolution of Z. Is Q/Z indecomposable? That is,

is Q/7Z a direct sum of Z-modules? If so, what are the summands? If not, why
not?

5.2 Tor and Ext
5.2.1 Tor

To start, let’s recall some of Gothe’s words:
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Habe nun, ach! Philosophie,

Juristerei und Medizin,

Und leider auch Theologie!

Durchaus studiert, mit heissem Bemiihn.
Da steh ich nun, ich armer Tor!

Und bin so klug als wie zuvor.

— Gothe, Faust act 1, scene 1

Construction of Tor

Definition Given a ring A and an A-module N, Torfl(—, N) is the left de-
rived functor of the right exact covariant functor — ®4 N.

To be more explicit, consider any projective resolution of an A-module M:
do dy ™
— PP — FP— M—0

Apply the functor — ® 4 N and chop off the M ® 4 N term to get the complex
P, ®4 N:
o PB4 N —->PLRs N — P4 N —0

We now define

Ker(d; ® 1)
Tor(M,N) := H;(P, @4 N) = ——*—~ "/
or; (M, N) (Pe ®a N) Tm(diss @ 1)

Note that since
P—-FP—-M-=0

is exact,

PLROAN —-FPyR@s N —>M®a N —0

is also exact. Hence
Tor{ (M, N) ~ M ®, N.

Proposition 5.23 Torf‘(M, N) does not depend on the choice of projective
resolution used. Hence it is well-defined.

Proof Let P, and s be two projective resolutions of M. So we may write:

P e Py M 0
l%‘ Js@n J/]]-IW
Qi e Qo M 0
M- lwo PM
P e Py M 0

Note that the lifts o and 1, of 1), are guaranteed to exist by Lemma 5.10.
Thus e 0 e : Py — P, is a lift of 1,. But clearly 1p, is another such lift.
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Thus 1)e 0 e ~ L p,. Similarly, e 0 10e ~ Lg,. Applying —®4 N to everything
we obtain that

(o 0pe) @ (In) ~ (Lp,) @ (Iy)  and  (peothe) @ (Iy) ~ (Lg,) © (1n)

and so
Thus Tor (M, N) is well-defined. |

Properties of Tor

Exercise 5.24 If N is A-flat or if M is A-flat, show that
Tor (M, N) =0
for all A-modules M and i > 0. Hint: For the second part, first show that if
0— M — My — M3 —0
is exact and My and Ms are flat, so is M.

Proposition 5.25 Given an exact sequence of A-modules,
0—-M - M—-M'—-0

we obtain a long exact sequence of Tor’s:

-+« — Torl, | (M',N) — Tor, , (M, N) — Tor, , (M", N) j ;
n+1
L TorA (M’, N) —— Tor (M, N) ——> Tor (M", N) j
8’”.
CHTOI‘;?_l(M”N)H ............ HTOI‘?(M”,N)
a1

QM’@AN%M®AN—>M”®AN%0

Proof Let P, and P) be projective resolutions of M’ and M" respectively.
By the Horseshoe Lemma there exists a projective resolution P, of M such that

0—P —P,—P'—=0

is an exact sequence of complexes. Since P is projective, this complex is in

fact split exact, and so we have following short exact sequence of complexes:
0 =P @4 N —-P,@s N —P/@,N—0

By Lemma 5.4, we obtain a long exact sequence of homologies, and hence the
result. |
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Proposition 5.26  Given a ring A and two A-modules M and N, we then have
Tor (M, N) ~ Tor{ (N, M).
Proof First note that
Tor} (M,N)~M®, N and  Tory (N,M)~ N ®, M.
Since

M@ s N>~N®Xs M

me@nm—n@m
we have that Tory (M, N) ~ Torg (N, M). Consider
0-8—=P—-M-—0

where P is a free module and S is the kernel of the surjection. Note that since
P is a free module, it is flat, and so

Tor}(P,N) =0 for i > 0 and
Tor (N, P) = 0 for i > 0.

Hence by Proposition 5.25 we now have two long exact sequences of Tor’s:

Oit1

+++— Tor 1 (S, N) — 0 — Tor{\; (M, N) j

04

C%Torf‘(S,N) —— 0 — Tor (M, N) j

CHTorf‘_l(S,N) HOHTorf_l(M,N) — e

And:

~'~*>Torf‘+1(N7S)HOHTorf‘H(N,M) )
i+1

i i

0;

D
L Tor(N, S) — 0 — Tor (N, M) j

L Tor* | (N, S) — 0 — Tori (N, M) — -

Thus we see that
Tor{(M, N) ~ Tor* (S, N) ifi > 1,
Tor (N, M) ~ Tor* ;(N, S) if i > 1.
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We see now that it is enough to show that Tori' (M, N') ~ Tor{'(N, M). Consider
the commutative diagram with exact rows:

0—— Tor(M,N) ——= S ®4N——P@sN——M@4 N——0

0—— Tor(N,M) ——=N®4S——N@sP—= N4 M—0

Note that the left-most terms are 0 because M and N are projective. And so
we see that Tori' (M, N) ~ Tor{'(N, M). |

Proposition 5.27  Given an exact sequence of A-modules,
0—-N —-N->N"=0

we obtain a long exact sequence of Tor’s:

-++— Torfy, (M, N') — Tor,; (M, N) — Tor/s, (M, N")

87L+ 1

On

L Tor’ (M, N") —— Tor (M, N) — Tor’} (M, N") 1

L Tor?_,(M,N'") — Tor?_, (M, N) — Tor{: (M, N") — -
Proof Note that this follows by Lemma 5.26 and Lemma 5.25. However, we
can also give a direct proof. Let ()¢ be a projective resolution of N. Since
projective modules are flat, we have the short exact sequence of complexes:

0— M ®41Q¢ = My®4 Qe — M/ @4 N —0

By Lemma 5.4, we obtain a long exact sequence of homologies, and hence the
result. |

Exercise 5.28 Tor;(M, @, N.) ~ @, Tor;(M, N,).
Exercise 5.29 Let B be a flat A-algebra. Then

B ®4 Tor (M, N) ~ Tor?(M ®4 B,N ®4 B).
In particular, if U is a multiplicatively closed set in A, then

U~ Tor (M,N) ~ Tot!" (UM, U"'N).
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5.2.2 Ext

First Construction

Definition ~ Given a ring A and an A-module N, Ext’ (—, N) is the left de-
rived functor of the left exact contravariant functor Hom 4 (—, N).

To be more explicit, consider any projective resolution of an A-module M:
PP S M0
Apply the functor Hom 4 (—, N) and chop off the Hom 4 (M, N) term to get the
complex Hom 4 (P,, N):

* * *

02, Homu(Py, N) -2 Homa(Pi, N) -2 Homu(Ps, N) — ---
where dj; := 0. We now define:

, . Ker(d}
Ext%y (M, N) := H (Hom4(P,, N)) = Im((d+)1)

The shift in degrees of the differentials in the quotient above, compared to the
definition of cohomology, is due to the fact that d} is the (¢ — 1)th differential
in the cocomplex Hom 4 (P,, N). Since

P1—>P0—>M—>0

is exact,
.

0 — Hom (M, N) — Homa(Py, N) -2 Homa (P1, N)

is also exact. Hence

Ker(d})

Ext% (M, N) = 0

~ Homyu (M, N).

Proposition 5.30 Ext% (M, N) does not depend on the choice of projective
resolution of M used to compute it. Hence it is well-defined.

Proof Let P, and QQ, be two projective resolutions of M. We can lift 1, to
maps of complex p, and 1, and write:

P e P M 0
l%‘ J@n J/]]-IW
Qi - Qo M 0
[ o PM
P; e Py M 0
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Since 1 p, and 1, 0 @, are both lifts of 17, we have 1, 0 g ~ (1p,). Similarly,
Yo 0 e ~ (1g,). Applying (—)* = Homu(—, N) to everything we obtain that

(Yeope)” ~ (Ip,)"  and  (peothe)” ~ (1g,)"

and so _ _
Hi(Hom(P,, N)) ~ H'(Homa(Qa, N)).
Thus Ext? (M, N) is well-defined. [

Second Construction

Definition Given a ring A and an A-module N, Exth(M, —) is the left
derived functor of the left exact covariant functor Hom4 (M, —).

To be more explicit, consider any injective resolution of an A-module N:

0— N—L>EOLD>E1LI>E2—>---

Apply the functor Hom 4 (M, —) and chop off the Hom 4 (M, N) term to get the
complex Hom 4 (M, E®):

da;t oy 49 1y di 9

0 — Homu (M, E”) — Homu (M, E*) — Homyu (M, E*) — - -
where d; ! := 0. We now define:
_ _ Ker(d:
Ext’y (M, N) := H(Homu (M, E*)) = Lj
Im(di™)

Note that since
0—-N—E'—E!

is exact,

0
0 — Hom (M, N) — Homu (M, E®) -2 Hom, (M, EY)
is also exact. Hence
Ker(d?)
0

Proposition 5.31 Ex‘ciA(M7 N) does not depend on the choice of injective res-
olution of N used to compute it. Hence it is well-defined.

Ext(M,N) = ~ Hom (M, N).

Proof Let I®* and J*® be two injective resolutions of N. So we may write:

0 N 70 . i
lﬂN },0 lwi
0 N Jo . Ji
T
0 N 70 . i
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Thus we see that ® o ¢* ~ (1;.). Similarly, ¢®* o ¥* ~ (1je). Applying
(=)* = Homu4 (M, —) to everything we obtain that

(¥* o) ~ (L))" and (¢ 0¢)*)" ~ (L0)"

and so 4 4
H'(Hom (M, I°%)) ~ H*(Homa(M, J*)).

Thus Ext}(M, N) is well-defined. [

Properties of Ext

Proposition 5.32  The two constructions of Ext’y(M, N) given above produce
isomorphic modules and hence are equivalent.

Proof We omit the proof of this result, though it is similar to the proof that
the two definitions of Tor are the same. Readers who are familiar with spectral
sequences can see the result easily by taking a projective resolution P, — M
of M and an injective resolution N — I*® and considering the double complex
Hom a (P,, I*). We refer the reader to [16]. |

Proposition 5.33  Given an exact sequence of A-modules,
0—-M —-M—M'"—-0
we obtain a long exact sequence of Ext’s:

0 —> Homy (M, N) —— Homu (M, N) —— Hom 4 (M', N

LEX‘DZ(M”,N) —— Exti (M, N) —— Ext}

L EXt}4 (M”, N) S P N Extg 1 M/ j
Bn 1

L Ext’ ™ (M", N) — Ext% (M, N) — Ext’s™ (M', N) — -

Proof Let P., P,, and P/ be projective resolutions of M’', M, and M" re
spectively. Hence we have an exact sequence of complexes:

0—P —P,—P'—=0

Since P)' is projective, our complex is in fact split exact, and so we have following
short exact sequence of complexes:

0 — Homu (P),N) — Homyu(P,, N) — Homu(P,,N) = 0

By Lemma 5.4, we obtain a long exact sequence of homologies, and hence the
result. |
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Proposition 5.34  Given an exact sequence of A-modules,
0—-N —-N->N"=0

we obtain a long exact sequence of Ext’s:

oo — Ext’ (M, N") — Ext’s (M, N) — Exty ' (M, N"')

L Ext’ (M, N') — Ext’ (M, N) —s Ext} (M, N"")

L Ext’ ™ (M, N') — Ext"s™ (M, N) — Ext ™ (M, N") — - --

Proof Note, one could dualize the above proof or one could take a projective
resolution P, of M and look at the short exact sequence of complexes:

0 — Hom (P, N') — Homa(Ps, N) — Homa(Ps, N") — 0

By Lemma 5.4, we obtain a long exact sequence of homologies, and hence the
result. |

Proposition 5.35 If A is a ring, the following are equivalent:
(1) M is projective.
(2) Ext’y(M,N) =0 for all A-modules N and for all i > 0.
(3) Extly(M,N) =0 for all A-modules N.

Proof All that needs to be shown is (3) = (1). We must show that given
any short exact sequence

0—-N —-N->N"—=0
of A modules, we have
Hom (M, N) — Hom (M, N").

But by the long exact sequence of Ext and the fact that Extz (M,N) = 0 for
all A-modules N, we have

0 — Hom (M, N') — Hom (M, N) — Homu (M, N") — 0
which shows M is projective. |

Proposition 5.36  If A is a ring, the following are equivalent:

(1) N is injective.
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(2) Ext’y(M,N) =0 for all A-modules M and for all i > 0.
(3) Extly(M,N) =0 for all A-modules M.
(4) ExtY(M,N) =0 for all finitely generated A-modules M.

(5) ExtY(A/I,N) =0 for all ideals I C A.

Proof  All that needs to be shown is (5) = (1). By Baer’s Criterion, Theo-
rem 5.15, we must show that given any ideal I of A, a module homomorphism
@ : I — N can be extended to a module homomorphism ¢ : A — N. This
amounts to saying that

Homyu (A, N) — Homu (I, N).

Write
0-I—-A—A/I—0

and apply the functor Hom4(—, N), and note that Ext}(A/I,N) = 0 for all
ideals I C A, to obtain the exact sequence

0 — Homa(A/I,N) — Homyu (A, N) — Homs(I,N) — 0

Hence N must be injective. |
Exercise 5.37

(1) Exty (D, Ma, N) =[], Ext’y(M,, N).

(2) Ext’y(M,[], Na) =[], Ext'y (M, N,).
In particular, finite direct sums in either variable pass through Ext.
Exercise 5.38 Let B be an A-algebra that is finitely generated and projective
as an A-module or let B be a flat A-algebra where A is Noetherian and M is
finitely generated. Then

B ®4 Exty(M,N) ~ Exty(M ®4 B,N ®4 B).

If U is a multiplicatively closed set in A, A is Noetherian and M is finitely
generated, then

U~ Extly(M, N) ~ Ext}, 1 ,(U"*M,U!N).

Hint: For help with this see [3, 6.7].
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5.3 Homological Notions of Dimension

5.3.1 Projective Dimension

Definition Given a ring A and an A-module M, the projective dimension
of M is defined to be:

pd 4 (M) := inf{n : there exists a projective resolution of M of length n}.

Recall that
0O—-P,—P,1—-—>P—-FP—M-—0

is a resolution of length n if it is an exact complex and each P; is projective.
Remark Sometimes projective dimension is called homological dimension.

Proposition 5.39 If A is a ring and M is an A-module, then the following are
equivalent:

(1) pda(M) < n.
(2) Ext’y(M,N) =0 for all A-modules N and for all i > n.
(3) Ext’y™ (M, N) = 0 for all A-modules N.
Proof All that needs to be shown is (3) = (1). Write
P, : 0—-S, —-P1—-—>P—-P—->M-—0

where S, is the kernel of d,,_;. We’ll show that S, is projective. By Proposi-
tion 5.35, we need only show that Ext,(S,,, N) = 0 for all A-module N. Break
up P, into short exact sequences as follows:

0 Sn Pnfl Snfl 0
O _— Sn71 Pn72 Sn72 0
0 S1 Py M 0

Apply Hom(—, N) and from the corresponding long exact sequences for Ext
we see

Ext(S,, N) ~ Ext%(S,_1, N) >~ --- ~ Ext}(S1, N) ~ Ext" ™ (M, N) = 0.
Hence we see that S,, is projective. |

As immediate corollaries to this proposition we have two more characteriza-
tions of projective dimension:

Corollary 5.40 If A is a ring and M is an A-module, then:

od, (M) = inf{n _Given any projective resolution (P,,ds) of M,}
AlM) =

"Ker(d,—1) is projective
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Corollary 5.41 If A is a ring and M is an A-module, then

P4 (M) = sup{n : Ext (M, N) # 0},

where N varies over all A-modules.
Proposition 5.42  Consider an exact sequence of A-modules
0—-M —-P—-M"—0
where P is projective. The following are true:
(1) If M" is projective, then so is M'.
(2) If pd4,(M") > 1, then pd 4(M") = pd 4(M') + 1.

Proof (1) If M" is projective, then the above exact sequence is split, and so
we have P ~ M’ @ M". Since P is projective, it is a summand of a free module,
and so we have

MoM oQ~F

showing that M’ is also a summand of a free module and hence is also projective.
(2) For some A-module N, apply Hom4(—, N) and look at the long exact
sequence for Ext to see that

Ext’,(M’,N) ~ Exty}(M",N)  fori>1.
The result follows from Proposition 5.39. |

Exercise 5.43 If A — B is a ring homomorphism and P is a projective A-
module, then P ® 4 B is a projective B-module.

Proposition 5.44  Given an A-module M, suppose that x € A is a nonzerodi-
visor on both A and M. If pd 4 (M) < oo, then pd 4, 4(M/zM) < occ.

Proof Consider the following projective resolution of M
P, : O—-P,—P,1—-—P—-FPh—M-—0
We would be done if we knew that
P, ®4 AJ/zA: 0— P,/zP, — -+ — Py/xPy — M/xM — 0

was exact, by the above exercise.
Now note that

H;(P, 4 A/zA) = Tor (M, A/zA).

Since
O—>A—m>A—>A/33A—>0 (%)
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is a free resolution of A/xzA, we see that
Tor! (M, A/zA) =0 for i > 2.

We must show that Tor{'(M, A/zA) = 0. Applying — ®4 M to (%) above we
obtain
0 — Tori' (M, Az A) — M - M — M/zM — 0.

But we see that Tori (M, A/zA) = 0 as the above complex is exact and mul-
tiplication by x is injective. Thus P, ®4 A/xA is a projective resolution of
M/zM. n

Proposition 5.45 Let 0 — M — N — T — 0 be an exact sequence of A-
modules. Then
pd4 (N) < max{pd (M), pdA(T)}.

Proof This follows easily from the Horseshoe Lemma. |

5.3.2 Injective Dimension

Definition Given a ring A and an A-module M, the injective dimension of
M is defined to be:

ida(M) := inf{n : there exists an injective resolution of M of length n}.

Recall that
0—-M-—->E"—-FE' —-... 5 E"! S E" 50

is a resolution of length n if it is an exact cocomplex and each E? is injective.

Proposition 5.46 If A is a ring and N is an A-module, then the following are
equivalent:

(1) ida(N) < n.

(2) Exty(M,N) =0 for all A-modules M and for all i > n.
(3) Ext’y™ (M, N) = 0 for all A-modules M.

(
(

4) Ext’y™' (M, N) = 0 for all finitely generated A-modules M.

)
)
)
5) Ext% ! (A/I,N) =0 for all ideals I C A.

Proof This proof is left as an exercise for the reader. Hint: See the proof of
Proposition 5.39. n

As immediate corollaries to this proposition we have two more characteriza-
tions of injective dimension:

Corollary 5.47 If A is a ring and N is an A-module, then:

ida(M) = inf {n _Given any injective resolution (E®,d*) of M,}

“TIm(d™~ 1Y) is injective
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Corollary 5.48 If A is a ring and N is an A-module, then

id4(N) = sup{n : Ext’; (M, N) # 0},
M
where M varies over all finitely generated A-modules.

5.3.3 Global Dimension

Definition Given a ring A, the global dimension of A is defined to be:
gd(4) = suppd,; (M)

where the M varies over all A-modules.
We now have the following corollary to Proposition 5.39 and Proposition 5.46:

Corollary 5.49  Given a ring A we have that:
gd(A) = sup pd,(M)
MeMod 4

= sup ida(M)
MeMod 4

= sup pdu(M) such that M is finitely generated.
MeMod 4

5.4 The Local Case

Let (A,m, k) be a local ring. Recall Corollary 2.39 which states that if M is a
finitely generated A-module, then

p(M) :={the minimal number of generators of M}
=rankg(M/mM).

The above fact will be used extensively.

The next theorem is very important as it shows that projective modules and
flat modules are locally free. This means that when you localize a flat module
or a projective module, you get a free module.

Theorem 5.50 If A is a local ring and M is a finitely generated A-module,
then the following are equivalent:

M is free.
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Proof All that needs to be shown is (5) = (1). Let F be a free module
mapping onto the minimal generators of M and obtain the short exact sequence

0—-S—F—M-—0.
Applying — ® 4 k we obtain the short exact sequence
0—S/mS— F/mF — M/mM — 0

since Tor‘f‘(M ,k) = 0. However, since we map a basis of F' onto a minimal
set of generators of M, we see F/mF ~ M/mM and so S/mS is 0. Hence by
Corollary 2.35, Nakayama’s Lemma, we see that S =0 and so M ~ F. |

Proposition 5.51 If (A,m, k) is a local ring and M is a finitely generated
A-module, then the following are equivalent:

(1) pda(M) <.
(2) Tor{(M,N) =0 for all A-modules N and for all i > n.
(3) Toril, (M, k) =0.

Proof This proof is left as an exercise for the reader. Hint: See the proof of
Proposition 5.39. |

Later on we will be able to remove the condition that A is a local ring for
the above proposition.

Corollary 5.52 If (A,m,k) is a local ring and M is a finitely generated A-
module, then
pd 4 (M) = sup{n : Tor;'(M, k) # 0}.

Proposition 5.53  If (A, m, k) is a local ring, the following are equivalent:
(1) gd(4) <n.
(2) Tor(M,N) =0 for i > n and all A-modules M and N.
(3) Torfly, (k,k) = 0.

Proof All that needs to be shown is (3) = (1). If Torj ;(k,k) = 0, then
pd 4 (k) < n. So by Proposition 5.51, Tor/\,; (M, k) = 0 for all A-modules M. In
particular, Tor? 1(M, k) = 0 for all finitely generated A-modules M. Again by

Proposition 5.51 we have that pd 4 (M) < n for all finitely generated A-modules
M. Thus gd(A) < n by Corollary 5.49. |

Corollary 5.54 (Main Point) If (A, m, k) is a local ring,

gd(A4) = pd4 (k).
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There is an analogous result to Corollary 5.52 for injective dimension over
local rings.

Theorem 5.55 Let (A,m, k) be a local ring and M a finitely generated A-
module. Then _
ida(M) = sup{i : Ext’y (k, M) # 0}.

Proof We refer the reader to [4, Proposition 3.1.14]. |

5.4.1 Minimal Free Resolutions
Let (A,m, k) be a local ring and M be a finitely generated A-module. We are

going to discuss the construction of a minimal free resolution of M. Recalling
Corollary 2.39, set
Bo = rank; (M /mM),
Sy := Ker(A™ — M),
where the map A% — M is defined by mapping a basis of A% onto a minimal
set of generators of M. Inductively define
B; := ranky(S;/mS;),
Sii1:= Ker(4% — S;),
where at each step, the map A% — S, is defined by mapping a basis of A%
onto a minimal set of generators of S;. Now we may inductively write the exact
sequences:
0— 5 — A% 5 M —0,
0—>Si+1—>Aﬁ" — 5; — 0.
The integer (3; is sometimes called the ith Betti number of M and S; is referred
to as the ith syzygy of M. The rather mysterious word syzygy means yoke.
After putting the above exact sequences together, we can see why syzygy is a

good term to use for the S;’s, as each S; is connecting two free modules via
A-module homomorphisms:

0 0
N,
2
' @ .
7777777 S AP — — — — 5 APo — M — 0
\S/
1
0/ \0
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The d;’s above are formed by taking the composition A% — S; — AP~ while
7 is the canonical surjection. Hence we obtain a free resolution of M, that is
a long exact sequence of free modules ending at M:

---—>A63£>A52£>A611>A60—W>M—>0

A resolution of this form is called a minimal free resolution. Note that the
condition that A is local, and hence Noetherian, is critical for this construction.
By Corollary 5.52, we see that the projective dimension of M is given by

pd 4 (M) = sup{n : Tor;'(M, k) # 0}.

Since the entries of the matrices defining the d;’s in a minimal free resolution
live in m, they become zero maps when tensored by k. Hence

Ker(d; ® 1) v v
Torf (M, k) = ————F = AP @, k ~ k.
or; ( ) ) Im(di+1 ® 1) XA

Thus we see that if the projective dimension of M is finite, then the degree of
the final nonzero term in the minimal free resolution is equal to pd 4 (M). Hence
a minimal free resolution is truly a resolution of minimal length.
Proposition 5.56 Let (A, m,k) be a local ring, M a finitely generated A-
module, and F, be any free resolution of M where each F; has finite rank and
such that:

(1) m: Fo - M and Ker(mw) C mFE.

(2) Im(dz) = Ker(di_l) Q mFi_l.

Then F, is a minimal free resolution of M.

Proof Consider the exact sequences:

0—-S5 —-F—M-—0
O—>SZ+1—>FZ—>SZ—>O

Where S; is the ith syzygy as defined above. Now apply — ® 4 k to obtain

Fo®ak>=M®ak,
Fi®@ak~5 ®ak.

Thus by Corollary 2.39, we see that the rank of Fy is the minimum number of

generators of M. Similarly, we see that F; is a free module of rank equal to the
minimum number of generators of S;. |
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5.5 Regular Rings and Global Dimension

5.5.1 Regular Local Rings

Definition If (A, m) is local, A is a regular local ring if
dim(A4) = p(m) = {the minimal number of generators of m}.

Example 5.57 Examples of regular local rings:

(1) Consider A = k[X1,...,X,] where k is a field. Here dim(A) = n and
m = (Xy,...,X,). Thus A is a regular local ring.

(2) Any DVR is a regular local ring of dimension 1 since its maximal ideal is
principal. In particular, Z,) and k[X](X) are regular local rings.

Example 5.58 A nonexample of a regular local ring:

E[X,Y,U, V] EX,Y,U,V]n
A= —1"1"1 2 A= 1n
xy-ov) (XY —UV)
In either case m = (X, Y, U, V) but dim(A) = 3.
Exercise 5.59 Consider
E[X,Y,U,V]n
A= — ==
(XY —UV)

Letting p = (X, U), write down a free resolution of A/p over A. Can you get a
finite free resolution of A/p over A?

Theorem 5.60 Let (A,m,k) be local of dimension n, then the following are
equivalent:

(1) A is regular.
(2) ranky(m/m?) = n.

3) L
m'L
k[Xl""’X”]gq%mi+1

= Grp(4).

Proof (1) < (2) This follows from the definition of a regular local ring and
Corollary 2.39.
(3)=(2) If

oo
m
k;[Xl,...,Xn]z@miH,
=0

then m/m? must correspond to degree 1 polynomials hence, m/m? is the k vector
space generated by basis vectors X1, ..., X,,, showing that rank;(m/m?) = n.
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(1) = (3) Consider the homomorphism
v E[X1,...,Xn] — Grm(A), via
i X{ X Y an T T

where (z1,...,2,) = m. Note that ¢ is onto. We must show that Ker(y) is
Z€ro.
By Theorem 3.31, the Dimension Theorem, we have that

n = dim(A) = deg(Pu(A,1)) = deg(£(A/m?)).

Since
ADmDODm?’D---Dm'

we have that
((A/m") = L(A/m) + L(m/m?) 4+ - + L(m"" ! /m?).
Thus

APy (A, i) = ((A/mit) — £(A/m')
— E(mi/miﬂ)
= X(Grm(A)vi)’

and so deg(x(Grm(A),7)) =n — 1. Thus
0= A""1x(Grn(A),i) = (k).

Moreover, we have that k generates Gry(A) over Gry(A), and so by Theo-
rem 3.3, the Hilbert-Serre Theorem, we see that the map above is injective. W

Corollary 5.61 If A is a regular local ring, then A is an integral domain.

Proof To start, note that A is Hausdorff under the m-adic filtration and we
have that Gry,(A) is a domain. It is left as an exercise to show that this implies

that A is a domain. [ |
Definition If (A, m) is a regular local ring, a system of parameters x1,...,zq
is called a regular system of parameters if m = (x1,...,xq).

Proposition 5.62 Let (A, m) be a regular local ring of dimension n and

Ti,...,T5 €M
Then x4, ...,x; form part of a regular system of parameters for A if and only
if for all'i, 1 <i<j, A/(x1,...,x;) Is a regular local ring of dimension n — 1.
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Proof Throughout this proof set A; = A/(x1,...,x;) and thus
my, = m/(zl, . ,$i).

(=) By the definition of A; we have that dim(A;) > n —¢. The maximal
ideal m4, of A; is generated by n — i elements since you can extend x1,...,x;
to a regular system of parameters. Thus dim(A;) < n —4 and so we see that
dim(A;) =n —i.

(<) If dim(A;) = n — i and A; is a regular local ring, then m4, can be

generated by n — i elements. Since A is a regular local ring, z1,...,2; must
form part of a regular system of parameters. |
Corollary 5.63 If A a regular local ring of dimension n and xi,...,Z, IS a
regular system of parameters, then (x1,...,x;) is a prime ideal of height i.

Proof Follows from Corollary 5.61 and Proposition 5.62. |
Definition Given a ring A and an A-module M, z1,...,x, € A is called an

M -sequence if the following hold:
1) (z1,...,zn)M # M.
(2) For each i > 0,

M - M
—
(x1,...,xi—1)M (1, zi0)M

is an injective map; that is, z; is a nonzerodivisor on M/(z1,...,x;—1)M
for1 <i<n.

Example 5.64 If A =k[Xy,...,X,], then Xq,...,X, form an A-sequence.

Exercise 5.65 IfA=k[X,Y,Z],21=X,20=Y(X—1), andx3 = Z(X —1),
then x1, xo, x3 form an A-sequence, but xs,rs, x| does not.

The next lemma tells us the relationship between an M-sequence and a
system of parameters:

Lemma 5.66 If A is a local ring, every M-sequence is part of a system of
parameters for M.

Proof This follows by repeatedly applying the exercise after Corollary 3.40.
|

Corollary 5.67  If A is local and M is finitely generated A-module with x4, ..., x;
an M-sequence, then i < dim(M).

It should be pointed out here that unless the ring is nice, the inequality
above is strict.
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Proposition 5.68 (A, m) is a regular local ring if and only if m is generated
by an A-sequence.

Proof (=) If A is a regular local ring with m = (z1,...,2,). Then by
Corollary 5.61, we have that A/(z1,...,2;) is an integral domain, and so the
map defined by x;,; is an injection. Hence (z1,...,z,) form an A-sequence.
(<) Suppose that m is generated by an A-sequence x1, ..., xq. Then we see
that dim(A) < d, but from Corollary 5.67 we have that dim(A4) > d. Hence we
see that A is a regular local ring. |

Lemma 5.69 If (A, m) is local ring and a € m —m?, then the exact sequence
0— aA/am —= m/am — m/aA — 0
splits.

Proof We must define n : m/am — aA/am such that not=1,4/qm. Taken
to be the composite

m/am — m/m? % A/m = aA/am
where ¢(@) =T and ¢ sends the rest of a k-basis for m/m? to 0. |

Lemma 5.70  Suppose that (A, m) is local and gd(A) is finite. Let a € m —m?
such that a is a nonzerodivisor on A. Then gd(A/aA) is finite.

Proof First note that by Corollary 5.54 we have that gd(A) = pd4(A/m).
Thus if gd(A4) = 0, we have that A is a field implying that m is zero, and hence
we are done.

Assuming that gd(A) > 0, write

0—-m—>A—->A/m—0

and so we see that if pd 4(A/m) is finite, then pd 4 (m) is finite. If a is a nonze-
rodivisor on A, then it is also a nonzerodivisor on m. Hence pd 4,4 (m/(am))
is finite by Proposition 5.44. By Lemma 5.69, we have that

m/am ~ A/m@m/aA.

By considering the Tor characterization of projective dimension we see that
pPd4/qa(A/m) is finite. Hence gd(A/aA) is finite. |

Lemma 5.71 If A is Iocal and M is a finitely generated A-module with finite
projective dimension, and a € m is a nonzerodivisor on M, then

pda(M/aM) = pd, (M) + 1.
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Proof Write
0— M- M— M/aM — 0

apply the functor — ®4 k and consider the long exact sequence for Tor. Since
a € m, the map Tor (M, k) =% Tor (M, k) is in fact the zero map for all ¢ and
so we have the exact sequence

0 — Tor (M, k) — Tori(M/aM, k) — Tor; | (M, k) — 0

for i > 1. Since Tori |(M,k) = 0 implies that Tor?(M,k) = 0, we must
conclude that

Tor{ (M /aM, k) =0 whenever Tori (M, k) = 0.
The theorem now follows from Theorem 5.51. |
Exercise 5.72 If A is a ring and a is an ideal such that
aClybulbU---Ul,
where Iy is a prime ideal. Show that there exists a proper subset S of {0,...,n}

such that

Lemma 5.73 Let A be a local ring and suppose every element m — m* is a
zerodivisor. Then every finitely generated module of finite projective dimension
is free.

2

Proof To start note that
m-m’C ) »p
pEAss(A)
and so
mC U plU m?
pEAss(A)
Repeatedly applying the previous exercise we see that either m € Ass(A) or that
m C m?. If the latter is the case, then

m:m2

which implies that m = 0 by Corollary 2.35, Nakayama’s Lemma. Hence A
must be a field, and every finitely generated module over a field is free as it is
a vector space.

So now suppose that m € Ass(A). Thus A contains an element x annihilated
by m and we may write, setting k = A/m, the exact sequence:

0— k— A— AJzA— 0
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Suppose that there exists some finitely generated A-module M of positive pro-
jective dimension. Applying the functor — ® 4 M to the above exact sequence
and considering the long exact sequence for Tor we see that for all 4 > 1

Tori (k, M) ~ Torgy  (A/zA, M).
However now we see by Proposition 5.51 that if pd 4 (M) = n, then
Tor? (k, M) # 0 and Torﬁ+1(A/xA, M)=0
which is impossible. Thus M must be free. |

Theorem 5.74 (A, m, k) is a regular local ring if and only if gd(A) is finite.
In this case
gd(A) = dim(A).

Proof (=) Suppose that A is a regular local ring with m = (z1,...,z,).
Setting x; = x1,...,x;, we see that x,, is a regular system of parameters for A
and thus x,, forms an A-sequence by Proposition 5.68. Consider the following
short exact sequences:

x1

0 A A A/(x1) ——0
0—— Af(z1) —=— Af(x1) — A/(x3) — 0

0o—— A/(Qn,l) N A/(>.cn,1) — A/(xn) ——0

By Lemma 5.71 we have that

pda(A/(xn)) = n.

But A/(x,) = A/m, and hence by Corollary 5.54, gd(A) = n.

(<) Now suppose that gd(A) is finite. Let n = rankg(m/m?), and proceed
by induction on n. If n = 0, then m = m? and by Corollary 2.35, Nakayama’s
Lemma, we see m = 0 and so A must be a field, and hence regular.

Suppose that the statement is true up to n. We must check the case when
ranky(m/m?) = n+1. We claim that some element of m—m? is a nonzerodivisor.
Suppose to the contrary that every element of m — m? is a zerodivisor. Now
by Lemma 5.73 we see that every module of finite projective dimension is free.
But if gd(A) is finite, then pd4(k) is finite, and hence free, and so we must
conclude that A is a field, a contradiction. Thus there is @ € m — m? which is a
nonzerodivisor on A.

Now by Lemma 5.70, gd(A/aA) is finite and if we set m = m/aA, then we
have n = ranky(m/m?). Thus rank(m/m?) = n+1, and so dim(4) =n+1. W
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Now we turn to the question which we started with in this section: If
A=C[X1,...,X,]

and p is a prime ideal in A, is A, a regular local ring? We answer this question
in the affirmative with the following corollary:

Corollary 5.75 If A is a regular local ring and p is a prime ideal of A, then
A, Is a regular local ring.

Proof Since A is a regular local ring, gd(A) is finite and hence pd 4(A/p) is
finite. Consider a free resolution of A/p:

F,: 0—-F,—--—>F—-F—>A/p—0
Apply the functor — ®4 A, to get:
(Fo)p : 0= (Fi)p — - — (F1)p = (Fo)p — Ap/pAp — 0

Since Ay is a flat A-module, (F,), is an exact complex. Thus pd,, (Ap/pAp) is
finite, and so gd(A,) is finite, and hence A, is a regular local ring. |

Theorem 5.76 (Auslander-Buchsbaum) If A is regular local, then A is a
UFD.

Proof We omit the proof of this result and instead refer the reader to [6] or
[12]. |

5.5.2 Regular Rings
Definition A Noetherian ring A is regular if gd(A) is finite.

Exercise 5.77 If A is Noetherian and M is a finitely generated A-module,
then show the following:

(1) pdy(M) = sup pda, (My).
méeMaxSpec(A)

(2) Suppose that pd (M) is finite for all m € MaxSpec(A). Then pd 4 (M)
is finite.

Proposition 5.78 If A is a Noetherian ring and M is a finitely generated
A-module, then the following are equivalent:

(1) pda(M) <n.
(2) Tor (M, N) = 0 for all A-modules N and all i > n.
(3) Toriy ; (M, A/m) =0 for all m € MaxSpec(A).

Proof Follows from the above exercise and Proposition 5.51. |
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Proposition 5.79 If A is Noetherian, the following are equivalent:
(1) gd(4) <n.
(2) For all finitely generated A-modules M and N, Tor;?H(M, N)=0.

(3) For all finitely generated A-modules M and all maximal ideals m C A,
Tori, (M, A/m) = 0.

(4) TorﬁH(A/m, A/m) = 0 for all maximal ideals m C A.
Proof Follows from the above exercise and Proposition 5.53. |

Corollary 5.80 If A is a ring then A is regular if and only if pd 4(A/m) < co
for all maximal ideals m C A.

Corollary 5.81 If A is a regular ring, then A, is regular local for all p €
Spec(A).

Exercise 5.82 Consider

R[X,Y, Z]
(X2+y2—22-1)

Show that A is a regular ring but not a UFD. Conclude that the previous
theorem is false if the local condition is dropped.
Example 5.83 If A is regular, then Alx] is regular. Moreover
gd(Alz]) = gd(A4) + 1.

Example 5.84 The following are examples of regular rings.

(1) Ifk is a field, then k[X1,...,X,] is regular.

(2) Z|Xq,...,X,)] is regular.

(3) If A is a Dedekind domain, then A[X;,...,X,] is regular.

(4) Ifk is a field, then k[ X1,..., X,][Y1,..., Y] is regular.
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Diagram of Implications

/ o \
UFD

PID

|

DD ND

" /

N

LR

R
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APPENDIX A. DIAGRAM OF IMPLICATIONS

In the diagram on the preceding page, the abbreviations are as follows:
DVR Discrete Valuation Ring
PID Principal Ideal Domain
DD Dedekind Domain
UFD Unique Factorization Domain
RLR Regular Local Ring
ND Normal Domain (Noetherian Integrally Closed Domain)
RD Regular Domain
RR Regular Ring
LR Local Ring

NR Noetherian ring
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Diagram and Examples of
Domains

All rings are assumed to be domains in the diagram below:

/ Integrally Closed

-

Regular \

/UFD

6
10 /~ Dedekind Domain \
12
Ve PID A\
11 13 \

Noetheri%

15

Regular Local
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Examples:
(1) Not Noetherian, not integrally closed:
o K[X2,X3,Y1,Ys,Ys,.. ]
(2) Integrally closed, not a UFD, not Noetherian:

o Z[2X,2X2,2X3 ]
o K[U.V,Y,Z, X1, X2, X3,..])(UV — Y 2)
(3) A UFD but not Noetherian:
o k[X1, X2, Xs,.. ]
(4) Noetherian, not local, not integrally closed:
o k[X2, X3
. Z|V5)
(5) Local, not integrally closed:

[ k'[XQ,Xs](XQ’XS)
o k(X% X7]

(6) Noetherian, integrally closed, not regular, not a UFD, not local:

o kW, XY, Z|/(WX - Y Z)
o RIW,X,Y, Z]/(X2+ Y2+ 22— W?)

(7) Local, integrally closed, not regular, not a UFD:

o (KW, XY, Z]/ (WX — YZ))(W,X,Y,Z)
o KW, X, Y, Z]|/ (WX —Y Z)

(8) Noetherian, a UFD, not regular, not local:

o K[V,W, XY, Z]/(VZ+ W2+ X2+Y?+ Z?)
o RIW,X,Y,Z]/(W? 4+ X2+ Y2 4 Z2)

(9) Noetherian, a UFD, local, not regular:
o (VW X,Y,Z|/(V? + W? + X?> +Y? + Z%)v.w,x,v.2)
(10) Regular, not a Dedekind domain, not a UFD:
o kXY, Z]/(X?2+Y?-1)
(11) A UFD, regular, not a Dedekind domain, not local:
o k[X,Y], Z|X]
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(12) A Dedekind domain, not a UFD and hence not local:
o Z[v—5]
(13) A PID but not local:
o 7
o k[X]
o 7ZJ[i
(14) A DVR, not a field:
* L)
[ ] k[X](X)
(15) A Regular local ring, not a Dedekind domain:
o K[X,Y]
° k[Xv Y](X,Y)
(16) A field:
o k
*Q
o R

o C
o Z/pZ

Above k represents any field and m represents any maximal ideal in the given
ring. For further information on examples 2,6,8,9, see [8]. These four examples
are all nontrivial.
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Table of Invariances

The table below summarizes those basic properties of commutative rings that
are and are not preserved under the basic operations on rings. For example, the
symbol 0 that appears in the upper left box means that if A is Noetherian, then
A[X] is Noetherian as well. An O in the table merely means “not in general.”

A AX] A[X] A/a AJp U'A A, A A
Noetherian 0 0 [l 0 0 Oo|ag|aog
local a O a O 0 o |o|d

local and complete a O a O 0 o |0o|ld
normal domain a O O a O o |g|od
Dedekind domain O 0 O O O o |o|ld
UFD O 0 O O O o |o|ad

PID a 0 a O O o |o|ld
regular local a 0 0 0 0 a|o|d
DVR or a field O O O O ad o |0o|lad

In the above table, A denotes the completion of A with respect to some ideal I
which is taken to be the unique maximal ideal if A is local. Local, as throughout
these notes, is taken to mean Noetherian and local. For the third and fourth
columns a denotes an arbitrary ideal of A while p denotes a prime ideal. Lastly,
A denotes the integral closure of A, which is assumed to be a domain in this
column.
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