IMMERSE 2008: Assignment 1

1.1) Let R be a ring. Prove
(a) $0a = a0 = 0$ for all $a \in R$.
(b) $(-a)b = a(-b) = -(ab)$ for all $a, b \in R$.
(c) $(-a)(-b) = ab$ for all $a, b \in R$.
(d) If R has an identity 1, then the identity is unique and $-a = (-1)a$.

1.2) Problems involving zerodivisors:
(a) Prove that a unit element of a ring cannot be a zerodivisor.
(b) Let a and b be elements of a ring whose product ab is a zerodivisor. Show that either a or b is a zerodivisor.
(c) Is the sum of two zerodivisors necessarily a zerodivisor? If so, give a prove. If not, give a counterexample.

1.3) Let R be an integral domain. Determine the units of $R[x]$.

1.4) Let R be an integral domain. Determine the units of $R[[x]]$.

1.5) Let A be the ring of all functions from $[0, 1]$ to \mathbb{R}.
(a) What are the units of A?
(b) Prove that if f is not a unit and not zero, then f is a zero divisor.

1.6) Let A be the ring of all continuous functions from $[0, 1]$ to \mathbb{R}.
(a) What are the units of A?
(b) Give an example of an element which is neither a unit nor a zero divisor.
(c) Give an example of a zero divisor in A.

1.7) Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_p denotes the finite field $\mathbb{Z}/p\mathbb{Z}$, where p is a prime.
(a) $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
(b) $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
(c) $x^4 + 1$ in $\mathbb{F}_5[x]$.
(d) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.

1.8) Let R be a non-zero ring. Prove that the following are equivalent:
(a) R is a field.
(b) The only ideals in R are (0) and (1).
(c) Every homomorphism of R into a non-zero ring B is injective.
1.9) Let $f : R \rightarrow S$ be a ring homomorphism.

(a) Prove that $\ker f$ is an ideal of R.
(b) Prove that if J is an ideal of S then $f^{-1}(J)$ is an ideal of R that contains $\ker f$.
(c) Prove that if P is a prime ideal of S then $f^{-1}(P)$ is a prime ideal of R.

1.10) Let p be a prime and consider the ring of polynomials in x with coefficients in \mathbb{F}_p. This ring is denoted by $\mathbb{F}_p[x]$. Let $\varphi : \mathbb{F}_p[x] \rightarrow \mathbb{F}_p[x]$ be the map given by $\varphi(f) = f^p$. Prove that φ is an endomorphism. This map is called the Frobenius endomorphism.

1.11) Let $S \subseteq R$ and let I be an ideal of R. Prove that the following statements are equivalent:

(a) $S \subseteq I$.
(b) $(S) \subseteq I$.

This fact is useful when you want to show that one ideal is contained in another.

1.12) Prove the following equalities in the polynomial ring $R = \mathbb{Q}[x, y]$:

(a) $(x + y, x - y) = (x, y)$.
(b) $(x + xy, y + xy, x^2, y^2) = (x, y)$.
(c) $(2x^2 + 3y^2 - 11, x^2 - y^2 - 3) = (x^2 - 4, y^2 - 1)$.

This illustrates that the same ideal can have many different generating sets and that different generating sets may have different numbers of elements.

1.13) Let R be a ring and let I, J and K be ideals of R.

(a) Prove that $I \cap J$ is an ideal of R.
(b) Prove that $I(J + K) = IJ + IK$.
(c) Prove that if either $J \subseteq I$ or $K \subseteq I$ then $I \cap (J + K) = I \cap J + I \cap K$. (modular law)

1.14) In the ring of integers \mathbb{Z} compute the ideals:

(a) $(2) + (3)$,
(b) $(2) + (4)$,
(c) $(2)((3) + (4))$,
(d) $(2)(3) \cap (2)(4)$,
(e) $(6) \cap (8)$,
(f) $(6)(8)$

1.15) Let $\mathbb{Q}[x, y]$. Compute the ideals:

(a) $(x) \cap (y)$,
(b) $(x + y)^2$,
(c) $(x, y)^2$,
(d) $(x^2) \cap (x, y)$,
1.16) Let R be a ring. The nilradical $\sqrt{0}$ of R is the set of nilpotent elements of R. Prove that $\sqrt{0}$ is an ideal, and if $\overline{x}^n = 0$ in $R/\sqrt{0}$ for some n then $\overline{x} = 0$.

1.17) Let R be a ring, and $I \subseteq \sqrt{0}$ an ideal, where $\sqrt{0}$ is the nilradical of R. Prove that if \overline{x} is a unit of R/I then x is a unit of R.

1.18) Let R be a ring and P a prime ideal of R. Let I be the ideal generated by all the idempotent elements of P. Prove that R/I has no non-trivial idempotents.

IMMERSE 2008: Extras 1

1.19) A (not necessarily commutative) ring R is *boolean* if $x^2 = x$ for all $x \in R$. If R is a boolean ring show that

(a) $2x = 0$ for all $x \in R$,
(b) R is commutative,
(c) every prime ideal p is maximal, and R/p is a field with two elements, and
(d) every finitely generated ideal is principal.

1.20) Let R be a ring in which every ideal of R except (1) is prime. Prove that R is a field.

1.21) For ideals I and J in a ring R their ideal quotient is

$$(I :_R J) = \{x \in R \mid xJ \subseteq I\}.$$

Let R be a ring and let P be a finitely generated prime ideal of R with $(0 :_R P) = 0$. Prove that $(P :_R P^2) = P$.

1.22) Let K be a field and let R be the ring of polynomials in x over K subject to the condition that they contain no terms in x or x^2. Let I be the ideal in R generated by x^3 and x^4. Prove that $x^5 \not\in I$ and $x^5I \subseteq I^2$. (This shows that the assumption that P is prime in 1.21 is necessary.)

1.23) Let F be a field and let $E = F \times F$. Define addition and multiplication in E by the rules:

$$(a, b) + (c, d) = (a + c, b + d) \quad \text{and} \quad (a, b)(c, d) = (ac - bd, ad + bc)$$

Determine conditions on F under which E is a field.

1.24) Find all the monic irreducible polynomials of degree less than or equal to 3 in $\mathbb{F}_2[x]$, and the same in $\mathbb{F}_3[x]$.

3
1.25) Construct fields of each of the following orders:

(a) 9
(b) 49
(c) 8
(d) 81

1.26) Exhibit all the ideals in the ring $F[x]/(p(x))$, where F is a field and $p(x)$ is a polynomial in $F[x]$ (describe them in terms of the factorizations of $p(x)$).

1.27) An element x of a ring is idempotent if $x^2 = x$. Prove that a local ring contains no non-trivial idempotents. (The trivial idempotents are 0 and 1.)