IMMERSE 2008: Assignment 3

3.1) Let R be a commutative ring with identity. Consider an exact sequence of finitely generated free R-modules

$$0 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 0.$$

- (a) Show that there exists an *R*-linear map $\gamma: H \to G$ such that $\beta \gamma = \mathrm{id}_H$.
- (b) Show that $F \oplus H \simeq \alpha(F) \oplus \gamma(H) = G$.

3.2) Let

$$\begin{array}{c} M \xrightarrow{f} N \\ \downarrow u & \downarrow v \\ M' \xrightarrow{g} N' \end{array}$$

be a commutative diagram of *R*-modules and *R*-module homomorphisms.

- (a) Prove that $f(\operatorname{Ker} u) \subseteq \operatorname{Ker} v$. Thus $f|_{\operatorname{Ker} u} : \operatorname{Ker} u \to \operatorname{Ker} v$ is a well-defined R-module homomorphism.
- (b) Prove that if f is injective then $f|_{\text{Ker }u}$ is injective.
- (c) Let \overline{g} : Coker $u \to \text{Coker } v$ be defined by $\overline{g}(\overline{m}) = \overline{g(m)}$ for $\overline{m} \in \text{Coker } u$. Prove that \overline{g} is an *R*-module homomorphism.
- (d) Prove that if g is surjective then \overline{g} is surjective.
- **3.3)** Show that the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals:
 - (a) The ring of continuous real valued functions on [0, 1].
 - (b) The ring of all functions from any infinite set X to $\mathbb{Z}/2\mathbb{Z}$.
- **3.4)** Prove that the subring $k[x, x^2y, x^3y^2, \ldots, x^iy^{i-1}, \ldots]$ of the polynomial ring k[x, y] is not a Noetherian ring, hence not a finitely generated k-algebra. From this exercise we see that subrings of Noetherian rings need not be Noetherian and subalgebras of finitely generated k-algebras need not be finitely generated.
- **3.5)** Let M be an R-module and N a submodule. Prove that N and M/N are Noetherian if and only if M is Noetherian. Similarly with Artinian in place of Noetherian.
- **3.6)** Consider the following short exact sequence of *R*-module:

$$0 \to M' \to M \to M'' \to 0$$

Prove that if M has finite length, then $\ell(M) = \ell(M') + \ell(M'')$.

- **3.7)** Prove that submodules, quotient modules, and finite direct sums of Noetherian *R*-modules are again Noetherian *R*-modules.
- **3.8)** Suppose I is an ideal in $F[x_1, \ldots, x_n]$ generated by a (possibly infinite) set S of polynomials. Prove that a finite subset of the polynomials in S suffice to generate I.

3.9) Let $S^2 = \{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 + c^2 = 1\}$ be the unit sphere in \mathbb{R}^3 . Prove that

$$I = \{ f(x, y, z) \in \mathbb{R}[x, y, z] : f(a, b, c) = 0 \text{ for all } (a, b, c) \in S^2 \}$$

is a finitely generated ideal in $\mathbb{R}[x, y, z]$.

- **3.10)** Prove that an Artinian integral domain is field. [Use the DCC directly, no major theorems necessary.] From this show that in an Artinian ring, every prime ideal is maximal.
- **3.11)** Let M be an A-module and let N_1 , N_2 be submodules of M. If M/N_1 and M/N_2 are Noetherian, so is $M/(N_1 \cap N_2)$. Similarly with Artinian in place of Noetherian.
- **3.12)** Let M be a module and let θ be a module endomorphism of M. Assume that r and s are positive integers which are minimal subject to $\operatorname{Im}(\theta^r) = \operatorname{Im}(\theta^{r+1})$ and $\operatorname{Ker}(\theta^s) = \operatorname{Ker}(\theta^{s+1})$. Prove that r = s and that $M = \operatorname{Im}(\theta^r) \oplus \operatorname{Ker}(\theta^r)$.
- **3.13)** Let M be a Noetherian R-module and $\varphi : M \to M$ be a module homomorphism. Prove that if φ is surjective then it is also injective.
- **3.14)** Let $\alpha : M \to M$ be a surjective homomorphism of modules. Show that α need not be injective if M is Artinian.
- **3.15)** A unique factorization domain (UFD) is an integral domain where every element factors uniquely as a finite product of irreducible elements. Prove that a UFD satisfies the ascending chain condition for principal ideals, but that the ascending chain condition on all ideals need not hold.

IMMERSE 2008: Extras 3

- **3.16)** Let M be a Noetherian R-module and let $I = \operatorname{Ann}_R M$. Prove that R/I is a Noetherian ring.
- **3.17)** Let R be a commutative ring, and let I_1, I_2, \ldots, I_n be ideals in R such that $I_1 \cap I_2 \cap \cdots \cap I_n = 0$ and each R/I_i is Noetherian. Prove that R is Noetherian.
- 3.18) Show that the ring IP of integer valued polynomials with coefficients in Q is not Noetherian by exhibiting an explicit infinite increasing chain of ideals. Note, this question seems quite tricky!