A computation with local cohomology

Bart Snapp

Department of Mathematics and Statistics
Coastal Carolina University

July 30, 2008
Goal

- The goal of this presentation is to show you some homological techniques in commutative algebra.
- The example discussed in this talk is a famous example due to Hartshorne. It is discussed in depth in:

 Lectures in Local Cohomology by Craig Huneke with Appendix 1 by Amelia Taylor.

which can be downloaded from:

http://www.math.ku.edu/~huneke/Vita/Preprints.html
Table of contents

The problem

Complexes and cohomology

Local cohomology

Saving the day
Consider the ring $A = k[x, y, u, v]$ and the ideals:

$$I = (x, y)$$

$$J = (u, v)$$

We can take the sum of the ideals

$$I + J = (x, y, u, v)$$

and the intersection of the ideals

$$I \cap J = (xu, xv, yu, yv)$$
Radical of an ideal

Recall the definition of the radical of an ideal:

\[\sqrt{I} = \{ a \in A : a^t \in I \text{ for some } t > 0 \} \]

Question

Recalling \(I = (x, y) \), what is \(\sqrt{I} \)?

Answer

It is pretty clear that \(\sqrt{I} = I \).

The same is true for \(J \) and \(I + J \).
A question and answer

Question

We see that we can find two elements

$$\sqrt{(x, y)} = I$$

Why? Can you find fewer elements that will generate I up to radical?

No. Same is true for J and $I + J$.
Free Radicals

\[\sqrt{I} = \{ a \in A : a^t \in I \text{ for some } t > 0 \} \]

Question

Recalling \(I \cap J = (xu, xv, yu, yv) \), what is \(\sqrt{I \cap J} \)?

Answer

\[\sqrt{I \cap J} = I \cap J. \]

Why?
A question and partial answer

Question

We see that we can find four elements

\[\sqrt{(xu, xv, yu, yv)} = I \cap J \]

Can you find fewer elements that will generate \(I \cap J \) up to radical?

Answer

Yes!

\[\sqrt{(xu, yv, xv + yu)} = I \cap J \]
Some details

Why is it that $\sqrt{(xu, yv, xv + yu)} = (xu, xv, yu, yv)$?

$$(xv)^2 = (xv)^2 + xvyu - xvyu$$

$$= xv(xv + yu) - (xu)(yu)$$

Hence $(xv) \in \sqrt{(xu, yv, xv + yu)}$.

Hence $\sqrt{(xu, yv, xv + yu)} = \sqrt{(xu, xv, yu, yv)} = I \cap J$.
The question

Question

Ok we can generate $I \cap J$ with three elements up to radical. Can we generate $I \cap J$ with two elements up to radical? What about one element?

We will use “homological methods” to solve this problem.
Definition
A chain complex is a sequence of A-modules and A-module homomorphisms

$$
\cdots \longrightarrow E_{i-1} \xrightarrow{d_{i-1}} E_i \xrightarrow{d_i} E_{i+1} \longrightarrow \cdots
$$

such that $d_i \circ d_{i-1} = 0$ for all $i \in \mathbb{Z}$. We denote a chain complex by E^\bullet.
Cohomology

The upshot is that when given a chain complex \((E^\bullet, d^\bullet)\), one has

\[\text{Im}(d^{i-1}) \subseteq \text{Ker}(d^i) \subseteq E^i\]

we can make a new module:

\[H^i(E^\bullet) = \frac{\text{Ker}(d^i)}{\text{Im}(d^{i-1})}\]

called the **ith cohomology** of \(E^\bullet\).
How do we make these things?

Question

But where do we get our complexes from?

Answer

This will take some explaining.
Injective modules

If A is noetherian and M is any A-module, then there exists a special module with nice properties which we can inject M into. The type of module which we desire is called an injective module. Specifically, we are looking for the injective hull of M.

Aside

How does this relate to free modules?
An injective resolution

Time to build a complex: Start with

\[
\begin{array}{ccccccc}
0 & \rightarrow & M & \xrightarrow{\iota} & E^0 & \rightarrow & C^1 & \rightarrow & 0 \\
0 & \rightarrow & C^1 & \rightarrow & E^1 & \rightarrow & C^2 & \rightarrow & 0 \\
0 & \rightarrow & C^2 & \rightarrow & E^2 & \rightarrow & C^3 & \rightarrow & 0 \\
\end{array}
\]

and so on. Put it all together and it sounds like this:

\[
\begin{array}{ccccccc}
0 & \rightarrow & M & \xrightarrow{\iota} & E^0 & \xrightarrow{d^0} & E^1 & \xrightarrow{d^1} & \cdots \\
0 & \rightarrow & C^1 & \xrightarrow{} & C^2 & \xrightarrow{} & \cdots \\
\end{array}
\]
Boring cohomology

Now lose the extraneous parts to get

$$
0 \longrightarrow M \xrightarrow{\iota} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \xrightarrow{d^2} E^3 \longrightarrow \cdots
$$

Note by the construction of our complex, it is necessarily exact.

Question

What is the cohomology?

That’s not very interesting.
Functors

Roughly speaking, a **functor** is a mapping of both objects and morphisms. Whatever that means. Consider

\[\Gamma_I(M) = \{ a \in M : I^t a = 0 \text{ for some } t > 0 \} . \]

So if we have

\[M \xrightarrow{\varphi} N \]

we may write

\[\Gamma_I(M) \xrightarrow{\Gamma_I(\varphi)} \Gamma_I(N) \]
We define **local cohomology** as follows:

1. Take an injective resolution E^\bullet of M.
2. Apply $\Gamma_I(-)$ to the resolution above.
3. Take cohomology.

Explicitly:

$$H^i_I(M) = \frac{\ker \Gamma_I(d^i)}{\text{Im} \Gamma_I(d^{i-1})}$$

What does that mean?
Here be dragons: Mayer-Vietoris

If \(A \) is a noetherian ring, \(I \) and \(J \) are two ideals, and \(M \) is an \(A \)-module, then we have a long exact sequence of local cohomology modules:

\[
0 \to H^0_{I+J}(M) \to H^0_I(M) \oplus H^0_J(M) \to H^0_{I \cap J}(M) \to \]
\[
\to H^1_{I+J}(M) \to H^1_I(M) \oplus H^1_J(M) \to H^1_{I \cap J}(M) \to \]
\[
\to \cdots \]
\[
\to H^i_{I+J}(M) \to H^i_I(M) \oplus H^i_J(M) \to H^i_{I \cap J}(M) \to \cdots
\]
Big theorems

Theorem (Invariance up to radical)

Given an ideal I

$$H^i_I(A) \cong H^i_{\sqrt{I}}(A)$$

Theorem (Grothendieck)

An ideal I can be generated by no fewer than n elements up to radical if and only if

$$H^n_I(A) \neq 0$$

and

$$H^i_I(A) = 0 \quad \text{for all } i > n.$$
Just remember

Remember

\[I = (x, y) \]
\[J = (u, v) \]
\[I + J = (x, y, u, v) \]
\[I \cap J = (xu, xv, yu, yv) \]
Don’t forget

Remember our Mayer-Vietoris sequence:

\[
\cdots \to H^3_i(A) \oplus H^3_j(A) \to H^3_{i \cap J}(A) \to H^4_{i+J}(A) \to H^4_i(A) \oplus H^4_j(A) \to \cdots
\]

Remember what Grothendieck said:

\[
\cdots \to 0 \to H^3_{i \cap J}(A) \to H^4_{i+J}(A) \to 0 \to \cdots
\]

and so \(H^3_{i \cap J}(A) \cong H^4_{i+J}(A) \neq 0 \). Hence we are done! Why?
The end

THE END ?