--==================================================================-- -- Tutorial 1: Rings, Fields, and Ideals -- --==================================================================-- -- Use C-x 2 to get a horizontally split window or -- Use C-x 3 to get a vertically split window. -- Select the lower (or right) window and Hit F12 to start M2. -- Hit F11 to send code from this screen to M2. -- for help with M2 type (works in version 1.1) viewHelp ---------------------------------------------------------------------- -- Basic Rings and Fields -- ---------------------------------------------------------------------- -- How do you create the integers? -- How do you create the rational numbers? -- How do you create a finite field of order 2? -- Give another way to create the same finite field of order 2. ---------------------------------------------------------------------- -- Polynomial Rings -- ---------------------------------------------------------------------- -- How do you create a polynomial ring in a single variable with -- coefficients in the finite field of order 3? -- How do you create a polynomial ring with coefficients in your -- favorite field, in variables x, y, and z? -- How do you create a polynomial ring with coefficients in your -- favorite field, in variables x_1,...,x_100? --Hint: run restart -- Factor the polynomial x^8 + 128x^7 - 234x^4 + x^2 + x + 1 in a ring -- of characteristic 7, 11, 13, and 17. ---------------------------------------------------------------------- -- Quotient Rings -- ---------------------------------------------------------------------- -- Create a polynomial ring over a finite field with 101 elements with -- three variables x, y, and z. Call this ring A. Create the ideal -- I = (xy, z^2). -- Now compute the quotient ring B = A/I. -- What is the image of the polynomial x^7 + x^3*y^6 - y^10+z^4 + 1 in -- B? -- Let: A = QQ[x,y,z] B = QQ[u,v] -- Create a ring homomorphism phi : A -> B -- where x -> u^2, y -> uv, z -> v^2. -- Compute the kernel of phi. Can M2 compute the image of this map? -- Construct the Gaussian integers. -- Construct a ring k[x,x^{-1}], where k is a field of your choice. -- Construct a ring containing nontrivial idempotents. -- Create a ring of characteristic p, where p is your favorite prime, -- and use it to define the Frobenius endomorphism. ---------------------------------------------------------------------- -- Ideals -- ---------------------------------------------------------------------- -- Now let's work in the ring ZZ[x,y]. -- Is (x+y, x-y) = (x, y)? Compare to your answer in Assignment 1. -- Is (x+xy, y + xy, x^2, y^2) = (x, y)? Compare to your answer in -- Assignment 1. -- Is (2x^2+3y^2-11, x^2-y^2-3) = (x^2-4,y^2-1)? Compare to your -- answer in Assignment 1. ---------------------------------------------------------------------- -- A more complex ring -- ---------------------------------------------------------------------- -- Now let k be your favorite field, and let A be the ring of -- polynomials in x over k such that the polynomials contain no terms -- in x or x^2. We will lead you through how to construct this ring. -- Construct a polynomial ring where all the terms of the polynomials -- have even degrees. -- See: Macaulay2Doc > rings > graded and multigraded polynomial rings -- Construct a polynomial ring containing no terms in x. Hint: Think -- about quotient rings and the problem above. -- Finally, construct a polynomial ring containing no terms in x or -- x^2. When constructing your ideal containing the relations, think -- about how you obtain a 5th degree polynomial, a 6th degree -- polynomial, and so on. -- Now computationally check the following question: -- If I = (x^3, x^4), is x^5 \in I? Is (x^5)I \subset I? --==================================================================-- -- FIN -- --==================================================================--