We study the Segal–Bargmann transform on a symmetric space \(X \) of compact type, mapping \(L^2(X) \) into holomorphic functions on the complexification \(X_C \). We invert this transform by integrating against a "dual" heat kernel measure in the fibers of a natural fibration of \(X_C \) over \(X \). We prove that the Segal–Bargmann transform is an isometry from \(L^2(X) \) onto the space of holomorphic functions on \(X_C \) which are square integrable with respect to a natural measure. These results extend those of B. Hall in the compact group case.

1. INTRODUCTION

It is well known that a solution of the heat equation on \(\mathbb{R}^n \) can be analytically continued to an entire function on \(\mathbb{C}^n \). The classical Segal–Bargmann transform, in the form we will be interested in, is the map

\[
 f \in L^2(\mathbb{R}^n, dx) \rightarrow e^{-t} f \in \mathcal{O}(\mathbb{C}^n) \cap L^2(\mathbb{C}^n, (2\pi t)^{-n/2} e^{-|\text{Im} z|^2/2t} dz),
\]

where \(\mathcal{O}(\mathbb{C}^n) \) denotes the holomorphic functions on \(\mathbb{C}^n \). This is an isometric isomorphism of Hilbert spaces, identifying \(L^2(\mathbb{R}^n) \) with a natural \(L^2 \) space of entire functions on \(\mathbb{C}^n \). B. Hall has obtained an interesting generalization of the Segal–Bargmann transform by replacing \(\mathbb{R}^n \) with a compact Lie group \(H \) equipped with a bi-invariant metric [5]. Hall proved that solutions of the heat equations on \(H \) can be analytically continued to entire functions on the complexified Lie group \(H_C \), and that the Segal–Bargmann transform

\[
 f \in L^2(H, dh) \rightarrow e^{-t} f \in \mathcal{O}(H_C) \cap L^2(H_C, dh \sigma^{1/2}(p) dp)
\]
is an isometric isomorphism (we consider the “K-averaged” version of the transform). Here $P = \exp (-1)\mathfrak{h}$. H_C is identified with $H \times P$, dh is Riemannian measure, and $\sigma_{t}(p) \, dp$ is the heat kernel measure for the heat operator $\partial_t + \Delta_P$, $\Delta_P \geq 0$, on P identified with the symmetric space H_C/H by the quotient map. In a subsequent paper [6], Hall proved the following “fiberwise” inversion formula for the Segal–Bargmann transform: for $f \in C^\infty(H)$,

$$f(h) = \int_{P} e^{-1/4H} f(hp^2) \sigma_{t}(p) \, dp,$$

(1)

and used this to give an elegant proof of its isometricity (our conventions differ slightly from Hall’s; see Section 5).

Independently, Golse, Leichtnam, and the author studied a Segal–Bargmann type transform called the Fourier–Bros–Iagolnitzer (F.B.I.) transform [3]. This transform can be defined on any compact real analytic Riemannian manifold (X, g). We showed that solutions of the heat equation can be analytically continued to a small tube $X_R \subset X$ about X in its complexification. The radius R of this tube, measured by an exhaustion function canonically determined by g, does not depend on the initial heat data. The F.B.I. transform is the map

$$f \in C^\infty(X) \mapsto e^{-1/4f} \in C(X_R^\mathbb{C}).$$

The F.B.I. transform is injective, and we proved an inversion formula for it similar to Hall’s. Our inversion formula involves integrating over the fibers $Y_{R}(x)$, $x \in X$, of the fibration of $X^\mathbb{C}$ over X obtained by identifying $X^\mathbb{C}$ with a neighborhood of the zero section in TX (see [4, 9]). We constructed a “pseudo-heat kernel” form $K(\cdot, t) \mu^Y_{R}$ in each fiber $Y_{R}(x)$ for R sufficiently small and gave the following integral prescription for recovering $f \in C^\infty(X)$ from its F.B.I. transform:

$$f(x) = \int_{Y_{R}(x)} e^{-1/4f(\cdot)} K(\cdot, t) \mu^Y_{R}$$

$$\quad + \int_{0 \in Y_{R}(x)} \left[e^{-1/4f(\cdot)} \nabla_{\mu^Y_{R}} K(\cdot, s) \mu^Y_{R} - K(\cdot, s) \nabla_{\mu^Y_{R}} e^{-1/4f(\cdot)} \mu^Y_{R} \right] ds.
$$

(2)

See [3, Theorem 0.3] for details. Our purpose here is to generalize Hall’s inversion formula for the Segal–Bargmann transform by assuming that a complexification of X admits an unbounded canonical exhaustion function and letting $R \to \infty$ in (2). This assumption imposes severe restrictions on
the geometry of \((X, g)\); for example, the sectional curvatures must be non-negative \([9]\). The list of known examples whose complexifications admit an unbounded canonical exhaustion is quite short: locally symmetric spaces of nonnegative curvature, normal homogeneous spaces of compact Lie groups and their discrete quotients, and certain surfaces of revolution (see \([11, 13, 12]\), respectively). (Added in proof. Recently R. Aguilar has found many more examples.)

We will assume that \(X\) is a connected symmetric space \(U/K\) of Helgason's compact type. For simplicity we will assume that \(U/K\) is simply connected; the main results of this paper hold after passing to quotients by a freely acting finite group of isometries. It follows from the results of Hall \([5, \text{Sect. 11}]\) that solutions of the heat equation on \(X\) can be analytically continued to entire functions on \(X_\mathbb{C}\). We study the Segal–Bargmann transform in this setting. Under these assumptions each (maximal) fiber \(Y(x)\) can be identified with a dual symmetric space of the noncompact type. To prove our inversion formula we will use the corresponding fiber heat kernel measure in (2) and let \(R \to \infty\). Let \(K_{gY}(\cdot, t)\) denote the heat kernel in the fiber \(Y(x)\) evaluated at the base point \(x \in X\), let \(v_{gY}\) be the Riemannian measure on \(Y(x)\), and let \(Y_R(x)\) be the distance ball of radius \(R\) in \(Y(x)\). Use the Riemannian measure on \(X\) to form \(L^2(X)\). Our main results are the following generalizations of Hall's fiberwise inversion formulae for compact Lie groups to the symmetric spaces of compact type.

Theorem 1. For all \(f \in L^2(X)\), \(t > 0\),
\[
f(x) = L^2 - \lim_{R \to \infty} \int_{Y_R(x)} e^{-td}(\cdot) K_{gY}(\cdot, t) v_{gY}.
\]

Theorem 2. For all \(f \in C_{\infty}(X)\), \(t > 0\), \(x \in X\),
\[
f(x) = \int_{Y(x)} e^{-td}(\cdot) K_{gY}(\cdot, t) v_{gY}
\]
and the integral is absolutely convergent.

In Section 4 we consider the measure \(\omega_t\) on \(X_\mathbb{C}\) induced by the Riemannian measure on \(X\) and the heat kernel measure in the fibers at time \(2t\), rescaled by a factor of 2 in the fibers. Let \(\mathcal{H}_t\) denote the Hilbert space of holomorphic functions in \(L^2(X_\mathbb{C}, \omega_t)\).

Theorem 3. The Segal–Bargmann transform is an isometric isomorphism from \(L^2(X)\) onto \(\mathcal{H}_t\).

The organisation of this paper is as follows. In Section 2 we provide some background material and prove Theorem 2 for joint eigenfunctions of
the U-invariant differential operators. Our strategy is to prove an analog of (2) for any $R > 0$, then estimate the growth of the joint eigenfunctions in the complex domain and pass to the limit as $R \to \infty$. Section 3 contains the proofs of Theorems 1 and 2, and in Section 4 we define the measure ω, and prove Theorem 3. In Section 5 we show that our inversion formula reduces to (1) when H is a compact, connected semisimple Lie group identified with a symmetric space of compact type.

2. INVERSION OF THE SEGAL–BARGMANN TRANSFORM ON JOINT EIGENFUNCTIONS

We assume that $X = U/K$ is a simply connected Riemannian (globally) symmetric space of Helgason's compact type. The Riemannian symmetric pair (U, K) is associated with an orthogonal symmetric Lie algebra (\mathfrak{u}, θ) of compact type (see [7, pp. 230, 244]). In particular \mathfrak{u} is semisimple and U, K are compact. By the proof of [7, Proposition 4.2, Chap. V] we may assume that U is simply connected and K is connected. The Riemannian symmetric metric g determines an $\text{Ad}(K)$-invariant inner product on \mathfrak{p}_*, where \mathfrak{p}_* is the -1 eigenspace of θ in the eigenspace decomposition $\mathfrak{u} = \mathfrak{t} + \mathfrak{p}_*$. We assume that U acts effectively on U/K; then \mathfrak{t} contains no nonzero ideal of \mathfrak{u}. Using [7, Proof of Proposition 5.2, Chap. VIII] and the remarks preceding Proposition 5.1, we may assume that the inner product on \mathfrak{p}_* is the restriction of an $\text{Ad}(U)$-invariant inner product on \mathfrak{u} (we thank the referee for pointing this out). We will normalize the metric so that the total volume is one.

Let U_C be the Lie group complexification of U and let K_C be the connected subgroup of U_C with Lie algebra \mathfrak{t}_C. Then K_C is a closed subgroup and the natural map, $gK \to gK_C$, embeds $X = U/K$ as a closed, totally real submanifold of $X_C = U_C/K_C$ [3, Proposition 8.1]. We will identify U/K with its image in U_C/K_C. Let Δ be the (nonnegative) Laplacian on $(U/K, g)$. By [5, Lemma 13] solutions of the heat equation $(\partial_t + \Delta) u = 0$ can be analytically continued to entire functions on U_C/K_C.

A representation δ of U on a vector space V is said to be spherical if there is a nonzero vector in V fixed by $\delta(K)$. Let \hat{U}_K denote the set of equivalence classes of irreducible unitary finite dimensional spherical representations of U. For each $\delta \in \hat{U}_K$ let V_δ be a representation space for δ with inner product $\langle \cdot, \cdot \rangle$. Since U/K is a symmetric space, the subspace of K-fixed vectors is spanned by a single unit vector \mathbf{e}. There is an orthogonal Hilbert space decomposition of $L^2(U/K)$ into irreducible subspaces under the U action,

$$L^2(U/K) = \bigoplus_{\delta \in \hat{U}_K} C_\delta(U/K),$$

(3)
where the \(C_\delta(U/K) \) are equivalent irreducible representations of type \(\delta \). Explicitly, \(C_\delta(U/K) \) consists of the functions \(uK \rightarrow \langle v, \delta(u) e \rangle \), \(v \in V_\phi \). \(C_\delta(U/K) \) is a joint eigenspace for the \(U \)-invariant differential operators \(D(U/K) \), i.e., for each \(\delta \in \hat{U}_K \), there is a homorphism \(c_\delta: D(U/K) \rightarrow \mathbb{C} \) such that for all \(f \in C_\delta(U/K) \), \(Df = c_\delta(D)f \). See [8, Theorem 4.3, Chap. V]. Since \(U \) acts on \(U/K \) by isometries, \(2 \) is a \(U \)-invariant differential operator and the elements of \(C_\delta(U/K) \) are eigenfunctions for \(\Delta \). Since solutions of the heat equation can be analytically continued to \(U_{C/K} \), it follows that each \(f \in C_\delta(U/K) \) can be analytically continued to \(U_{C/K} \) (see also the proof of Lemma 1).

We consider the fibration \(\pi: U_{C/K} \rightarrow U/K \) obtained by identifying \(U_{C/K} \) with \(T_{UK} \) as in [11, 12]. This identification is given explicitly by the map

\[
TU/K \ni dt(u) dp_e(V) \rightarrow u \exp -1/VK_{\mathbb{C}} \in U_{C/K}.
\]

where \(V \in \mathfrak{p}_* \), \(\tau \) is the action of \(U \) on \(U/K \), and \(p: U \rightarrow U/K \) is the coset projection (see [3, Proposition 8.2 and Remark 8.4]). We will denote by \(Y \), or \(Y(x) \) if necessary, the fiber \(\pi^{-1}(x) \) in \(U_{C/K} \) over \(x \in U/K \). An essential ingredient in our inversion formula for the Segal-Bargmann transform is a symmetric space metric on each fiber \(Y \), which we now define.

Let \(G \) be the connected subgroup of \(U_C \) with Lie algebra \(\mathfrak{g} = \mathfrak{t} + \mathfrak{p} \) where \(\mathfrak{p} = \sqrt{-1} \mathfrak{p}_* \). Then \(K \) (which we may assume is connected) is a closed subgroup of \(G \). The metric \(g \) on \(U/K \) determines in an obvious way a positive definite \(\text{Ad}(K) \)-invariant inner product on \(\mathfrak{p} \). The homogeneous manifold \(G/K \) with the corresponding \(G \)-invariant metric is a symmetric space of the non-compact type dual to \(U/K \). The map (4) and the fact that \(G/K \) is diffeomorphic with \(\mathfrak{p} \) show that the natural inclusion

\[
\mathfrak{g}_K \in G/K \rightarrow \mathfrak{g}_K \in U_{C/K}
\]

is a diffeomorphism from \(G/K \) onto the fiber \(Y(o) \), where \(o \) is the identity coset. We equip \(Y(o) \) with the symmetric space metric given by this identification and use the transitive \(U \)-action among the fibers to give each \(Y(x) \) a symmetric space metric; since \(K \) acts on \(Y(o) \) by isometries this is well-defined. We denote this metric by \(g_Y \) and its Riemannian measure by \(v_{g_Y} \).

Let \(\phi: U_{C/K} \rightarrow [0, \infty) \) be the function corresponding to the Riemannian length-squared function on \(TU/K \) under the identification (4), and let

\[
Y_\phi(x) := \{ \zeta \in Y(x) : \phi(\zeta) \leq R^2 \}.
\]

Let \(K_{\phi}(\cdot, t) \) denote the heat kernel for \((Y, g_Y) \) evaluated at the base point \(x \).
Proposition 1. For all $f \in \mathcal{C}_d(U/K)$, $t > 0$, $R > 0$, and $x \in U/K$,

$$f(x) = \int_{Y_R(x)} e^{-td} f(\cdot) \, K_{\mathcal{E}_R}(\cdot, t) \, v_{Y_R} \, ds$$

$$+ \int_0^t \left[K_{\mathcal{E}_R}(\cdot, s)(\hat{n} e^{-sd} f_\hat{n}) - (\hat{n} K_{\mathcal{E}_R}(\cdot, s)) e^{-sd} f_\hat{n} \right] v_{\partial Y_R} \, ds,$$

where \hat{n} is the outward unit normal vector field on ∂Y_R and $v_{\partial Y_R}$ is the Riemannian measure of the induced metric on ∂Y_R.

Proof. This can be proved in the same way as [3, Theorem 0.3] using the estimate (6) below. The starting point is the following relationship between the Laplacians \mathcal{L} on U/K and $\mathcal{L}_{\mathbb{R}}$ on \mathbb{R}.

Proposition 2 [3]. For every holomorphic function F on U/K, there is a neighborhood W of U/K in U/K such that $\mathcal{L}(F|_{U/K})$ and $\mathcal{L}_{\mathbb{R}}(F|_{\mathbb{R}})$ have the same analytic continuation to W.

Proof. We use the notation of [3, Definition 1.13]. By [3, Theorem 8.5.1], $g_\mathcal{E} = -g_{\mathbb{R}}$. By [3, Theorem 1.19.ii], $\mathcal{L}_{\mathbb{R}} = -\mathcal{L}_{\mathbb{R}}$. The proposition now follows from [3, Theorem 1.16].

By [5, Lemma 13], $e^{-td} f_\hat{n}$, $\mathcal{L}_{\mathbb{R}} e^{-td} f_\hat{n}$, and $\partial_s e^{-td} f_\hat{n}$ can be analytically continued to U/K. Analytically continuing the equation $(\mathcal{L} + \partial_s) e^{-td} f_\hat{n} = 0$ and restricting to Y_R, we obtain

$$(-\mathcal{L}_{\mathbb{R}} + \partial_s)(e^{-td} f_\hat{n})|_{Y_R} = 0$$

for all t, $R > 0$. As in the proof of [3, Theorem 0.3], we multiply by $K_{\mathcal{E}_R}$ and integrate: for $0 < \varepsilon < t$,

$$\int_\varepsilon^t \int_{Y_R(x)} K_{\mathcal{E}_R}(\cdot, s)(-\mathcal{L}_{\mathbb{R}} + \partial_s) e^{-sd} f_\hat{n} v_{\mathcal{E}_R} \, ds = 0.$$

The integral is absolutely convergent for $0 < \varepsilon < t < \infty$ and $R < \infty$. Integrating by parts in s, using $(\mathcal{L}_{\mathbb{R}} + \partial_s) K_{\mathcal{E}_R} = 0$, and applying Green’s second identity on Y_R gives

$$\int_{Y_R(x)} K_{\mathcal{E}_R}(\cdot, \varepsilon) e^{-td} f_\hat{n} v_{\mathcal{E}_R} = \int_{Y_R(x)} K_{\mathcal{E}_R}(\cdot, t) e^{-td} f_\hat{n} v_{\mathcal{E}_R}$$

$$+ \int_0^t \int_{\partial Y_R(x)} K_{\mathcal{E}_R}(\cdot, s)(\hat{n} e^{-sd} f_\hat{n})$$

$$- (\hat{n} K_{\mathcal{E}_R}(\cdot, s)) e^{-sd} f_\hat{n} \right] v_{\partial Y_R} \, ds. \quad (5)$$
To prove the proposition we let $\varepsilon \to 0^+$. To estimate the integral over ∂Y_R we note that since f_δ is an eigenfunction of A, it is clear that $|e^{-\varepsilon A}f_\delta|$, resp. $|\varepsilon e^{-\varepsilon A}f_\delta|$, is uniformly bounded on $(0, \infty) \times Y_R$, resp. $(0, \infty) \times \partial Y_R$. For the heat kernel $K_{s\gamma}$ we have the estimate

$$\|d_t^s d_t^{s\gamma} K_{s\gamma}(\zeta, s)\| \leq C(t) s^{-n/2 - i - 1/2} e^{-d_{s\gamma}(s, \zeta)/4s}$$

(6)

([1]: here x is the base point of Y, $d_{s\gamma}$ is the Riemannian distance in Y, and $\|\cdot\|$ is the g_Y norm). This shows that the integral over ∂Y_R is absolutely convergent as $\varepsilon \to 0^+$. The left side of (5) approaches $f_\delta(x)$ as $\varepsilon \to 0^+$ because f_δ is an eigenfunction and $K_{s\gamma}(\cdot, s) v_{s\gamma}$ approaches the Dirac measure at the base point x as $\varepsilon \to 0$.

The following lemma gives the control over the growth of the joint eigenfunctions in the complex domain needed to prove the inversion formula for joint eigenfunctions. Choose a Cartan subalgebra \mathfrak{h} of \mathfrak{u}_C and an ordering of the roots, and let λ denote the highest weight of δ (extended to a representation of \mathfrak{u}_C).

Lemma 1. There is an $M > 0$ (depending only on the metric g) such that for all $\delta \in U_K$, $f_\delta \in C_c(U/K)$ analytically continued to U_C/K_C, $\zeta \in Y$,

$$|f_\delta(\zeta)| \leq d(\delta)^{1/2} \|f_\delta\|_{L^2(U/K)} e^{1/2 d_M d_{s\gamma}(x, \zeta)}$$

$$|\delta f_\delta(\zeta)| \leq M |\lambda|_K d(\delta)^{1/2} \|f_\delta\|_{L^1(U/K)} e^{1/2 d_M d_{s\gamma}(x, \zeta)},$$

where $d_{s\gamma}$ is the distance function on Y, $d(\delta)$ is the dimension of $V_{s\gamma}$, and $|\cdot|_K$ is the Killing form norm.

Proof. Since U is simply connected, each representation δ extends to a holomorphic representation of U_C, still denoted by δ, and $\delta(K_C) e = e$ (since this holds on the real part K). The analytic continuation of $f_\delta(uK) = \langle \varphi, \delta(u) e \rangle$ to U_C/K_C is given explicitly by $f_\delta(gK_C) = \langle \varphi, \delta(g) e \rangle$, where the bar denotes complex conjugation of U_C about U (note that $\langle \cdot, \cdot \rangle$ is conjugate linear in the second factor). By (4), given a coset $\zeta = gK_C$ in $Y(x)$ there is a representative g such that $g = u \exp V$ with $u \in U$, $V \in \mathfrak{p}$. Let $\mathfrak{a} = \mathfrak{h} \cap \mathfrak{p}$. Since $\text{Ad}(K) \mathfrak{a} = \mathfrak{p}$, we may assume $g = u \exp H$ with $u \in U$, $H \in \mathfrak{a}$. Since $|e| = 1$ and δ is unitary, we have

$$|f_\delta(gK_C)| = |\langle \varphi, \delta(u \exp H) e \rangle| \leq |\varphi| \max_{\lambda, \text{weights}} e^{1/2 |\lambda|}$$

$$\leq |\varphi| e^{1/2 |\lambda|_K},$$

where λ is a weight of U_C. Therefore, the integral over U/K is bounded by

$$\int_{U/K} |f_\delta(gK_C)| dg \leq C \int_{U/K} e^{1/2 d_M d_{s\gamma}(x, \zeta)} dg.$$
where \(\lambda \) is the highest weight, the last inequality by [8, Eq. (7), p. 498]. By the Schur orthogonality relations, \(\| f_\delta \|^2_{L^2(U/K)} = |v|^2 d(\delta)^{-1} \), where \(d(\delta) \) is the dimension of \(V_\delta \) (here we have used the normalization \(vol(U/K) = 1 \)). Since the Killing form norm on \(p \) is comparable to the \(Ad(K) \)-invariant inner product induced by \(g_{Y(\delta)} \), there is a positive constant \(M \) (depending only on \(g \)) such that \(|H|_K \leq M |H|_{\sigma_{\delta,\gamma}} \). The unique unit speed geodesic from \(x \) to \(\zeta \) is \(\gamma(t) = u \exp(-tH|H|_{\sigma_{\delta,\gamma}}) \), so \(d_{\sigma_{\delta,\gamma}}(x, \zeta) = |H|_{\sigma_{\delta,\gamma}} \) (note also this shows \(\phi(\zeta) = d_{\sigma_{\delta,\gamma}}^2(x, \zeta) \)). This gives the estimate for \(f_\delta \).

The unit normal to \(Y_R \) at \(\zeta = u \exp(-HK) \) is \(\hat{\nu} \), \(R = |H|_{\sigma_{\delta,\gamma}} \). Then

\[
\hat{\nu}_\delta f_\delta(\zeta) = \frac{d}{dt} \left|_{t=R} \langle \nu, \delta(u \exp(-tH) e^e) \rangle = \langle \nu, \delta(u \exp(-H) e^e) \rangle / R. \right.
\]

The estimate for \(|\hat{\nu}_\delta f_\delta(\zeta)| \) follows similarly.

We can now prove the inversion formula for the Segal–Bargmann transform acting on the joint eigenfunctions.

Proposition 3. For all \(f_\delta \in C_c(U/K), \ t > 0, \ x \in U/K, \)

\[
f_\delta(x) = \int_{Y(x)} e^{-s^2 f_\delta(\cdot)} K_{\sigma_{\delta,t}}(\cdot, t) v_{\sigma_t}
\]

and the integral is absolutely convergent.

Proof. We let \(R \to \infty \) in Proposition 1. In the proof of Lemma 1 we showed that \(d^2_{\sigma_{\delta,t}}(x, \zeta) = \phi(\zeta) \). So for \(\zeta \in \partial Y_R, \ d_{\sigma_{\delta,t}}(x, \zeta) = R \). By Lemma 1 and (6) there are positive constants \(C_i \) (depending only on \(\delta, f_\delta, \ t, \) and \(g \)) such that for all \((s, \zeta) \in (0, t] \times \partial Y_R, \)

\[
\begin{align*}
|e^{-s^2 f_\delta(\zeta)}| &\leq C_1 e^{-s^2 C_2 R} + C_2 R, \\
|\hat{\nu} e^{-s^2 f_\delta(\zeta)}| &\leq C_3 e^{-s^2 C_4 R} + C_4 R \\
|K_{\sigma_{\delta,t}}(\zeta, s)| &\leq C_5 e^{-s^2 C_6 R - R^4/4s} \\
|\hat{\nu} K_{\sigma_{\delta,t}}(\zeta, s)| &\leq C_7 e^{-s^2 C_8 R - R^4/4s}.
\end{align*}
\]

Then we can estimate the boundary integral in Proposition 1 as \(R \to \infty \) by

\[
\int_0^t \int_{\partial Y R} |K_{\sigma_{\delta,t}}(\cdot, s)(\hat{\nu} e^{-s^2 f_\delta}) - (\hat{\nu} K_{\sigma_{\delta,t}}(\cdot, s))| e^{-s^2 f_\delta} v_{\partial Y_R} ds
\leq C_5 vol(\partial Y_R) e^{C_4 R} \int_0^t e^{-s^2 C_6 R - R^4/4s} ds
\leq C_6 vol(\partial Y_R) e^{C_4 R - R^4/4s}.
\]
The Ricci curvature of g_Y is bounded below by a negative constant (since a symmetric space has a transitive group of isometries). Following the proof of [2, Theorem 6], we have $\text{vol}(\partial Y_R) \leq C_2 e^{C_3 R}$. This shows that the boundary integral in Proposition 1 goes to zero as $R \to \infty$. Similarly one can show that the integral over Y converges absolutely.

3. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1. It is possible to prove the inversion formula for functions in the range of e^{-td} for some $t > 0$ by brute force using the estimates above. But to prove Theorems 1 and 2 in this fashion would require unreasonably sharp estimates on $e^{-td}f$ and $K_{\mathfrak{g}}$. We will instead take the following approach, which was suggested to us by B. Hall. For fixed $t > 0$, consider the linear operator

$$M_R f(x) = \int_{Y(x)} e^{-td} f(\cdot) K_{\mathfrak{g}}(\cdot, t) \nu_{\mathfrak{g}}.$$ \hspace{1cm} (7)

The integral is absolutely convergent for $R < \infty$ and maps $L^2(U/K)$ into smooth functions. M_R commutes with the action of U on $L^2(U/K)$, since the action commutes with the heat operator and with analytic continuation and acts by isometries among the fibers (Y, g_Y). The kernel of M_R is a U-invariant subspace, so the restriction of M_R to an irreducible representation space is either a linear isomorphism onto its image or identically zero. Since the representations $C(\mathfrak{g}(U/K))$ in the decomposition (3) are irreducible and inequivalent, there is a constant $m_{R, \delta}$ such that

$$m_{R, \delta} = m_{R, \delta}I.$$ \hspace{1cm} (8)

We claim that the $m_{R, \delta}$ are positive and increase with R. Applying M_R to $f_{\delta}(\cdot) = \langle e, \delta(\cdot) e \rangle$ and evaluating at o gives

$$m_{R, \delta} = e^{-td(\delta)} \int_{gK_C \subset Y(o)} \langle e, \delta(g) e \rangle K_{\mathfrak{g}}(gK, t) \nu_{\mathfrak{g}}.$$ \hspace{1cm} (9)

Each coset $gK_C \in Y(o)$ has a representative g with $\delta = \exp \sqrt{-I} V$, $V \in \mathfrak{p}_+$. Since $\delta(u)$ consists of skew-symmetric matrices, $\delta(\sqrt{-I} V)$ is symmetric with real eigenvalues and so $\delta(g) = e^{\delta(\sqrt{-I} V)}$ is positive definite. Since $K_{\mathfrak{g}}$ is positive, the claim follows. Proposition 3 shows that $\lim_{R \to \infty} m_{R, \delta} = 1$.

To prove the theorem we argue as in the proof of [6, Theorem 1]. If F is a holomorphic function on U_C/K_C and $F|_{U/K} = \sum \delta \in \mathcal{U}_k (F|_{U/K})_\delta$ is the decomposition (3), then the termwise analytic continuation of this series converges uniformly and absolutely on compacta in U_C/K_C to F (cf. [5,
Lemma 9). It follows that \(e^{-df} = \sum_{\mu \in \hat{G}} e^{-\mu(d)} f_{\mu} \) with uniform and absolute convergence on compacts in \(U_c/K \). Inserting this into (7) gives \(M_x f = \sum_{\mu \in \hat{G}} m_{\mu} f_{\mu} \). Since the series is orthogonal, its convergence in \(L^2(U/K) \) to \(f \) follows from monotone convergence.

Proof of Theorem 2. It suffices to show that the integral is absolutely convergent, for then the pointwise limit \(\lim_{R \to \infty} \int_{Y(x)} e^{-t\lambda f} df_{\xi} = \int_{Y(x)} e^{-t\lambda f} df_{\xi} \) is equal to \(f \) in \(L^2(U/K) \) by Theorem 1. Since the integral depends continuously on parameters they must be equal everywhere.

In the proof of Lemma 1 we observed that the analytic continuation of \(f_{\xi} \) is \(f_{\xi}(gK_C) = \langle \psi, \delta(g) \psi \rangle \). Write \(e^{-t\lambda f} = \sum_{\mu \in \hat{G}} e^{-\mu(d)} \langle \psi, \delta(g) \psi \rangle \). We will fix \(x \) and estimate \(\langle \psi, \delta(\zeta) \psi \rangle \) for \(\zeta \in Y(x) \). Define \(w \in V_{\lambda} \) by \(w = \delta(u) e \) where \(x = uK \), and note that \(w \) does not depend on the choice of representative \(u \). Writing \(\zeta \in Y(x) \) as \(\zeta = u \exp \sqrt{-1} FK_C \) with \(\sqrt{-1} V \in p \), we see that \(\langle w, \delta(\zeta) \psi \rangle \) is strictly positive on \(Y(x) \). We claim that for all \(\zeta \in Y(x) \) and \(v \in V_{\lambda} \),

\[
|\langle \psi, \delta(\zeta) \psi \rangle| \leq |\psi| |\delta(\zeta)| e^{-\lambda(H)} \leq |\psi| e^{\lambda(H)}
\]

where \(e \) is the Harish–Chandra e-function, \(\lambda \) is the restriction of the highest weight of \(\delta \) to \(a \), and \(\rho \) is one-half the sum of the positive restricted roots (with multiplicities; we have fixed a Weyl chamber \(a^+ \)). To prove this we write \(\zeta = u' \exp HK_C \) with \(H \) in the closure of \(a^+, u' \in U \), and \(u'K = x \). Then

\[
|\langle \psi, \delta(\zeta) \psi \rangle| \leq |\psi| \max_{\lambda \in \text{restricted weights}} e^{\lambda(H)} \leq |\psi| e^{\lambda(H)}
\]

(the last inequality follows from the expression \(\lambda = \lambda - \sum m_k \tilde{r}_k \) where \(m_k \in \mathbb{Z} \) and \(\tilde{r}_k \) are positive restricted roots). Let \(u_1, \ldots, u_d \) be an orthonormal basis of \(V_{\lambda} \) consisting of weight vectors with corresponding weights \(\lambda_i \), and let \(\lambda_d = \lambda \) be the highest weight. Then \(|\langle e, u_d \rangle|^2 = e(-\sqrt{-1}(\lambda + \rho)) > 0 \) (see \([8, \text{Chap. V, Sect. 4, Eqs. (7), (8)})\]. Then

\[
|\langle \psi, \delta(\zeta) \psi \rangle| \leq |\psi| |e(-\sqrt{-1}(\lambda + \rho))|^{-1} |\langle e, u_d \rangle|^2 e^{\lambda(H)}
\]

\[
\leq |\psi| |e(-\sqrt{-1}(\lambda + \rho))|^{-1} \sum_{k=1}^d |\langle e, u_k \rangle|^2 e^{\lambda(H)}
\]

\[
= |\psi| |e(-\sqrt{-1}(\lambda + \rho))|^{-1} \langle \delta(u') e, \delta(u' \exp(H)) e \rangle
\]

\[
= |\psi| e(-\sqrt{-1}(\lambda + \rho))^{-1} |\langle w, \delta(\zeta) e \rangle|
\]

which proves the claim.
Keeping \(x\) and \(w\) fixed, we apply Proposition 3 to the joint eigenfunction \(y \in U/K \rightarrow \langle w, \delta(y) e \rangle\) to obtain

\[e^{-nu(x)} \int_{\gamma(x)} \langle w, \delta(\gamma) e \rangle K_{g_{\gamma}}(\cdot, t) v_{g_{\gamma}} = \langle w, \delta(x) e \rangle = 1, \]

and so, by the claim above,

\[\int_{\gamma(x)} |e^{-nu(x)}| K_{g_{\gamma}}(\cdot, t) v_{g_{\gamma}} \preceq \sum_{\delta \in U_K} |\delta| \cdot e(-\sqrt{-1}(\lambda + \rho))^{-1}. \tag{8} \]

There are positive constants \(C_1, C_2, p\) such that

\[e(-\sqrt{-1}(\lambda + \rho))^{-1} \leq C_1 + C_2 |\lambda + \rho|_K^p \]

([8, Proposition 7.2, Chap. IV]; since \(\lambda\) is a highest weight, \(\lambda + \rho\) is in \(a_+^K\)). If \(f \in C^\infty(U/K)\), then the coefficients \(|v|\) decrease faster than any polynomial in \(|\lambda|_K\), and the sum in (8) converges.

4. PROOF OF THEOREM 3

Let \(\eta; U_{C/KC} \rightarrow U_{C/KC}\) be the diffeomorphism corresponding to multiplication by \(2\) in the fibers of \(TU/K\) under the identification (4); i.e., \(\eta(uyK) = uy^2K\) for \(u \in U, y \in \exp p\). By the Riesz Representation Theorem there is a unique measure \(\omega_i\) on \(U_{C/KC}\) such that for \(F \in C_0(U_{C/KC})\),

\[F_{U_{C/KC}} = \int_{x \in U/K} \int_{\gamma(x)} F(\cdot) \eta^* (K_{\gamma})(\cdot, 2t) v_{\gamma}(t) v_{U/K}. \]

where \(v_{U/K}\) is the Riemannian measure on \(U/K\) (we normalize the metric so \(\text{vol}(U/K) = 1\)). Let \(\pi_{C}; U_{C} \rightarrow U_{C/KC}\) be (the holomorphic) coset projection. Since \(\pi_{C}\) restricted to \(\exp p\) is a diffeomorphism onto \(Y(o)\), this can be written as

\[F_{U_{C/KC}} = \int_{y \in \exp p} \int_{u \in U} F \cdot \pi_{C}(uy) du(\pi_{C}(uy)| \exp p) (K_{Y(o)}(\cdot, 2t) v_{Y(o)}). \]

Here \(du\) is the Haar measure on \(U\) normalized by \(\text{vol}(U) = 1\), and we have used \([8, Theorem 1.9, Chap. I]\), the fact that \(\tau(u); Y(o) \rightarrow Y(uK)\) is an isometry, and \(\tau(u)\) commutes with \(\eta\) for \(u \in U\). Let \(H\) denote the subspace of holomorphic functions in \(L^2(U_{C/KC}, \omega_i)\).

Proof of Theorem 3. Let \(V\) be the algebraic span of the joint eigenspaces \(C_0(U/K), \delta \in U_K\). We argue as in the idea of the proof of \([6, \S4]\).
Theorem 2], to show that the Segal–Bargmann transform is an isometry from V into H: for $f \in V$,

\[
\|e^{-td}f\|^2_{HS} = \int_{\gamma \in \exp \mathfrak{g} \cdot u \in U} |e^{-td}f \cdot \pi_C(uy)\, du \\
\times (\eta \cdot \pi_C |_{\exp \mathfrak{g}}^* (K_{\gamma}(\cdot, 2t) v_{\gamma})) \\
= \int_{\gamma \in \exp \mathfrak{g} \cdot u \in U} e^{-td}f \cdot \pi_C(uy) e^{-td} \tilde{f} \cdot \pi_C(uy^{-1})\, du \\
\times (\eta \cdot \pi_C |_{\exp \mathfrak{g}}^* (K_{\gamma}(\cdot, 2t) v_{\gamma})).
\]

Here $\tilde{f}(\cdot)$ denotes the holomorphic function on U_C/K_C whose restriction to UK is f. Using [6, Lemma 9], to make the “holomorphic change of variables” $w = uy^{-1}$ and Fubini’s Theorem, we find that the above is equal to

\[
\int_{u \in U} e^{-td}f(uK) \cdot \int_{y \in \exp \mathfrak{g}} e^{-td}f \cdot \pi_C(uy^2) (\eta \cdot \pi_C |_{\exp \mathfrak{g}}^* (K_{\gamma}(\cdot, 2t) v_{\gamma}))\, du.
\]

Since $f \in V$, there is a $g \in V$ such that $e^{-td}g = f$. Changing variables in the inner integral by $\tau(u) \cdot \eta \cdot \pi_C |_{\exp \mathfrak{g}}^* \exp \mathfrak{g} \to Y(uK)$ gives

\[
\|e^{-td}f\|^2_{HS} = \int_{u \in U} e^{-td}f(uK) \cdot \int_{\gamma(uK)} e^{-td}g(\cdot) K_{\gamma}(uK)(\cdot, 2t) v_{\gamma(uK)}\, du.
\]

Proposition 3 and the fact that e^{-td} is formally self-adjoint give

\[
\|e^{-td}f\|^2_{HS} = \int_{u \in U} e^{-td}f(uK) g(uK)\, du = \int_{U/K} \tilde{f} f_{U/K}.
\]

To show that the Segal–Bargmann transform is an isometry from $L^2(U/K)$ onto \mathcal{H}, it suffices to show that the image of V is dense in \mathcal{H}. We will briefly indicate how the arguments in [5, Lemmas 9, 10], can be adapted to our situation. The projection of $f \in L^2(U/K)$ onto $C_\delta(U/K)$ can be written as

\[
f_\delta(x) = d(\delta) \text{Tr}(\delta(x) A_{\delta,f}), \quad \text{where} \quad A_{\delta,f} = \int U \delta(u^{-1}) f(u)\, du.
\]
Here δ is the representation contragredient to δ; see [8, Lemma 1.7, Corollary 1.8, Chap. IV]). Given a holomorphic function F on U_C/U_C, consider the “holomorphic Fourier series” (HFS)

$$F(gK_C) = \sum_{\delta \in \hat{U}_C} d(\delta) \text{Tr}(\delta(g) A_{\delta, F|U_C}).$$

The proof of [5, Lemma 9] shows that the HFS converges uniformly and absolutely on compact subsets of U_C/K_C. Using the $\tau(U)$-invariance of ω, one shows exactly as in [5, Lemma 10] that the terms in the HFS are orthogonal in $L^2(U_C/K_C, \omega)$ and remain orthogonal when integrated over any $\tau(U)$-invariant subset of U_C/K_C. The rest of the proof of [5, Lemma 10] goes through unchanged to show that the HFS for F converges to F in $L^2(U_C/K_C)$. Since each term in the HFS is in the image of V, the image is dense in H.

5. COMPARISON WITH B. HALL’S INVERSION FORMULA

Let H be a compact, simply connected semisimple Lie group with a bi-invariant metric g_H (normalized to unit volume) and Laplacian $A_H \geq 0$. Let

$$P = \{ \exp \sqrt{-1} V : V \in \mathfrak{h} \} \subset H_C$$

with the metric g_P obtained by identifying P with the symmetric space H_C/H by the quotient map $q: H_C \to H_C/H$. Let A_P be the nonnegative Laplacian on P, let $\sigma_i(p)$ be the fundamental solution at the identity of the equation $(\partial_t + A_P) u = 0$, and let dp be the Riemannian measure on P. With these conventions, B. Hall's inversion formula for the Segal-Bargmann transform is

$$f(h) = \int_P e^{-tA_P (hp^2)} \sigma(t, p) \, dp \quad (f \in C^\infty(H)).$$

Put $U = H \times H$, let K be the diagonal in $H \times H$, and let θ be the involutive automorphism of \mathfrak{u} given by $\theta(X, Y) = (Y, X)$. Then (\mathfrak{u}, θ) is an orthogonal symmetric Lie algebra, and U/K is a symmetric space of the compact type with respect to any U-invariant metric. We identify U/K with H by the U-equivariant map $g((g, h) K) = gh^{-1}$ and give U/K the metric that makes α an isometry. There is a unique biholomorphic map $\alpha_C: U_C/K_C \to H_C$ extending α, and it is not hard to see that $\alpha_C(Y(x))$ is $L_n x P$, the left translate of P by $\alpha(x)$. We reconcile our inversion formula with Hall’s in the following proposition.
Proposition 4. For all \(f \in C^\infty(H) \), \(x \in U/K \), \(t > 0 \),
\[
\int_{Y(x)} e^{-it\mathfrak{a}_x^* f(\cdot) K_{x_t}(\cdot, t)} v_{x_t} = \int_P e^{-it\mathfrak{a}_x f(\mathfrak{a}(x) p^2)} \mathfrak{a}_x dp.
\]

Proof. Changing variables by \(\tau(x, e) : Y(o) \to Y(x) \) we may assume that \(x = o \). Let \(\sqrt{t} : P \to P \) be the diffeomorphism \(\sqrt{t}(p) = p^2 \) and let \(\sqrt{t} \) be its inverse. We will use the change of variables \(\sqrt{t}^* \) to \(Y(o) \). Since \(\mathfrak{a}_x \) is the biholomorphic extension of the isometry \(\mathfrak{a}_x \), we have for the analytic continuations \((\mathfrak{a}_x^{-1})^* (e^{-it\mathfrak{a}_x^* f}) = e^{-it\mathfrak{a}_x f} \). To prove the proposition it suffices to show that \((\sqrt{t} \cdot \mathfrak{a}_x)^* g = \frac{1}{4} g_{Y(o)} \). The main point is that \(\sqrt{t} \cdot \mathfrak{a}_x \) is equivariant with respect to the group actions on \(P \) and \(Y(o) \), as we now explain.

As above let \(G \) be the connected subgroup of \(U_C \) with Lie algebra \(g = \mathfrak{f} + \mathfrak{p} \). Here \(\mathfrak{p} = \{(\sqrt{-1} V, -\sqrt{-1} V) : V \in \mathfrak{h}\} \), so
\[
G = \{(z, \bar{z}) : z \in H_C\}, \quad \text{and} \quad Y(o) = \{(z, \bar{z}) K_C : z \in H_C\}.
\]

We will identify \(G \) with \(H_C \) by projection onto the first factor. \(G \) acts on \(Y(o) \) as a subgroup of \(U_C \), and \(H_C \) acts on \(P \) through its identification with \(H_C \) (not through the left action of \(H_C \) on \(H_C \)). The action of \(H_C \) on \(P \) is given explicitly by \(\tau_p(z)(p) = \sqrt{t} z p \bar{z}^{-1} \) (note that complex conjugation of \(H_C \) about \(H \) is a group automorphism). To show that \(\sqrt{t} \cdot \mathfrak{a}_x \) is equivariant with respect to the \(G_C \otimes H_C \) action, let \((z, \bar{z}) \in G \equiv H_C \cdot (w, \bar{w}) K_C \in Y(o) \). Then
\[
\sqrt{t} \cdot \mathfrak{a}_x \cdot \tau((z, \bar{z}))((w, \bar{w})) = \sqrt{t} \mathfrak{a}_x \cdot \tau((z w \bar{w}^{-1} z^{-1}))
\]
\[
= \tau_p(z)((\sqrt{t} w \bar{w}^{-1}) = \mathfrak{a}_x \cdot \sqrt{t} \cdot \mathfrak{a}_x ((w, \bar{w}) K_C),
\]
which is the desired equivariance property.

Since \(g_{Y(o)} \) and \(g \) are \(G \equiv H_C \) invariant, it suffices to check that \((\sqrt{t} \cdot \mathfrak{a}_x)^* g = \frac{1}{4} g_{Y(o)} \) at the identity coset. The identification of \(U/K \) with \(H \) determines an inner product on \(\mathfrak{p} ; \); the metric \(g_Y \) on \(Y(o) \) at the identity coset is given by (plus once times) this inner product under the usual identification of \(T_o Y(o) \) with \(\mathfrak{p} \). One computes
\[
g_{Y(o)}((\sqrt{-1} V, -\sqrt{-1} V), (\sqrt{-1} W, -\sqrt{-1} W)) = 4(V, W)_{\mathfrak{h}},
\]
where \((\cdot, \cdot)_{\mathfrak{h}} \) is the \(\text{Ad}(H) \)-invariant inner product on \(\mathfrak{h} \) determined by \(g_H \).

The metric on \(P \) at the identity coset is given by \(-\cdot, \cdot \) under the identification of \(T_o P \) with \(\sqrt{-1} \mathfrak{h} \). One computes easily that the tangent map
at the identity coset in $Y(o)$ to $\sqrt{b}\cdot x_C$ is simply projection onto the first factor, so

$$(\sqrt{b}\cdot x_C)^* g_P((\sqrt{-1} V, -\sqrt{-1} V), (\sqrt{-1} W, -\sqrt{-1} W))^o = (V, W)_b.$$

This proves that $(\sqrt{b}\cdot x_C)^* g_P = \frac{1}{4} g_{Y(o)}$.

\section*{Acknowledgment}

We thank B. Hall for some very useful suggestions.

\section*{References}