
Solution to Set 4, due Friday April 23

(1) (Section 5.1, Problem 2) Explain why the path parametrized
by f(t) = (t, |t − 1|) is not smooth. Note this is true more

specifically if the interval of t contains t = 1
Solution: Define f(t) = (f1, f2). Then, f2(t) = |t − 1| is not
differentiable at t = 1 hence the curve is not smooth.

(2) (Section 5.1, Problem 4) Show that f(t) = (e−t, 1 + et), 0 ≤ t <

∞ and g(t) =
(

t3 − 2, t3−1

t3−2

)

for 21/3 < t ≤ 31/3 parametrizes

the same curve.
Solution: Note if x = (x, y) = f(t), then x = e−t, y = 1 + et.
Eliminating t between them, note that y = 1 + 1/x. Further,
when t = 0, (x, y) = (1, 2). When t → +∞, we have (x, y) →
(0, +∞).

On the otherhand, if x = (x, y) = g(t), then x = t3 − 2, then

y = t3−1

t3−2
. Eliminating t3 between the two equations, we have

t3 = x + 2, so, y = x+2−1

x
= 1 + 1/x. Further, when t → 21/3

from above, then (x, y) → (0, +∞) and when t = 31/3, we have
(x, y) = (3 − 2, 3−1

3−2
) = (1, 2).

Thus, the curves in each case are the same with the same end
points. The only difference is that the curves are traversed in
opposite directions as t increases. In the first case, we start from
(1, 2) and end up at (0, +∞); where as in the second case, the
starting and ending points are (0,∞) and (1, 2) respectively.

(3) (Section 5.1, Problem 12) Compute the length of the path f(t) =
(et cos t, et sin t, et) for 0 ≤ t ≤ 3.
Solution: Note that f ′(t) = (et cos t − et sin t, et sin t + et cos t, et).
So,

‖f ′(t)‖ =
√

e2t(cos t − sin t)2 + e2t(sin t + cos t)2 + e2t = et
√

2 sin2 t + 2 cos2 t + 1 =
√

3et

So, arclength equals

∫ 3

0

√
3etdt =

√
3
[

et
]3

0
=

√
3
[

e3 − 1
]

(4) Section 5.1, Problem 15 Find the length of one arch of the
cycloid f(t) = [a(t − sin t), a(1 − cos t)].
Solution: Note one arch of a cycloid corresonds to 0 ≤ t ≤ 2π.
Note f ′(t) = [a(1 − cos t), a sin t]. So, we have

‖f ′(t)‖ =
√

a2(1 − cos t)2 + a2 sin2 t = a
√

1 − 2 cos t + cos2 t + sin2 t = a
√

2
√

1 − cos t
1
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So, arclength is
√

2a
∫ 2π

0

√
1 − cos tdt. To calculate the integral,

recall that 1 − cos 2θ = 2 sin2 θ. Taking θ = t/2,1 − cos t =
2 sin2 t

2
. So, arclength is

2a

∫

2π

0

sin
t

2
dt = −4a

[

cos
t

2

]2π

0

= 8a

(5) Section 5.1, Problem 18 Find the arclength function for the
spiral parametrized by f(t) = (t cos t, t sin t) for t ≥ 0. We note
that f ′(t) = (cos t − t sin t, sin t + t cos t). So,

‖f ′(t)‖ =

√

(cos t − t sin t)2 + (sin t + t cos t)2

=
√

cos2 t + t2 sin2 t − 2t cos t sin t + sin2 t + t2 cos2 t + 2t cos t sin t =
√

1 + t2

So, arclength function (which is defined to be the arclength
from t = 0 to a variable point t) is given by L(t) (or I prefer
using s(t))

s(t) =

∫ t

0

√
1 + τ 2dτ

To integrate this, the easiest method would be to use hyperbolic
sine substitution, τ = sinh θ. Note that θ = 0 corresponds to

t = 0j. Noting that dτ = cosh θdθ and
√

1 + sinh2 θ = cosh θ,
we have

√
1 + τ 2dτ = cosh2 θdθ. We now use the identity

cosh2 θ = 1

2
(1 + cosh 2θ) So,

s(t) =
1

2

∫ θ

0

[1 + cosh(2θ)] dθ =
θ

2
+

1

4
sinh(2θ) =

1

2
θ +

1

2
sinh θ cosh θ

=
1

2
sinh−1 t +

1

2
sinh θ

√

1 + sinh2 θ =
1

2
sinh−1 t +

1

2
t
√

1 + t2

The problem is solved. But, let me show you an alternate
method, just in case you are not comfortable with hyperbolic
sine and cosine functions and their identities.

Alternately, we could use integration by parts and note

I ≡
∫ √

1 + t2dt = t
√

1 + t2−
∫

td[
√

1 + t2] = t
√

1 + t2−
∫

t2√
1 + t2

dt

= t
√

1 + t2−
∫

t2 + 1√
1 + t2

dt+

∫

dt√
1 + t2

= t
√

1 + t2−I +

∫

dt√
1 + t2

So,

2I = t
√

1 + t2 +

∫

dt√
1 + t2
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Now let’s calculate the last integral above. We can substitute
t = tan φ, then dt√

1+t2
= sec φdφ and recalling that

∫

sec φdφ =

ln (tan φ + sec φ), we have
∫

dt√
1 + t2

= ln (tan φ + sec φ) = ln
(

t +
√

1 + t2
)

So, from above, we have
∫ √

1 + t2dt ≡ I =
t

2

√
1 + t2 + ln

(

t +
√

1 + t2
)

+ C

Since arc length should zero when t = 0, we have s(0) = 0 = C.
Therefore,

s(t) =
t

2

√
1 + t2 + ln

(

t +
√

1 + t2
)

This result may look different from (??), but it is the same since
sinh−1 t = ln

(

t +
√

1 + t2
)

. To show this define γ = sinh−1 t.

Then t = sinh γ = 1

2
eγ − 1

2
e−γ . If we define y = eγ , then

we have from above t = y
2
− 1

2y
. Multiplying through 2y, we

have 2yt = y2 − 1. Solving the quadratic, y = t +
√

1 + t2, we
take the positive root, since y = eγ > 0 and with the negative
square-root, we would have y < 0. So, noting y ≡ eγ , we
have γ = ln

(

t +
√

1 + t2
)

. But since sinh−1 t ≡ γ, we have the

equality between sinh−1 t and ln
(

t +
√

1 + t2
)

as claimed and
the two results for the arclength function s(t) is one and the
same.

(6) (Section 5.2, Problem 3) Calculate
∫

C
(16x− y2 + 49)dL, where

C is parametrized by f(t) = (t2 + 1, 4t + 7) for 0 ≤ t ≤ 3. Note
that f ′(t) = (2t, 4) and so, ‖f ′(t)‖ =

√
16 + 4t2. Note that if

x = (x, y) = f(t), then x = 1 + t2, y = 4t + 7, dL = ‖f ′(t)‖dt =
2
√

4 + t2dt. so,
∫

C

(16x − y2 + 49)dL =

∫ 3

0

(

16[1 + t2] − [4t + 7]2 + 49
)

2
√

4 + t2dt

= 2

∫

3

0

[16 − 56t]
√

4 + t2dt = 32

∫

3

0

√
4 + t2dt − 112

∫

3

0

t
√

4 + t2dt

In the second integral above, we substitute u = 4 + t2 and note
2tdt = du. Note also that t = 0 corresponds to u = 4 and t = 3
corresponds to u = 4 + 32 = 13. So, we obtain

−112

∫

3

0

t
√

1 + t2dt = −56

∫

13

4

√
udu = −(56)(2)

3

[

u3/2
]13

4
= −112

3

[

(13)3/2 − 8
]



4

Using methods for the last problem, we have

∫ √
4 + t2 =

t

2

√
4 + t2 + 2 ln

(

t

2
+

√

1 +
t2

4

)

So, using this and the above result, we have

∫

C

(16x−y2+49)dL = −112

3

[

(13)3/2 − 8
]

+32

[

t

2

√
4 + t2 + 64 ln

(

t

2
+

√

1 +
t2

4

)]3

0

= −112

3

[

(13)3/2 − 8
]

+48
√

13+64 ln

(

3

2
+

√

1 +
9

4

)

= −1312

3

√
13+

896

3
+64 ln

(

3

2
+

√
13

2

)

(7) (Section 5.2, Problem 5) Calculate
∫

C
x1+x2

x3−x4

dL where f(t) is the

line segment in 4-D joining (6, 0, 3, 1) to (5, 1, 5, 3).
Solution: Note that in any dimension equation of straight line
through a given point x0 that is parallel to m is is x = x0 + tm.
In this case x0 = (6, 0, 3, 1) and m = (5, 1, 5, 3) − (6, 0, 3, 1) =
(−1, 1, 2, 2). So, equation for straight line between two points
is x = (6, 0, 3, 1)+ t(−1, 1, 2, 2) = (6− t, t, 3+2t, 1+2t) = f(t),
where 0 ≤ t ≤ 1 covers the line segment between two points.
Note f ′(t) = (−1, 1, 2, 2) and ‖f ′(t)‖ =

√
12 + 12 + 22 + 22 =√

10. So,
∫

C

x1 + x2

x3 − x4

dL =

∫ 1

0

(6 − t) + t

(3 + 2t) − (1 + 2t)

√
10dt = 3

√
10

∫ 1

0

dt = 3
√

10

(8) (Section 5.2, Problem 7) Find the mass of a wire in the shape
of a helix traced by

(

cos t, sin t, t
π

)

π ≤ t ≤ 3π if its density is
proportional to the distance of the point to the x − y plane.
Solution: From the statement the density (mass per unit length
in this case) ρ = k|z| for some constant of proportionality k. W
need to calculate M =

∫

C
k|z|dL We note that

x = (x, y, z) = f(t) =

(

cos t, sin t,
t

π

)

and so x = cos t, y = sin t and z = t
π

on the curve C for
π ≤ t ≤ 3π. Note z > 0 so, |z| = z. Further, ‖f ′(t)‖ =
√

sin2 t + cos2 t + 1

π2 =
√

π2+1

π
. So,

M =
k

π2

√
1 + π2

∫ 3π

π

tdt =
k

π2

√
1 + π2

[

t2/2
]3π

π
= 4k

√
1 + π2
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(9) (Section 5.2, Problem 14) Evaluate the line integral of the vector
field F(x, y) = (y, y + 1 − x2) over the path C that consists of
the segments from (5, -1) to (5, 2) and from (5, 2) to (0, 2).
Solution: We note that line integral over the path C (which
may be thought of as the total work by a force F for displace-
ment along C) is the sum

∫

C1

F ·dx+
∫

C2

F ·dx, where C1 is the

straigth line path from (5, -1) to (5,2) and C2 is the straight line
path from (5, 2) to (0, 2). On C1, x = (x, y) = (5,−1)+t(0, 3) =
(5,−1 + 3t) = f(t). So, dx = f ′(t)dt = (0, 3)dt and on C1,

∫

C1

F · dx =

∫

1

0

(

−1 + 3t,−1 + 3t + 1 − 52
)

· (0, 3)dt

=

∫ 1

0

3(3t− 25)dt =

[

9

2
t2 − 75t

]1

0

=
9

2
− 75 = −141

2

On C2 between from (5,2) to (0, 2), we have x = (x, y) =
(5, 2)+t(−5, 0) = (5−5t, 2) = g(t) for 0 ≤ t ≤ 1. Now, we have
dx = g′(t)dt = (−5, 0)dt and on C2, F = (2, 2 + 1 − (5 − 5t)2).
So, we have

∫

C2

F·dx =

∫ 1

0

(

2, 3 − (5 − 5t)2
)

·(−5, 0)dt =

∫ 1

0

(−10)dt = [−10t]1
0

= −10

So, total work done
∫

C

F · dx =

∫

C1

F · dx +

∫

C2

F · x = −141

2
− 10 = −161

2

(10) (Section 5.2, Problem 19) Evaluate
∫

C
(x2 + yz)dx + zdy + (y −

x)dz for C given by x = (t, 2t − 1,−8t + 2) for 0 ≤ t ≤ 1.
Solution: We note that x = t, dx = dt, y = 2t − 1, dy = 2dt,
z = −8t + 2, dz = −8dt. So,

∫

C

(x2 + yz)dx + zdy + (y − x)dz

=

∫ 1

0

[

(t2 + (2t − 1)(−8t + 2))dt + (−8t + 2)(2dt) + (2t − 1 − t)(−8dt)
]

=

∫ 1

0

[

−15t2 − 12t + 10
]

dt =
[

−5t3 − 6t2 + 10t
]1

0
= −1

(11) (Section 5.2, Problem 22) Find an expression for the work done
by the gravitational field F = (0, 0,−g) near the earth’s surface
on a particle of mass m that moves from the orgin to position
x0 = (a, b, c) along
a. the line segment from the origin to this point.
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b. the curve consisting from (0, 0, 0) to (a, 0, 0), (a, 0, 0) to
(a, b, 0), and (a, b, 0) to (a, b, c).
Solution to a. Note on the line segment x = t(a, b, c) =
(at, bt, ct), for 0 ≤ t ≤ 1. So, work done
∫ 1

0

(0, 0,−mg) · (adt, bdt, cdt) = −mgc

∫ 1

0

dt = −mgc

Solution to b. On the line segment from (0, 0, 0) to (a, 0, 0)
where x = (at, 0, 0), we have no work since Force (0, 0,−mg)
is orthogonal to dx = (adt, 0, 0). There is also no work done
on the line segment from (a, 0, 0) to (a, b, 0) since on that line
segement x = (a, 0, 0) + t(0, b, 0) and dx = (0, b, 0)dt, which
is again perpendicular to force (0, 0,−mg). So, the only work
done is on the line segment between (a, b, 0) and (a, b, c). In
this case x = (a, b, 0) + t(0, 0, c). So dx = (0, 0, c)dt. So, work
done
∫ 1

0

(0, 0,−mg) · (0, 0, c)dt = −mgc

∫ 1

0

dt = −mgc,

same work in case (a.).
(12) (Section 5.2, Problem 24) Show that

∫

−C
F · dx = −

∫

C
F · dx.

Solution: Take a representation for curve C: x = f(t) for
a ≤ t ≤ b. So,

∫

C

F · dx =

∫ b

a

F(f(t)) · f ′(t)dt

Since curve −C is defined to be same path as C, but traversed
in the opposite direction, i.e. start at point corresponding to
t = b and end at point corresponding to t = a. So,

∫

−C

F · dx =

∫ a

b

F(f(t)) · f ′(t)dt = −
∫ b

a

F(f(t)) · f ′(t)dt = −
∫

C

F · dx

(13) (Section 5.2, Problem 25) In example 5.2.7, suppose that the
rocket is propelled straight up from the earth’s surface to an al-
titude R2 which is much larger than Re (radius of the earth), ie.

R2 → +∞. Approximately how much energy will be required.
Solution: Note work done by the force that propels the object
to position R2 from the surface of the earth is (worked in class,
with slight change in notation R1 +Re− > R1 and R2 +Re− >
R2)

GMm

Re + R1

− GMm

Re + R2

→ GMm

Re + R1

as R2 → +∞
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The limit is the amount of energy expended.

(14) (Section 5.3, Problem 15) Calculate the iterated integral
∫

1

0

∫ ex

e−x

ln y
y

dydx.

Solution: Note that to calculate
∫

ln y
y

dy we substitute u =

ln y, then du = dy
y

. So
∫

ln y
y

dy =
∫

du
u

= ln |u| = ln | ln y|.
Therefore

∫

1

0

∫ ex

e−x

ln y

y
dydx =

∫

1

0

[ln | ln y|]y=ex

y=e−x
dx

=

∫ 1

0

[

ln | ln ex| − ln | ln(e−x|)
]

dx =

∫ 1

0

2(x − x)dx = 0

(15) (Section 5.3, Problem 16) Calculate the iterated integral
∫ π

8

0

∫ y

0
sec2 (x + y)dxdy.

Solution: We note that
∫

sec2(x + y)dx = tan(x + y). So,

∫ π

8

0

∫ y

0

sec2 (x + y) dxdy =

∫ π

8

0

[tan(x + y)]x=y
x=0

dy =

∫ π

8

0

[tan(2y) − tan y] dx

=

{

1

2
ln sec[2y] − ln sec[y]

}π/8

0

=
1

2
ln
(

sec
π

4

)

− ln
(

sec
π

8

)

(16) (Section 5.3, Problem 19) Calculate the double integral (area
integral)

∫ ∫

R
yexdA where R is the region bounded by the

parabola x = y2 and the line x = 5y.

(25,5)

x

y

x=y2

R x=5y

Figure 1. Region R bounded by x = 5y and x = y2

Solution: Note the region between the two curves x = y2 and
x = 5y intersect when y2 = 5y, implying y = 0 (in which case
x = 0 or y = 5 in which case x = 25. So, the intersection of
two curves have coordinates (0, 0) and (25, 5) as shown in the
figure. Note R can be treated as an x-simple region, with left



8

curve x = y2 and right curve x = 5y. So, we have
∫ ∫

R

yexdA =

∫ 5

0

∫ 5y

y2

yexdxdy =

∫ 5

0

[yex]x=5y
x=y2 dy =

∫ 5

0

ye5ydy−
∫ 5

0

yey2

dy

We note that on integration by parts
∫

ye5ydy =
1

5

∫

yd[e5y] =
y

5
e5y − 1

5

∫

e5ydy =
y

5
e5y − 1

25
e5y

Also, note on substituting u = y2 (in which case 2ydy = du),
we have

∫

yey2

dy =
1

2

∫

eudu =
1

2
eu =

1

2
ey2

So, from above,

∫ ∫

R

yexdA =

{

−ey2

2
+

y

5
e5y − e5y

25

}y=5

y=0

= −e25

2
+e25−e25

25
+

1

2
+

1

25
=

23

50
e25+

27

50

(17) (Section 5.3, Problem 29) Find the volume of the solid bounded
above by x2 + y2 + z2 = 16 and below by z = 1

6
(x2 + y2)(Set up

the integral only).

)

R

z=(16−x2−y
2 )

1/2

z=1/6 (x
2
+ y2

Figure 2. Solid bounded above by x2 + y2 + z2 = 16
and below by z = 1

6
(x2+y2). Note the projection of solid

in the x − y plane gives region R

Solution: The projection region R on the x−y plane is clearly
the shadow of the curve where the surface x2 + y2 + z2 = 16
intersects to z = 1

6
(x2+y2). Where the intersect, note x2+y2 =

6z = 16− z2. So, z2 + 6z − 16 = 0. So, the positive root of the
quadratic z = 2. Plugging in this value of z into x2 + y2 = 6z,
we obtain the boundary of region R in the x − y plane to be
x2+y2 = 12, a circle of radius

√
12 centered at (0, 0) in the x−y

plane. Treating this R as a y-simple region, we have upper curve
y =

√
12 − x2 = g2(x) and lower curve y = −

√
12 − x2 = g1(x).
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Note the range of x is x between −
√

12 and
√

12. At each
point (x, y)inR, we note that the height function of the column

between the two surfaces is h(x, y) =
√

16 − x2 − y2 − 1

6
(x2 +

y2). So, we have volume

V =

∫ ∫

R

h(x, y)dA =

∫

√
12

−
√

12

∫

√
12−x2

−
√

12−x2

[

√

16 − x2 − y2 − 1

6
(x2 + y2)

]

dydx

(18) (Section 5.3, Problem 35) R is the region in the x − y plane
bounded by curves y = x2 + 1 and y = x + 3 with density at
a point proportional to the distance from of that point to the
x-axis. Calculate the mass.

(2, 5)

x

y=x +3

y=x
2

+1 R(−1,2)

Figure 3. Region R bounded by y = x2 + 1 and y = x + 3

Solution: From the problem statement density σ(x, y) = k|y|.
Note that the intersection of the two curves occur where x+3 =
x2 + 1, or x2 − x − 2 = 0, implying x = 2 (corresponding
y = x + 3 = 5) or x = −1 for which y = x + 3 = 2. So, the
coordinates of the intersection points of two curves are (2,5)
and (-1, 2) as shown in the figure. We treat this conveniently
as a y-simple curve with a lower curve y = x2 + 1 = g1(x) and
an upper curve y = x + 3 = g2(x). The range of x is found
by looking at the x-coordinate of the intersection points–so x
is between -1 and 2. Therefore, since y > 0 in R, mass equals

∫ ∫

R

σ(x, y)dA =

∫ 2

−1

∫ x+3

1+x2

kydydx = k

∫ 2

−1

[

y2

2

]y=x+3

y=1+x2

dx =
k

2

∫ 2

−1

[

(x + 3)2 − (1 + x2)2
]

dx

=
k

2

∫ 2

−1

[

8 + 6x − x2 − x4
]

dx =
k

2

[

8x + 3x2 − x3

3
− x5

5

]2

−1

=
k

2

[

16 + 12 − 8

3
− 32

5
+ 8 − 3 − 1

3
− 1

5

]

=
117

10
k
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(19) (Section 5.3, Problem 39) Reverse the order of integration
∫ π

π/2

∫

sinx

0

f(x, y)dydx

arcsin y

x
Pi/2 Pi

R

y=sin xy=1

x=Pi−

Figure 4. Region R bounded between lower curve y =
0 and y = sin x, for π

2
≤ x ≤ π, which is the same

as the region between left curve x = π
2

and right curve
x = π − arcsin y, with 0 ≤ y ≤ 1

Solution: Looking at the limits, we have in the above integral
representation of R as a y-simple region with lower curve y = 0
and upper curve y = sin x and we are ranging from x = π

2

and x = π. So, we first plot the region R as shown in the
figure. If we now treat R as a x-simple region, we have left
curve x = π/2 = h1(y) and right curve x = π−arcsin y = h2(y)
(Note: it is not arcsin y which will give you a value for x ≤ π

2
)

since x ≥ π
2
. Since y = sin x has maximum value 1, and it

is attained at x = π
2
, so from the figure, we have range of y

between y = 0 and y = 1. Therefore,
∫ π

π/2

∫

sinx

0

f(x, y)dydx =

∫ ∫

R

f(x, y)dA =

∫

1

0

∫ π−arcsin y

π/2

f(x, y)dxdy


