Solution to Section 5.4, assigned April 23
(1) (Section 5.4, Problem 10) Evaluate the iterated triple integral
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(2) (Problem 5.4, Problem 14) Evaluate the volume integral (triple
integral) of f(x,y,2) = x? over S, where S is the solid bounded
by the paraboloids z = 2% + y? and z = 8 — 2% — °.
Solution:
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FI1GURE 1. Region S bounded above by paraboloid z =
8 —a? —y? and below by paraboloid z = 2% +%2. Surfaces
intersect on the curve 22 4+ y> = 4 = 2. So boundary of
the projected region R in the x — y plane is 22 + 3% = 4.

Where the two surfaces intersect z = 22 +y? = 8 — 22 — ¢%.
So, 222 + 2y? = 8 or 22 + 4% = 4 = 2, this is the curve at
the intersection of the two surfaces. Therefore, the boundary
of projected region R in the x — y plane is given by the circle

22 4+ 32 = 4. So R can be treated as a y simple region in the
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x — y plane, with upper and lower curves y = ++/4 — x? for
—2 < x < 2. Therefore,
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Substituting = = 2sin # and noting that dx = 2 cos 6df we get
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Using 512 cos? fsin® § = 128 sin?(26) = 64 (1 — cos[46]),
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Since the integral of cos[2m#@] for m = 1,2,3 is a multiple of
sin[2mf] which is zero at = 7/2, it follows that
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(3) (Section 5.4, Problem 18) Find the volume of the indicated solid
region S inside the cylinders 2% + y? = a? and 2% + 2% = a2
Solution: Consider only the part of S that lies in the region
x>0,y >0, 2> 0 From symmetry of the region under the
transformation r — —z, y — y and z — —z, it follows that
the volume of this region S; is %, where V is the volume of S.
We treat S; as an z-simple reglon in 3-D.



[> plot3d({sqrt(9-x"2), sqrt(9-y*2)},x=-3..3,y=-3..3);

FIGURE 2. Part of the region S bounded by 22+ 2? = a?
and 22 +y?> =a® forxz >0

Note that the projection of region S; on the y — z plane,
call it R is a a square 0 < y < a, 0 < z < a. We break
up R into two region Ry = {(y,2):a>y>22>0,} and Ry =
{(y,2) :a> 2>y >0}. Inregion (y,z) € Ry, z-ranges from
x = 0tox = +/a?—y? (since this is smaller than va? — 22.
In region (y,z) € Ry, z-ranges from x = 0 to x = va? — 22
(since this is smaller than /a? —y2. So, it follows that the

total volume of 57 is
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Therefore, volume of S'is V = La®.
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(Section 5.4, Problem 24). Find the centroid of the given solid
bounded by the paraboloids z = 1+ 2% +y? and z = 5 — 2% — ¢/
with density proportional to the distnace from the z = 5 plane.
Solution: From the problem statement, density p = k|z —5| =
k(5—z) since region is below plane z = 5. The plot of the region
S between the two paraboloids is similar to (Secion 5.4, Problem
14 ') we have solved above, whose projection R in the z—y plane
is bounded by the curve given by 1+ 2% +y? =5 — 22 — ¢?, or
2% 4+ y? = 2. So, we have mass
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Now, from symmetry of the shape, it follows that x. = 0 = y..
So, we only need to calculate
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So, z. = 36k — 3 and x, = (0,0, 3).
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(5) (Section 5.4, Problem 27) Reverse the order of integration ap-
propriate for a z-simple and z-simple regions.
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Solution: Since y ranges from 0 to y = 3y/1 — 22 — 2% /4, we
have the upper surface %Z + a2 + % = 1, which is an ellipsoid.
We also note that the projected region R in the x — z plane has
goes between z = 0 and x = /1 — 22/4, the latter being the
boundary of an ellipse, while z ranges from 0 to 2. Therefore,
it is clear that the region S is the first octant of an ellipsoid

bounded by z? + %2 + % =1.
Treating S as a z-simple region, we have lower surface z = 0

and upper-surface z = 24/1 — 22 — y—;. The projected region in

the x — v is the the inside of the ellipse 2 + %2 =1 in the first
quadrant, which may be described as a y-simple region in the
2-D x — y plane:

) 0<y<3vi=a0<s <1}

So, the integral above is the same as
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Treating S as a x simple region, we have for fixed y — 2z, x
. 2 22 . L
going from 0 to /1 — % — . The projected region in the y — 2

plane can be described as a z-simple region in the y — 2z plane
and described by
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So, the above integral is the same as
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(6) (Section 5.4, Problem 30) Using Theorem 5.4.3, determine whether

the integral [ [ [, zdV is positive, negative or 0, where S is the
solid bounded by the paraboloid z = —2? — y? and the plane
z = —4.



Solution: Note from the description of the region that f(x,y, z) =
z < 0in S. Therefore, from theorem 4.5.3, [ [ [¢zdV < 0.



