Homework Set 4: Math 6451, Due Monday, March 6th

1. Using the two approaches listed below as (a) and (b), find two different representation of solution to the following Initial-Boundary value problem for the heat equation:

$$u_t - \kappa u_{xx} = 0$$
 for $0 < x < l$; $u(x, 0) = \phi(x)$, $u(0, t) = 0 = u(l, t)$

Prove that for t > 0, u is infinitely differentiable both in x and t. Which representation is suitable for evaluation of solution for small t? Which one is suitable for large t? Explain.

- (a) Use method of successive reflection of source solutions.
- (b) Separation of variables.
- 2. Find solution to the problem of a circular vibrating membrane for 2-D :

$$u_{tt} - c^2 \Delta u = 0$$
 for $|\mathbf{x}| < 1$; $u(\mathbf{x}, 0) = \phi(\mathbf{x})$, $u_t(\mathbf{x}, 0) = 0$, $u(\mathbf{x}, t) = 0$ for $|\mathbf{x}| = 1$

What is the restriction on ϕ needed? **Hint:** You may want to use the information that the solution to $v'' + \frac{1}{r}v' + \left(\lambda^2 - \frac{m^2}{r^2}\right)v(r) = 0$ is given by a linear combination of Bessel functions $J_m(\lambda r)$ and $Y_m(\lambda r)$, where Y_m blows up at the origin. J_m is regular at the origin and has countably infinite zeros on the real line similar to the sin function. You can also use properties that follow for a suitable Sturm-Liouville operator.

3. Find solution in series form to Laplace's equation in 2-D in an annular domain $a < |\mathbf{x}| < 1$:

$$\Delta u = 0$$
; $u(\mathbf{x}) = \phi(\mathbf{x})$ for $|\mathbf{x}| = a$ and $u(\mathbf{x}) = \psi(\mathbf{x})$ for $|\mathbf{x}| = 1$

Show that $u(\mathbf{x})$ is infinitely differentiable for $a < |\mathbf{x}| < 1$, even when boundary data ϕ and ψ are simply continuous.

4. Prove Lemma 9 in week 7 notes.