
Week 1 notes: Math 6451

1 PDE: Order, Linear & Nonlinear

A differential equation involving more than one independent variable is called a partial differential
equation, abbreviated as PDE. The order of the highest derivative occurring in the PDE is defined
as the order of the PDE. For instance, the following equation

∂2u

∂x2
+
∂2u

∂y2
= −g(x, y) (1)

is a second order PDE for u, called Poisson’s equation in two variables (x, y) with a given source1

g. When g = 0, (1) is called Laplace equation in two variables. Another common PDE that
arises in many application is the heat or diffusion equation. In one space variable in the presence
of a source, this may be written as

∂u

∂t
= κ

∂2u

∂x2
+ g(x, t) , (2)

where κ is a constant called diffusivity, and g is called source, which is considered known.
As with ODEs, if the differential operator L is linear, i.e.

L(c1u1 + c2u2) = c1Lu1 + c2Lu2 (3)

for constant c1, c2, then Lu = g is called a linear differential differential equation. Each of (1)
and (2) above constitute a linear PDE since we can check easily the linearity of the corresponding

differential operators L = ∂2

∂x2 + ∂2

∂y2 or L = ∂
∂t −

∂2

∂x2 , acting on appropriate class of functions2

Note, that in (2), g = 0, then the PDE is linear and homogeneous.
Partial differential equations that are not linear are called nonlinear; the following semi-linear

heat equation is an example:
ut − uxx = u2, (4)

where for notational brevity, the partial derivatives are denoted by subscripts, and it is not
unusual to suppress the dependence of u on independent variables, when these are clearly un-
derstood.

As for ODEs, linear PDEs are usually simpler to solve or analyze than nonlinear PDEs.
Nonlinear PDEs arise in many applications; however, a general theory is much more limited,
with explicit solutions few and far between.

2 Some physical applications where PDEs arise

PDEs abound in physical sciences and engineering. Here, we give some examples.

1In the electro-static context when u is the electro-static potential, g is the charge density
2Classically, this would be C2(R2) in the first case and C2 in x and C1 in time for the second. However, this

set can be extended further by introducing the concept of weak solutions.
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2.1 Dispersion of pollutants in a reservoir

Consider predicting concentration ρ (in some units, say Kg/m3) of some pollutant as a function
of time t ≥ 0 for x ∈ Ω ⊂ R3 (This domain could be a reservoir for instance). Let the fluid
velocity field in Ω at time t be given by u(x, t) in some units (say m/sec). Assume the pollutant
is passive, implying that it does not affect fluid motion. Consider a small but fixed volume
V ⊂ Ω with smooth boundary ∂V centered at x as Figure 1. The mass of fluid inside V changes

 . x

V

δ V

n

F

Figure 1: Control Volume V for pollutant

at a rate d
dt

∫
V
ρ(y, t)dV . If no pollutant, is created or destroyed within V , this must equal the

rate at which pollutant enters V through its boundary ∂V . If F(y, t) (measured in a unit like
Kgm/m2/sec) is the flux across the boundary at a point y ∈ ∂V at time t, then it is clear that
the total inward flux of pollutant must be

−
∫
∂V

F · ndA ,

where n is the outward normal at y ∈ ∂V . A physically reasonable expression for flux is:

F = uρ− κ∇ρ

where the first term is caused by fluid motion u carrying pollutants due to what is called
advection , while the second term is flux due to molecular diffusion, called Fix’s law. Therefore,
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mass conservation of pollutants in the volume V leads to

d

dt

∫
V

ρ(y, t)dV = −
∫
∂V

n · (uρ− κ∇ρ) dA (5)

This is the case with no source. If there is a source emitting pollutants at a rate g(x, t) per unit
volume (measured in, say, Kgm/m3/sec units) within V , then (5) is replaced by

d

dt

∫
V

ρdV = −
∫
∂V

n · (uρ− κ∇ρ) dA+

∫
V

gdV (6)

If we assume ρ(x, t) is C1 in time t, and C2 in space x, and g to be C0 in x, then it follows from
taking t-derivative inside the volume integral and using Gauss’s divergence theorem that∫

V

(
∂ρ

∂t
+∇ · [(uρ− κ∇ρ]− g

)
(y, t)dV = 0

Since this is true for any control volume V , it follows that for any x ∈ Ω for t ≥ 0,

∂ρ

∂t
+∇ · [(uρ− κ∇ρ] = g (7)

However, if we think physically, we cannot expect to predict pollutant density ρ for given u and
g just based on (7) since initial value ρ(x, 0) must be relevant as must the conditions at the
boundary ∂Ω. So, for prediction of ρ, we must append to (7) the initial condition

ρ(x, 0) = ρ0(x) (8)

for given ρ0. Appropriate boundary conditions depend very much on the physical circumstances.
If we assume no pollutant escapes the reservoir Ω, then the normal flux component at the
boundary

(uρ− κ∇ρ) · n = 0 for x ∈ ∂Ω (9)

Further simplifications of the PDE (7) is possible with additional assumptions. If the fluid
is incompressible, i.e. ∇ · u = 0 and κ is a constant, (7) reduces to

∂ρ

∂t
+ u · ∇ρ = κ∆ρ+ q (10)

where ∆ = ∇ · (∇) = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

for x = (x1, x2, x3) ∈ R3 is referred to as the Laplacian

operator. Equation (10) is referred to as the diffusion-advection equation with source term. In
the special case, when there is no source and diffusion is small and we have a one-dimensional
constant flow u(x, t) = c e1, then (10) reduces to

∂ρ

∂t
+ c

∂ρ

∂x1
= 0 (11)

whose solution (we can check) is given by

ρ(x1, x2, x3, t) = f(x1 − ct, x2, x3) (12)
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for some arbitrary C1 function f . If we require satisfaction of initial condition (8), then it is
clear that f = ρ0. This is a wave travelling along the positive x1 axis with constant speed c.
This means that in the absence of diffusion, whatever the concentration is at point (x1, x2, x3) at
t = 0 is now transported downstream to the point (x1 + ct, x2, x3), as expected physically. Note
that the approximation where diffusion is totally neglected resulting in solution (12) is generally
inconsistent with flux boundary boundary condition (9), since there is no freedom left once we
require f = ρ0.

Another interesting limit of (10) is when advection is negligible compared to diffusion, i.e.
when we set fluid velocity u = 0. We obtain the diffusion or heat equation3

ρt = ∆ρ+ g (13)

The equilibrium solution in this case is found by seeking solution to Poisson equation:

∆ρ = −g (14)

For constant u and g, we can find explicit expression for the full equation (10) in simple geome-
tries, as we will learn later. For more complicated geometries, there exists no explicit method
for finding solutions; however, using mathematical analysis, we can prove existence, uniqueness
and some valuable properties of such solutions.

It is to be noted that in the derivation of (7) from (6), we assumed a priori that solution
was indeed smooth enough in x and t to allow derivatives inside the integral and use divergence
theorem. When these conditions are not met, a more fundamental equation based on the physics
is given by (6). Indeed, in a general mathematical study of equations such as (7), the assumption
of differentiability in x and t is weakened by introducing the notion of weak solution. Instead of
satisfying (7), we may require for instance that that ρ(x, t) satisfy∫ ∞

0

∫
Ω

[φtρ+∇φ · (uρ+ κ∇ρ) + gφ] dV dt = 0 (15)

for any smooth function φ with compact support, i.e. vanishes outside a bounded set in Ω×R+. If
we require that (15) is satisfied and it turns out ρ ∈ C2(Ω)∩C1(R+), then clearly on integration
by parts (7) is satisfied. However, the weak solutions satisfiying (15) is more general since they
do not require solutions to be as differentiable. We will discuss weak solutions in more details
later in the quarter.

2.2 Vibrating String

Consider a flexible, elastic homogeneous string of length l with constant linear density ρ, mea-
sured in units of mass/length. Suppose it undergoes transverse vibration like a guitar or violin
string. At a given instant of time t, the shape locally looks like what is shown in thick outline
in Figure 2. Assume that the string motion is restricted to a plane. Let u(x, t) be the vertical
displacement from equilibrium at time t at position x. For a perfectly flexible string, the tension
(force) is directed tangentially along the string. Let T (x, t) denote the magnitude of the tension
tension vector T(x, t). We shall apply Newton’s law of motion for the part of the string between

3So named because temperature also satisfies the same equaton when heat flux occurs through molecular
diffusion only
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x = x0 and x = x1. The slope of the string at x1 is clearly ux(x1, t). The component of forces in
the horizontal direction must be in balance when there is no motion in that direction implying

T (x1, t)√
1 + u2

x(x1, t)
− T (x0, t)√

1 + u2
x(x0, t)

= 0 (16)

The upward component of the net forces must equal mass times acceleration of the portion of
string between x0 and x1. Hence, using arclength s increasing with x,

Tux(x1, t)√
1 + u2

x(x1, t)
− Tux(x0, t)√

1 + u2
x(x0, t)

=

∫ x1

x0

uttρ
ds

dx
dx (17)

In the case, when u(x, t) is C2 in x, we may write (17) as∫ x1

x0

{(
Tux√
1 + u2

x

)
x

− ρ
√

1 + u2
xutt

}
dx

Since this is true for any interval (x0, x1), it follows that(
Tux√
1 + u2

x

)
x

− ρ
√

1 + u2
xutt = 0 (18)

On the otherhand (16) implies

∂x

(
T√

1 + u2
x

)
= 0 (19)

In the case when ux is small, i.e. small slope, (18), neglecting quadratic terms in ux, we obtain
from (19) that T is a constant, while (18) results in (Tux)x = ρutt, or

utt − c2uxx = 0 where c =

√
T

ρ
(20)

General solution to (20) is of the form

u(x, t) = f(x− ct) + g(x+ ct) (21)

where f and g are arbitrary C2 functions of x and t. This corresponds to superposition of a
wave moving to the right and a wave moving to the left. f and g that are determined completely
by initial and boundary conditions. If the string corresponds to x ∈ (0, l), then fixed end points
would correspond to u(0, t) = u(l, t) = 0. From physical considerations, initial conditions would
correspond to specifying both the initial displacement u(x, 0) and initial velocity ut(x, 0). We
will discuss more in details later on how to find f and g from initial and boundary conditions.

Variations of (20) including friction, transverse elastic force or externally applied forces. Also,
it is possible to generalize by introducing concept of appropriate weak solution so that (22) would
indeed be the weak solution even when f and g are not in C2.
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Figure 2: Section of Vibrating string between x = x0 and x = x1

2.3 Electro-magnetic waves

Consider Maxwell’s equations in free medium for electric and magnetic fields E(x, t) and B(x, t).
In the Gaussian CGS system of units, they are given by:

∇ ·E = 0 (22)

∇×B− 1

c
Et = 0 (23)

∇×E +
1

c
Bt = 0 (24)

∇ ·B = 0 (25)

Taking curl of (24), using (22), (23) and the vector identity ∇× (∇×E) = −∆E+∇(∇ ·E), it
follows that

∆E =
1

c2
Ett (26)

In a similar manner, eliminating E between (23) and (24) and using (25), we obtain

∆B =
1

c2
Btt (27)

Therefore, each scalar component of E and B satisfy the linear wave equation in 2-D or 3-D:

∆u =
1

c2
utt (28)

The solution to (26) and (27) have to be subject again to initial and boundary conditions. A
physically reasonable initial condition will be to specify both E(x, 0) and B(x, 0). For a finite
domain Ω in x, we may specify for instance E or B on the boundary ∂Ω or a combination of
components of E and B at the boundaries, the latter is common for instance with a conducting
boundary.

As in 1-D, the higher dimensional wave equation allows for propagating waves, in this case
propagating with speed c. If the electro-magnetic wave is emitted due oscillation of current in
a loop, then there is a current term on the right of (23). This results in a forcing term on the
right of (26) and (27) and we obtain an inhomogeneous wave equation. You can check out texts
in electrodynamics (for instance Jackson) for other interesting examples.
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2.4 Dirichlet, Neumann and Robin Boundary Conditions for 2nd order
PDEs

In a more general context of solving wave equation (28), or for that matter any problem with
second order spatial derivative like diffusion equation (13) or Laplace equation (14), if we specify
u on ∂Ω, this constitutes the Dirichlet Boundary conditions. If the normal derivative ∂u

∂n is
specified instead, it is referred to as the Neumann BC. A boundary condition in the form of
specified ∂u

∂n + au = c on ∂Ω will be called a Robin boundary condition.

3 Well-Posed Problems

A PDE in a domain Ω, together with initial and boundary conditions, is well-posed if the following
properties are valid:

1. Existence: There is at least one solution to the problem that satisfies all conditions.

2. Uniqueness: There is at most one solution.

3. Stability: The unique solution depends continuously, with respect to some norm, on ini-
tial and boundary conditions. More precisely, let solutions u1 and u2 correspond to ini-
tial/boundary data u1,0 and u2,0. Stability implies that for any ε > 0, there exists δ > 0
such that if ‖u1,0 − u2,0‖ < δ, then ‖u1 − u2‖ < ε.

For a physical problem modeled by a PDE, one has to formulate physically realistic auxiliary
conditions (like initial and boundary conditions) which together makes a well-posed problem.
The mathematician has to prove if a problem is well-posed or not, since modeling usually involves
approximation and it is a priori unclear whether the approximations are all consistent. Reliance
on physical intuition alone is not always enough. If too few auxiliary conditions are given,
the problem may not have unique solution and is therefore underdetermined. If too many are
specified, the solution may not have any soluton and the problem is overdetermined.

The stability property (iii) is required in models of physical problems, since data is never
measured exactly. You cannot distinguish between a set of data from a tiny perturbation of it
(in sense of any physically relevant norm). The solution ought not to be signficantly affected
by such tiny perturbations, as otherwise one loses all predictability. A model is not physically
sensible without this stability.

For example, if we consider inhomogeneous wave equation

utt − c2uxx = f(x, t) for (x, t) ∈ (0, L)× (0,∞) (29)

with auxiliary conditions

u(x, 0) = φ(x) , ut(x, 0) = ψ(x) ; u(0, t) = g(t) ; u(L, t) = h(t) (30)

The data for this problem involves five functions f , g, φ, ψ and h. So, in order for problem to
be well-posed, (29) with auxiliary conditions (30) must have a unique solution and the solution
has to depend continuously with respect to small changes in each of these five functions.

We can be more precise in our description of continuous dependence on initial/boundary
condition. Suppose u, v denote solutions to PDEs with with boundary and initial conditions
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uB , vB and u0, v0 respectively. Continuous dependence implies that for any any ε > 0, there
exists δ so that if ‖uB − vB‖+ ‖u0 − v0‖ < δ implies ‖u− v‖ < ε. For time evolution problems
involving t ∈ (0,∞), in defining continous depedence on data, we typically require the above
conditions only on t ∈ (0, T ) for fixed T .

Consider an example of an ill-posed problem:

utt + uxx = 0 for (x, t) ∈ D = (−∞,∞)× (0,∞) (31)

with initial condition

u(x, 0) = g(x) , ut(x, 0) = h(x) where g, h are 2π periodic function (32)

Note u = v = 0 is an obvious solution when g = h = 0. We also note on substitution into (31)
that u(x, t) = 1

ne
−
√
n sin(nx) sinh(nt) is a solution to (31) and this satisfies

u(x, 0) =
1

n
e−
√
n sin(nx) ut(x, 0) = e−

√
n cos(nx) (33)

Now for given T > 0 over the interval (0, T ) for a finite ε 6= 0 (say ε = 1), for any δ > 0 we can
choose n ∈ Z+ large enough so that

‖u(·, 0)− v(·, 0)‖∞ =
1

n
e−
√
n < δ , ‖ut(·, 0)− vt(·, 0)‖∞ = e−

√
n < δ , (34)

yet

‖u− v‖∞ =
1

n
e−
√
n sinh(nT ) > 1 (35)

Therefore, the (31)-(32) does not have continuous dependence on initial condition, at least in
the ‖ · ‖∞ norm, and therefore the problem is ill-posed. In general, it is possible for a problem
to be ill-posed in one norm and well-posed in another. However, in this particular example, the
problem is ill-posed on any physically sensible norm.
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