
Week 10 Lectures, Math 6451, Tanveer

1 An existence proof for Dirichlet problem for ∆u = 0

The purpose of this Week’s lectures is to prove existence of solution to the Dirichlet problem
for Laplace’s equation for a general bounded domain Ω ⊂ Rn.

∆u = 0 in Ω ⊂ Rn , u = g on ∂Ω (1)

Remark 1 (Restriction on Domain) Besides boundedness, it will be assumed that that
for each boundary point ξ ∈ ∂Ω, it is possible to construct ball B = BR(y) in the exterior
of Ω so that B̄ ∩ Ω̄ = {ξ}. This is certainly the case if ∂Ω is a C2 curve, but is true more
generally.

First we recall the following result for a ball:

Theorem 1 Let B ⊂ Rn be a ball of radius R centered at the origin, with u = g on ∂B.
Then, for x ∈ B,

u(x) =
R2 − |x|2

nωnR

∫
∂B

g(|y|dy
|x− y|n

, (2)

where ωn is the volume of an unit Ball in Rn.

Proof. Recall the Greens function for the Dirichlet problem on a sphere of radius R in

Rn is given by G(x,y) = G0(|x− y|)−G0

(
|y|
R
|x− y∗|

)
(see Week 8 notes, page 6), where

y∗ = R2

|y|2 y, G0(r) = 1
(2−n)nωn

r2−n is the Free space Green’s function (see Week 8 notes, page

1). We then use the Green’s identity involving a harmonic u:

u(x) =

∫
y∈∂Ω

∂G

∂ny

(y,x)g(y)dy (3)

to obtain the desired statement after some calculations that is left as an exercise.

1.1 Subharmonic Functions

Definition 2 u ∈ C0(Ω̄) is called subharmonic (superharmonic), if for every ball B with
B̄ ⊂ Ω and each function h ∈ C0(B̄) that is harmonic in B with u ≤ h (u ≥ h) on ∂B, we
have u ≤ h (u ≥ h) in B.
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Remark 2 Note that if ∆u ≥ 0 (∆u ≤ 0) with u ≥ h (u ≤ h on ∂Ω), then from maximum
principle u is subharmonic (superharmonic). However, the definition above is weaker in
the sense that subharmonic (superharmonic) u need not be in C2(Ω). However, we will call
∆u ≥ 0 (∆u ≤ 0) as the strongly subharmonic (superharmonic) functions.

Lemma 3 If u is subharmonic and v is superharmonic with v ≥ u on ∂Ω, then either
v > u in Ω or v = u everywhere.

Proof. Suppose u−v assumes its maximum M at some point x0 ∈ Ω, where with M ≥ 0.
If u − v = M through out, then since ∆(u − v) = 0, and u − v ≤ 0 on ∂Ω, maximum
principle implies M = 0. Suppose this is not the case. Then, we can choose a ball B
centered at x0 so that u−v < M at some point in B. From continuity of u−v, there exists
some open set with nonzero measure where u − v < M . Suppose ū and v̄ are harmonic
functions in B so that on ∂B, ū = u and v̄ = v. Then, using strong maximum principle
for harmonic functions, we have

M = u(x0)− v(x0) ≤ ū(x0)− v̄(x0) < sup
x∈∂B

(ū− v̄) (x) = sup
x≤∂B

(u(x)− v(x) ≤M , (4)

which is a contradiction. Therefore u− v < 0 in Ω, unless u = v everwhere.

Lemma 4 Let u be subharmonic in Ω and let B be a ball with B̄ ⊂ Ω. Let ū be the
harmonic function in B satisfying ū = u on ∂B. Then, the function

U(x) =

{
ū(x) for x ∈ B

u(x) for x ∈ Ω \B (5)

is subharmonic as well with U(x) ≥ u(x).

Proof. Clearly by assumption ū is harmonic in B with u = ū on ∂B; therefore since u is
subharmonic in B, it follows u ≤ ū = U in B. In Ω \ B, by definition, u = U . Therefore
for every x ∈ Ω, u(x) ≤ U(x). Further, for a harmonic h with u ≤ h, we note U = u ≤ h
on ∂B, then harmonicity of of ū implies that ū ≤ h in B̄. Therefore, from definition of of
U , for any x ∈ Ω, U(x) ≤ h(x). and U is therefore subharmonic.

Definition 5 For any subharmonic u, U defined by 5 is called the harmonic lifting of u in
B.

Lemma 6 If {u1, u2, ..um} is a set of subharmonic functions, so is

U = max {u1, u2, ..um}

Proof. The proof is left as an exercise.
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1.2 Equicontinuity and convergence of family of harmonic func-
tions

We now introduce the concept of equi-continous family of functions. This will be useful
later in our proof of existence of the Dirichlet problem.

Definition 7 A family of functions {fm}∞m=1 defined in S ⊂ Rn is equicontinuous at x ∈ S
if, for every ε > 0, there exists δ indpendent of m so that |y − x| < δ implies |fm(y) −
fm(x)| < ε.

Remark 3 Note that if the the set S is compact (i.e. closed and bounded set in Rn),
then {fm} is uniformly equi-continuous, i.e. δ in the above definition is independent of x.
We also note that equi-continuity of a family {fm} at x follows if we can show that f ′m(x)
exists and is bounded independent of m.

Theorem 8 (Arzela-Ascoli Theorem) Let {fm}∞m=1 be a sequence of equi-continuous func-
tions on a compact set S ⊂ Rn with |fm(x)| ≤ M , independent of m. Then, there exists a
subsequence

{
fmj

}∞
j=1

which converges uniformly on S

Proof. Since S is compact, we take a sequence of points {xi}∞i=1 dense in S. Consider
{fm(x1)}m which is is a bounded sequence of numbers, and therefore has a convergent sub-
sequence. Call this subsequence m1,j, i.e. fm1,j

(x1) converges as j →∞. Since
{
fm1,j

(x2)
}

is also a bounded sequence of real numbers, there exists a subsequence of m1,j call it m2,j

so that fm2,j
(x2) converges. Note that since m2,j is a subsequence of m1,j, fm2,j

(x1) also
converges. We keep going by taking subsequence m3,j of m2,j so that fm3,j

(x3) converges
and from construction also converges at x1 and x2. It is clear that in this manner the
sequence gj := fmj,j

converges at each point x1, x2, x3 .. as j → ∞. Now, we want to
prove that gm is uniformly Cauchy in S. Take any ε > 0. Since gm is uniformly continuous
(because it is a subsequence of fm) there exists δ > 0 independent of m, so that if x,y ∈ S
with

∣∣∣x − y
∣∣∣ < δ, then

∣∣∣fm(x) − fm(y)
∣∣∣ < ε/3. Also, since S is compact, there exists a

finite set of points {x1,x2, ..xK} so that any x ∈ S is in a δ neighborhood of some xj. We

choose N large enough so that for m, l ≥ N ,
∣∣∣gm(xi)−gl(xi)

∣∣∣ < ε
3

for any i = 1, ..K. Then,∣∣∣gm(x)− gl(x)
∣∣∣ ≤ ∣∣∣gm(x)− gm(xj)

∣∣∣+
∣∣∣gm(xj)− gl(xj)

∣∣∣+
∣∣∣gl(xj)− gl(x)

∣∣∣ < ε (6)

3



Theorem 9 Let Ω ⊂ Rn. Let fm be a sequence of harmonic functions on Ω which is
uniformly bounded, i.e. |fm(x)| ≤ M for every x ∈ Ω. Then, fm has a subsequence that
converges to a harmonic function on Ω, uniformly on compact subsets of Ω.

Proof. Define compact subsets Ωk ⊂ Ω so that

Ωk =

{
x ∈ Ω : |x| ≤ k, dist (x, ∂Ω) ≥ 1

k

}
(7)

It is clear that Ω = ∪∞k=1Ωk. If x ∈ Ωk For each point x0 ∈ Ωk, we apply Theorem 1 on a
ball B1/(2k)(x) centered at x0 to obtain

∇fm(x0) =
1

nωn

∫
|y−x0|= 1

2k

(
∇x

1/(4k2)− |x− x0|2

|x− y|n

)
x=x0

fm(y)dy , (8)

which immediately implies that ∣∣∣∇f(x0

∣∣∣ ≤ CM (9)

for some constant C independent of m and x0. From Arzela-Ascoli theorem, there exists
a subsequence that converges in Ωk. Through a standard diagonalization procedure, it is
possible to obtain a subsequence of a subsequence of a subsequence that converges for each
x to a funciton f and that this convergence is uniform for each compact set Ωk. Further,
using Theorem 1 again, for any fixed point x ∈ B1/(2k)(x0)

f(x) = lim
j→∞

fm,j(x) =
(1/(2k)2 − |x|2

nωn

∫
|y−x0|=1/(2k)

lim
j→∞

fm,j(y)

|x− y|n
dy

=
(1/(2k)2 − |x|2

nωn

∫
|y−x0|=1/(2k)

f(y)

|x− y|n
dy (10)

It may be verified directly (by applying operator ∆x) that the right most term is harmonic
function in x ∈ B1/(2k)(x0) for any a priori continuous f ; hence from the equation above f
is harmonic. By choosing x0 suitably, the harmonicity of f for any x ∈ Ωk follows.

1.3 Proof of solution to ∆u = 0 for Dirichlet B.C.

Definition 10 A subsolution v for the Dirichlet problem with data g ∈ C0(∂Ω) is defined
to be a function v ∈ C2(Ω)∩C0(Ω̄) satisfying ∆v ≥ 0 with v ≤ g on ∂Ω Similarly, a super
solution w for the Dirichlet problem is defined to be a function v ∈ C2(Ω)∩C0(Ω̄) satisfying
∆w ≤ 0 with v ≥ g on ∂Ω.
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Remark 4 Prior discussions related to use of maximum principle x imply that a subsolu-
tion is subharmonic and a supersolution is superharmonic and that v ≤ w for any sub-super
solution pair (v, w) for given g. Further, the set of sub or super solution is nonempty for
any g ∈ C0(∂Ω) since a sufficiently small constant is a subsolution, where as a suffiently
large constant is a supersolution.

Definition 11 Define Sg to be the set of all subsolutions corresponding to given g ∈
C0(∂Ω).

u = sup
v∈Sg

v (11)

Remark 5 The sup in the above definition always exist since any supersolution is an upper
bound.

Lemma 12 u defined above satisfies ∆u = 0 in Ω.

Proof. For some x ∈ Ω consider a sequence of vm ∈ Sg with the property

lim
m→∞

vm(x) = u(x) (12)

Note vm(x) is bounded from above, and vm can be chosen to be bounded from below (by
replacing if necessary vm by max {v0, vm}), where v0 is any subsolution). Choose R so that
B = BR(x) ⊂ Ω and let Vm be the harmonic lifting of vm (see Definition 5) with respect to
B. Then vm ≤ Vm → u as m → ∞ since Vm is itself subharmonic and cannot exceed the
u. So, applying Theorem 8, there exists a subsequence

{
Vmj

}∞
j=1

that converges on B, the

convergence being uniform in compact subset of B, and the function it converges to, call
it v, must be harmonic. Clearly v ≤ u in B. We shall now prove that v = u in B, which
would imply that u is harmonic in Ω since the argument can be repeated in any ball with
different centers in Ω.

Assume this is not the case; that there exists y ∈ B so that v(y) < u(y). Then there
exists fuctinion W ∈ Sg such that v(y) < W (y). Let wj = max

(
W,Vmj

)
and let Wj be

the harmonic lifting of wj with respect to B. As before a subsequence of Wj will converge
to a function w which is harmonic in B. Clearly, we have v ≤ w on B (from construction
of wj and the harmonic lifting process) and further, v(x) = w(x), since

u(x) ≥ w(x) ≥ v(x) = lim
j→∞

Vmj
(x) ≥ lim

j→∞
vmj

(x) = u(x)

By strong maximum principle v = w in B, contradicting the choice of W . Therefore, v = w
in B. Since this process can be repeated for ball centered at any x ∈ Ω, it follows that
u(x) thus constructed is harmonic.
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Remark 6 We now wish to prove that as x→ ∂Ω, with u constructed as before, has the
property u → g. Recall from restriction on the domain Ω, we we assumed that for each
boundary point ξ ∈ ∂Ω, it is possible to construct ball B = BR(y) in the exterior of Ω so
that B̄ ∩ Ω̄ = {ξ}.

Definition 13 Define
w(x) = R2−n − |x− y|2−n , if n ≥ 3

w(x) = log
|x− y|
R

It is easily checked that w is harmonic (and therefore superharmonic) and that w(x) > 0
in Ω.

Lemma 14 Let u be the harmonic function in Ω constructed above and let ξ ∈ ∂Ω. Then
u(x)→ g(ξ) as x→ ξ

Proof. For ε > 0, let M = sup∂Ω |g|. Let w be as defined above and we first choose δ so

that
∣∣∣g(x)− g(ξ)

∣∣∣ < ε for
∣∣∣x− ξ

∣∣∣ < δ. Now choose k large enough so that kw(x) > 2M for

x ∈ Ω,
∣∣∣x− ξ

∣∣∣ ≥ δ. The function g(ξ) + ε + kw(x) and g(ξ)− ε− kw(x) are respectively

supersolution and sub solution in Ω corresponding to g and therefore,

g(ξ) + ε+ kw(x) ≥ u(x) ≥ g(ξ)− ε− kw(x)

Since w(x)→ 0 as x→ ξ, the Lemma follows immediately.
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