Week 10 Lectures, Math 6451, Tanveer

1 An existence proof for Dirichlet problem for Au =0

The purpose of this Week’s lectures is to prove existence of solution to the Dirichlet problem
for Laplace’s equation for a general bounded domain 2 C R".

Au=0 in QCR" ,u=gon 02 (1)

Remark 1 (Restriction on Domain) Besides boundedness, it will be assumed that that
for each boundary point € € 912, it is possible to construct ball B = Bg(y) in the exterior
of ) so that BN Q = {&}. This is certainly the case if 99 is a C? curve, but is true more
generally.

First we recall the following result for a ball:
Theorem 1 Let B C R" be a ball of radius R centered at the origin, with u = g on 0B.

Then, for x € B,
R? — |x[? / 9(lyldy
R Jop [x—yl"

u(x) =

(2)

where wy, 1s the volume of an unit Ball in R™.

PrOOF. Recall the Greens function for the Dirichlet problem on a sphere of radius R in
R™ is given by G(x,y) = Go(|x —y|) — Go <%|X — y*|> (see Week 8 notes, page 6), where

y* = ‘;%—liy, Go(r) = (2_73)7“% r?~" is the Free space Green’s function (see Week 8 notes, page

1). We then use the Green’s identity involving a harmonic wu:

u(x) = / 9G4 x)g(y)dy (3)

con Ony

to obtain the desired statement after some calculations that is left as an exercise. O

1.1 Subharmonic Functions

Definition 2 u € C°(Q) is called subharmonic (superharmonic), if for every ball B with
B C Q and each function h € C°(B) that is harmonic in B withuw < h (u > h) on B, we
have w < h (u > h) in B.



Remark 2 Note that if Au > 0 (Au < 0) with u > h (u < h on 09), then from maximum
principle w is subharmonic (superharmonic). However, the definition above is weaker in
the sense that subharmonic (superharmonic) u need not be in C?(2). However, we will call
Au >0 (Au < 0) as the strongly subharmonic (superharmonic) functions.

Lemma 3 If u is subharmonic and v is superharmonic with v > u on OS2, then either
v >un 2 orv=u everywhere.

PROOF. Suppose u— v assumes its maximum M at some point xq € €2, where with M > 0.
If w— v = M through out, then since A(u —v) = 0, and u — v < 0 on Jf2, maximum
principle implies M = 0. Suppose this is not the case. Then, we can choose a ball B
centered at xg so that u—v < M at some point in B. From continuity of © — v, there exists
some open set with nonzero measure where u — v < M. Suppose © and v are harmonic
functions in B so that on 0B, &« = u and v = v. Then, using strong maximum principle
for harmonic functions, we have

M = u(xg) — v(x9) < u(xg) — 9(x9) < xseua% (u—0)(x)= xsga% (u(x) —v(x) <M, (4

which is a contradiction. Therefore u — v < 0 in 2, unless u = v everwhere. O
Lemma 4 Let u be subharmonic in 0 and let B be a ball with B C ). Let u be the
harmonic function in B satisfying u = u on OB. Then, the function

B u(x) forx € B
Ulx) = { u(x) forx € Q\ B (5)

is subharmonic as well with U(x) > u(x).

PRrROOF. Clearly by assumption « is harmonic in B with © = % on dB; therefore since u is
subharmonic in B, it follows u < @ = U in B. In Q\ B, by definition, u = U. Therefore
for every x € 0, u(x) < U(x). Further, for a harmonic h with u < h, we note U =u < h
on OB, then harmonicity of of @ implies that @ < h in B. Therefore, from definition of of
U, for any x € Q, U(x) < h(x). and U is therefore subharmonic. o

Definition 5 For any subharmonic u, U defined by 5 is called the harmonic lifting of u in
B.

Lemma 6 If {uy,us,..un} is a set of subharmonic functions, so is
U = max {uy, ug, ..t}

PROOF. The proof is left as an exercise. O



1.2 Equicontinuity and convergence of family of harmonic func-
tions

We now introduce the concept of equi-continous family of functions. This will be useful
later in our proof of existence of the Dirichlet problem.

Definition 7 A family of functions { fi} -_, defined in S C R™ is equicontinuous at x € S
if, for every € > 0, there exists 0 indpendent of m so that |y — x| < 0 implies | f(y) —

fm(X)| < e.

Remark 3 Note that if the the set S is compact (i.e. closed and bounded set in R"),
then {f,,} is uniformly equi-continuous, i.e. ¢ in the above definition is independent of x.
We also note that equi-continuity of a family {f,,} at x follows if we can show that f/ (x)
exists and is bounded independent of m.

Theorem 8 (Arzela-Ascoli Theorem) Let { f,,}.°_, be a sequence of equi-continuous func-
tions on a compact set S C R™ with |f,,(x)| < M, independent of m. Then, there exists a
subsequence {fmj}j; which converges uniformly on S

PROOF. Since S is compact, we take a sequence of points {x;};~, dense in S. Consider
{fm(x1)},, which is is a bounded sequence of numbers, and therefore has a convergent sub-
sequence. Call this subsequence my j, i.e. f,,, (X1) converges as j — co. Since { fn, . (x2)}
is also a bounded sequence of real numbers, there exists a subsequence of m; ; call it ma ;
so that f,, (x2) converges. Note that since my; is a subsequence of my j, fi, (x1) also
converges. We keep going by taking subsequence ms; of ms; so that f,, (x3) converges
and from construction also converges at x; and x5. It is clear that in this manner the
sequence g; = fmjﬂj converges at each point x;, Xo, X3 .. as j — oco. Now, we want to
prove that g,, is uniformly Cauchy in S. Take any € > 0. Since g,, is uniformly continuous
(because it is a subsequence of f,,,) there exists § > 0 independent of m, so that if x,y € S

with ‘x — y’ < 0, then ‘fm(x) — fm(y)‘ < €/3. Also, since S is compact, there exists a
finite set of points {xi, X, ..xx } so that any x € S is in a ¢ neighborhood of some x;. We

choose N large enough so that for m,l > N, ’gm(xi) —aqi(x;)

< gforanyi=1,.K. Then,

9 (%) = 913)| < | (30) = g (3%7)| + g (37) = 1(3))| + |an(3)) = gix)| < € (6)



Theorem 9 Let 2 C R™. Let f,, be a sequence of harmonic functions on £ which is
uniformly bounded, i.e. |fn(X)] < M for every x € Q. Then, f, has a subsequence that
converges to a harmonic function on S, uniformly on compact subsets of ).

PROOF. Define compact subsets €2, C €2 so that
1
Q= {X € Qx| < k,dist (x,00) > E} (7)

It is clear that Q0 = U2 ;. If x € € For each point x( € (2;, we apply Theorem 1 on a
ball By ) (x) centered at xy to obtain

/|yx0|:1 (vx1/ (4k?) — |x — XOP)XXO £ )y .

Ix —y"

V fm(x0) =

Wy,

which immediately implies that

‘Vf(xo‘ <CM (9)

for some constant C' independent of m and xy. From Arzela-Ascoli theorem, there exists
a subsequence that converges in §2,. Through a standard diagonalization procedure, it is
possible to obtain a subsequence of a subsequence of a subsequence that converges for each
x to a funciton f and that this convergence is uniform for each compact set 2. Further,
using Theorem 1 again, for any fixed point x € By (ar)(X0)

F(x) = lim foy(x) = (1/(2k)? — |x|2/ i Jmi () dy
ly—xo|=1/(2k)

e MGn j=oo x =y

(1/(2k)* — [x|* / fy)
|

nwy y—xol=1/(2k) X = ¥["

dy (10)

It may be verified directly (by applying operator Ay) that the right most term is harmonic
function in x € By /(ak)(Xo) for any a priori continuous f; hence from the equation above f
is harmonic. By choosing xq suitably, the harmonicity of f for any x € € follows. O

1.3 Proof of solution to Au = 0 for Dirichlet B.C.

Definition 10 A subsolution v for the Dirichlet problem with data g € C°(0Q) is defined
to be a function v € C*(Q) NC°(Q) satisfying Av > 0 with v < g on O Similarly, a super
solution w for the Dirichlet problem is defined to be a function v € C?(Q)NC°(Q) satisfying
Aw <0 with v > g on 0f).



Remark 4 Prior discussions related to use of maximum principle x imply that a subsolu-
tion is subharmonic and a supersolution is superharmonic and that v < w for any sub-super
solution pair (v,w) for given g. Further, the set of sub or super solution is nonempty for
any g € C°(09Q) since a sufficiently small constant is a subsolution, where as a suffiently
large constant is a supersolution.

Definition 11 Define Sy to be the set of all subsolutions corresponding to given g €
C(09).

u = sup v (11)
vESy

Remark 5 The sup in the above definition always exist since any supersolution is an upper
bound.

Lemma 12 u defined above satisfies Au = 0 in €.

PROOF. For some x € ) consider a sequence of v,, € S, with the property

77%i_:r)noo U (%) = u(x) (12)
Note v,,(x) is bounded from above, and v,, can be chosen to be bounded from below (by
replacing if necessary v, by max {vg, v, }), where vy is any subsolution). Choose R so that
B = Bg(x) C 2 and let V,,, be the harmonic lifting of v,, (see Definition 5) with respect to
B. Then v,, <V,, — u as m — oo since V,, is itself subharmonic and cannot exceed the
u. So, applying Theorem 8, there exists a subsequence {ij }j; that converges on B, the
convergence being uniform in compact subset of B, and the function it converges to, call
it v, must be harmonic. Clearly v < u in B. We shall now prove that v = v in B, which
would imply that u is harmonic in {2 since the argument can be repeated in any ball with
different centers in €.

Assume this is not the case; that there exists y € B so that v(y) < u(y). Then there
exists fuctinion W € S, such that v(y) < W(y). Let w; = max (W, V,,,) and let W; be
the harmonic lifting of w; with respect to B. As before a subsequence of W; will converge
to a function w which is harmonic in B. Clearly, we have v < w on B (from construction
of w; and the harmonic lifting process) and further, v(x) = w(x), since

u(x) > w(x) > v(x) = jlirgo Vin, (%) > jlirgo U, (X) = u(x)
By strong maximum principle v = w in B, contradicting the choice of W. Therefore, v = w
in B. Since this process can be repeated for ball centered at any x € €2, it follows that
u(x) thus constructed is harmonic. O



Remark 6 We now wish to prove that as x — 02, with u constructed as before, has the
property u — g. Recall from restriction on the domain €2, we we assumed that for each
boundary point & € 00, it is possible to construct ball B = Bg(y) in the exterior of Q so
that BN Q = {¢}.

Definition 13 Define
w(x) =R —|x—y[*",if n>3

w(x) = log x -yl

R

It is easily checked that w is harmonic (and therefore superharmonic) and that w(x) > 0
in €.

Lemma 14 Let u be the harmonic function in €2 constructed above and let & € 0S). Then
u(x) = g(§) asx —§

PROOF. For € > 0, let M = supyg |g|]. Let w be as defined above and we first choose § so
that ‘g(x) - g(E)‘ < € for ‘x - 5’ < 4. Now choose k large enough so that kw(x) > 2M for

x €, ’X — 5‘ > 0. The function g(§) + € + kw(x) and g(&) — € — kw(x) are respectively
supersolution and sub solution in €2 corresponding to g and therefore,

9(&) + e+ kw(x) > u(x) = g(§) — € — kw(x)

Since w(x) — 0 as x — &, the Lemma follows immediately. O



