
Week 11 Lectures, Math 6451, Tanveer

1 Nonlinear hyperbolic equations
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Figure 1: Intersecting characteristics for t > tb

As discussed earlier in this course, in the context of Burger’s equation ut + uux =
0, solutions to nonlinear hyperperbolic equations are usually characterized by singularity
formation. Classical solution do not generally exist beyond a finite time and we are forced
to consider weak solutions. However, typically such solutions are not unique and additional
conditions are needed to get a unique solution. To see this recall that solution to inviscid
Burger’s equation

ut + uux = 0 , u(x, 0) = F (x) , for x ∈ R , t > 0 (1)

is given by
u = F (ξ) , where x = ξ + tF (ξ) (2)

In the above ξ is implicitly determined in terms of (x, t) by inverting the above relation,
which is possible for t small enough so that

1 + tF ′(ξ) > 0 (3)

There is no restriction on t when F ′ > 0, and the classical solution exists for all time since
the mapping ξ → x is 1-1 for any time t > 0. However, generically, there exists nonempty
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set S− where F ′ < 0 and classical solutions exists only for t ∈ (0, tb), where

tb = inf
ξ∈S

−

1
∣

∣

∣
F ′(ξ)

∣

∣

∣

(4)

For t > tb, characteristics intersect and we have more than one ξ corresponding to the same
x in some region in the x− t plane, as sketched in Fig. 1. Classical solutions do not make
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Figure 2: Obtaining weak solution by applying equal area rule for t > tb

sense for t > tb. Reconstruction of u(x, t) = F (ξ) through local inversion of x = ξ + tF (ξ)
leads to a multi-valued function sketched in Fig. 2 for some range of x.

We now construct a weak solution, for which u jumps across x = Xs(t) for t > tb.
This is shown by the vertical line that divides the inverted S-shaped region in the u − x
plane into two shaded regions show in Fig. 2. Let ξ = ξ1 correspond to the uppermost
intersection point of x = Xs(t) with the S shaped curve in Fig. 2, while ξ = ξ2 > ξ1
corresponds to the lowermost intersection point of this vertical line. We note that ξ → x
mapping is 1-1 for ξ ∈ (−∞, ξ1) and for ξ ∈ (ξ2,∞). So,

u(x, t) = F (ξ(x, t)) , for ξ /∈ (ξ1, ξ2) (5)

will satisfy ut + uux = 0 for x < Xs(t) and x > Xs(t). We note however that u(X−
s (t), t) =

F (ξ1) and u(X+
s (t), t) = F (ξ2) and there is a jump of F (ξ2) − F (ξ1) of u across the
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x = Xs(t), referred to usually as a shock. Since both characteristics corresponding to ξ1
and ξ2 correspond to the same x = Xs, we obtain

x = Xs(t) = ξ1 + tF (ξ1) = ξ2 + tF (ξ2) (6)

To obtain a weak reformulation of ut +uux = 0, we write this as ut +(u2/2)x = 0, multiply
by by an arbitrary test function φ(x, t) and integrate in x and t. Integration by parts gives

0 =

∫

R

∫

R

(

φtu+
1

2
u2φx

)

dxdt (7)

We examine the conditions on Ẋs so that the solution constructed in (5) with jump across
x = Xs(t) for t > tb satisfies (7), which may be written as

0 =

∫

R

{

∫ Xs(t)

−∞
+

∫ ∞

Xs(t)

}

(

φtu+
1

2
u2φx

)

dxdt (8)

We note

∫

R

{

∫ Xs(t)

−∞
+

∫ ∞

Xs(t)

}

φtudxdt =

∫

R

∂t

[{

∫ Xs(t)

−∞
+

∫ ∞

Xs(t)

}

φudxdt

]

−
∫

R

{

−Ẋs

[

u(X+
s (t), t) − u(X−

s (t), t)
]

φ(Xs(t), t)
}

dt−
∫

R

{

∫ X−

s (t)

−∞
+

∫ ∞

X+
s (t)

}

utφdxdt

(9)

while

∫

R

{

∫ Xs(t)

−∞
+

∫ ∞

Xs(t)

}

φx
u2

2
dxdt =

∫

R

{

∫ Xs(t)

−∞
+

∫ ∞

Xs(t)

}

∂x

[

φ
u2

2

]

dxdt

=

∫

R

{

−1

2

[

u2(X+
s (t), t) − u2(X−

s (t), t)
]

φ(Xs(t), t)

}

dt

−
∫

R

{

∫ X−

s (t)

−∞
+

∫ ∞

X+
s (t)

}

uuxφdxdt (10)

Therefore, adding (9) and (10), and using ut + uux = 0, for (x, t) 6= (Xs(t), t), we obtain

0 =

∫ ∞

tb

dtφ(Xs(t), t)

{

Ẋs(t)
[

u(X+
s (t), t) − u(X−

s (t), t)
]

− 1

2

[

u2(X+
s (t), t) − u2(X−

s (t), t)
]

}

(11)
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Since this has to be true for arbitary test function φ, we obtain a weak solution if

Ẋs(t) =
1

2

(

u(X+
s (t), t) + u(X−

s (t), t)
)

=
1

2
[F (ξ2) + F (ξ1)] , (12)

From (6), we also get
Ẋs(t) = (1 + tF ′(ξ1)) ξ̇1 + F (ξ1) (13)

Ẋs(t) = (1 + tF ′(ξ2)) ξ̇2 + F (ξ2) (14)

Averaging the two equation and using (12), we obtain

0 =
1

2
ξ̇1 (1 + tF ′(ξ1)) +

1

2
ξ̇2 (1 + tF ′(ξ2)) (15)

Using t = − ξ2−ξ1
F (ξ2)−F (ξ1)

, which follows from (6), we obtain from (15)

0 =
ξ̇1
2

(F (ξ1) − F (ξ2))−
ξ̇1
2

(ξ1 − ξ2)F
′(ξ1)+

ξ̇2
2

(F (ξ1) − F (ξ2))−
ξ̇2
2

(ξ1 − ξ2)F
′(ξ2) , (16)

which leads to

1

2

{

ξ̇1F
′(ξ1) + ξ̇2F

′(ξ2)
}

(ξ1 − ξ2) +
1

2
(F (ξ1) + F (ξ2))

(

ξ̇1 − ξ̇2

)

= ξ̇1F (ξ1) + ξ̇2F (ξ2) (17)

Integration in time from t = tb when ξ1 = ξ2, i.e. when shock forms gives rise to

1

2
(F (ξ1) − F (ξ2)) (ξ1 − ξ2) =

∫ ξ2

ξ1

F (ξ)dξ (18)

This corresponds to the equal area rule, requiring that the two shaded region on two sides
of the vertical line x = Xs in Fig. 2 have equal areas since

0 =

∫ ξ2

ξ1

u(ξ)xξdξ =

∫ ξ2

ξ1

F (ξ) (1 + tF ′(ξ)) dξ =

∫ ξ2

ξ1

F (ξ)dξ +
t

2

(

F 2(ξ2) − F 2(ξ1)
)

, (19)

which on using t = − ξ2−ξ1
F (ξ2)−F (ξ1)

leads to (18).

However, mathematically, equal area rule (18) (or the equivalent expression (12) for
shock speed Ẋs ) is not the only possibility for weak solution. Instead of putting inviscid
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Burger’s equation in the i.e. conservation form ut + (u2/2)x = 0 and multiplying by φ to
obtain a weak formulation, one can instead note that Burger’s equation is equivalent to

∂t

(

u2

2

)

+ ∂x

(

u3

3

)

= 0 (20)

To obtain an alternate weak formulation, we multiply (20) by test function φ and integrate
by parts to obtain

∫

R

∫

R

(

1

2
u2φt +

1

3
u3φx

)

dxdt = 0 (21)

Going through the same arguments as before, we obtain a weak solution with x = Xs(t)
determined by

1

2
Ẋs

(

F 2(ξ2) − F 2(ξ1)
)

=
1

3

(

F 3(ξ2) − F 3(ξ1)
)

(22)

The above gives rise to a distinctly motion of the shock motion than (12); therefore, weak
solutions are not unique.

To determine which weak solution is appropriate to the physical problem we can insert
physically appropriate dissipation in the problem. Suppose, we determine νuxx is an ap-
propriate viscous correction to right hand side of Burger’s equation. We now examine the
limiting solution as ν → 0+.

1.1 Viscous Burger’s Equation and Cole-Hopf transformation

Consider the viscous Burger’s equation

ut + uux = νuxx , x ∈ R , t > 0 ,with u(x, 0) = F (x) (23)

We seek solution in the form:

u = −2νψx

ψ
(24)

After some algebra, we you may check that ψ satisfies the heat equation

ψt = νψxx ,with ψ(x, 0) = ψ0(x) := exp

[

− 1

2ν

∫ x

0

F (t)dt

]

(25)

The transformation (24) which converts the nonlinear equation (23) into the linear heat
equation (25) is usually referred to as the Cole-Hopf transformation. Recall that the
solution to (25) is given by

ψ(x, t) =
1√
4πνt

∫ ∞

−∞
ψ0(y) exp

[

−(x− y)2

2νt

]

(26)
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Therefore, using (24)

u(x, t) =

∫ ∞
−∞

(x−y)
t

exp
[

−G(y;x,t)
2ν

]

dy

∫ ∞
−∞ exp

[

−G(y;x,t)
2ν

]

dy
(27)

where

G(y; x, t) =
(y − x)2

2t
+

∫ y

0

F (y′)dy′ (28)

The following Lemma will be useful in determining the asymptotic behavior of (27) as
ν → 0+.

Lemma 1 Assume
∫ b

a

∣

∣

∣
Q(y)

∣

∣

∣
e−ν−1P (y)dy exists for ν ∈ (0, ν0) for some ν0 > 0 and P ∈

C3(a, b), with P ′ = 0 at y = y0 ∈ (a, b), while P ′(y) 6= 0 for y 6= y0 in (a, b). Also assume
P ′′(y0) > 0 and Q is continuous in a neighborhood of y0. Then, as ν → 0+,

∫ b

a

Q(y)e−ν−1P (y)dy =

√

2πν

P ′′(y0)
Q(y0)e

−ν−1P (y0) (1 + o(1)) (29)

Proof. From given condition P has a minimum at y0. Choose ǫ > 0. Choose δ = ν5/12

and ν > 0 small enough so that for y ∈ (y0 − δ, y0 + δ),
∣

∣

∣
Q(y) −Q(y0)

∣

∣

∣
≤ ǫ (30)

∫

(a,b)\(y0−δ,y0+δ)

∣

∣

∣
Q(y)

∣

∣

∣
exp

[

−ν−1P (y)
]

dy ≤ ǫν1/2e−P (y0) (31)

exp

[

−ν−1

(

−P (y) + P (y0) +
1

2
P ′(y0)(y − y0)

2

)]

< ǫ , for y ∈ (y0 − δ, y0 + δ) (32)

The conditions (30)-(32) are possible to satisfy for small enough ν since Q ∈ C0 in a
neighborhood of y0, P

′′(y0) > 0 with lower bound independent of ν and P ∈ C3(a, b). In
particular as far as showing (31), we note that for some C > 0 independent of ν,

ν−1
∣

∣

∣
P

(

y0 ± ν5/12
)

− P (y0)
∣

∣

∣
≥ Cν−1/6 (33)

We break up the
∫ b

a
=

∫ y0−δ

a
+

∫

y0+δ
. We note that

eν−1P (y0)

∫ y0+δ

y0−δ

Q(y) exp
[

−ν−1P (y)
]

dy = Q(y0)

∫ y0+δ

y0−δ

exp
[

−ν−1 (P (y)− P (y0))
]

dy

+

{
∫ y0+δ

y0−δ

(Q(y) −Q(y0)) exp
[

−ν−1 (−P (y) + P (y0))
]

dy

}

(34)
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From conditions (30)-(32), it follows that

∫ y0+δ

y0−δ

Q(y) exp
[

−ν−1P (y)
]

dy ∼
√

2πν

P ′′(y0)
e−ν−1P (y0) (1 + Cǫ) (35)

Therefore, the lemma follows.

Corollary 2 In the case P (y) has multiple minimum in the interval (a, b) at points yj, for
j = 1, ..n with P ′′(yj) > 0, while other conditions of previous Lemma hold, then

∫ b

a

Q(y)e−ν−1P (y)dy =
n

∑

j=1

√

2πν

P ′′(yj)
Q(yj)e

−ν−1P (yj) (1 + o(1)) (36)

Proof. We simply further subdivide the interval (a, b) into smaller intervals so that there
exists only one minimum in each sub-interval. Applying previous Lemma, the corollary
follows.

Remark 1 When multiple minimum are present, but one of the P (yj) is smaller than the
rest, then only one contribution need to retained in (36) since others are exponentially small
in ν.

Using the above Lemma and Corollary, it follows that as ν → 0+, we have from (27)

∫ ∞

−∞

x− y

t
e−

G(y;x;t)
2ν dy ∼ (x− ξ)

t

√

4πν

G′′(ξ)
exp

[

−G(ξ; x, t)

2ν

]

, (37)

∫ ∞

−∞

x− y

t
e−

G(y;x;t)
2ν dy ∼

√

4πν

G′′(ξ)
exp

[

−G(ξ; x, t)

2ν

]

, (38)

where y = ξ is determined from Gy(y; x, t) = 0, i.e.

F (ξ) − (x− ξ)

t
= 0 , implying x = ξ + tF (ξ) (39)

and from (37) and (38) used in (27), we obtain as ν → 0+,

u(x, t) ∼
(

ξ − x

t

)

= F (ξ) (40)

7



Also, note that Gyy(ξ; x, t) = 1
t

+ F ′(ξ). Therefore, as ν → 0, we recover the solution to
ut +uux = 0 obtained through method of characteristic. However, when there are two local
minimum points of G, i.e Gy(y; x, t) = 0 for y = ξ1, ξ2, this corresponds to intersection
of multiple characteristics and we know from prior discussion that classical solutions of
ut + uux = 0 will not make sense. Let’s examine the limit ν → 0+ of the viscous Burger’s
equation. Assume ξ1, ξ2, are distinct roots of Gy(y; x, t) = 0 for given (x, t). Then,

∫ ∞

−∞

x− y

t
e−

G(y;x;t)
2ν dy ∼ (x− ξ1)

t

√

4πν

G′′(ξ1)
exp

[

−G(ξ1)

2ν

]

+
(x− ξ2)

t

√

4πν

G′′(ξ2)
exp

[

−G(ξ2)

2ν

]

(41)
∫ ∞

−∞
e−

G(y;x;t)
2ν dy ∼

√

4πν

G′′(ξ1)
exp

[

−G(ξ1; x, t)

2ν

]

+

√

4πν

G′′(ξ2)
exp

[

−G(ξ2; x, t)

2ν

]

(42)

If G(ξ1) < G(ξ2), the smallness of ν implies that only the terms containing the exponential
exp [−G(ξ1; x, t)] is important, the other one being exponentially smaller. Therefore, we
will have in such cases

u(x, t) ∼∼
(

x− ξ1
t

)

= F (ξ1) , (43)

while for G(ξ1) > G(ξ2), we have

u(x, t) ∼ x− ξ2
t

= F (ξ2) , (44)

On the otherhand, if G(ξ1; x, t) = G(ξ2; x, t), then both exponentials in (41) and (42) are
important. Note that this happens when

∫ ξ1

0

F (y)dy +
(x− ξ1)

2

2t
=

∫ ξ2

0

F (y)dy +
(x− ξ2)

2

2t
(45)

Further since Gy(ξ1; x, t) = 0 = Gy(ξ2; x, t), it follows that

x = ξ1 + tF (ξ1) = ξ2 + tF (ξ2) (46)

Using this, (45) may be rewritten as

1

2
(F (ξ1) + F (ξ2)) (ξ1 − ξ2) =

∫ ξ2

ξ1

F (η′)dη′ (47)

This is the equal area rule obtained for weak solutions discussed before. Only one of the
weak solution formulation is consistent with the limit ν → 0+.
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2 Shock Structure

We now seek to determine behavior of u close to x = Xs(t) for small ν. This can be
determined by looking for traveling wave solution u = u(x − ct) to the viscous Burger’s
equation. We obtain

−cuX + uuX = νuXX (48)

We seek solution to (48) for which u → u1 as X → −∞ and u → u2 as X → ∞, where
u1 > u2. The velocity of the shock c = 1

2
(u1 + u2). We note on integration

−cu+
u2

2
= νuX − A

2
,where A = 2cu1 − u2

1 = u1u2 (49)

Then, separation of variable leads to

X

2ν
=

∫ u du′

(u′ − u1)(u′ − u2)
+B =

1

u1 − u2

(

log
u1 − u

u− u2

)

(50)

Therefore,
u1 − u

u− u2
= B exp

[

(u1 − u2)

2ν
X

]

(51)

We may set B = 1 with appropriate choice of origin of X. We may note that this solution
is expected to describe the inner-structure of any shock, even time dependent ones, since
the above calculation only relies on the variable Z = (u1−u2)

2ν
X tending to ±∞. Any fixed

X 6= 0, notice Z → ±∞ as ν → 0+.

3 Time Evolution of a step profile

In the last section we found a steady shock profile. We now show that if we had an initial
step profile, i.e.

u(x, 0) = u1 , for x < 0 , and u(x, 0) = u2 for x > 0 (52)

for viscous Burger’s equation. Then, from Cole-Hopf transformation, we obtain

u(x, t) =

∫

R

x−y
t

exp
[

−G(y;x,t)
2ν

]

dy

∫

R
exp

[

−G(y;x,t)
2ν

]

dy
(53)

G(y; x, t) =

∫ y

0

F (ξ)dξ +
(x− y)2

2t
(54)
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We note that for y < 0,

G(y; x, t) = u1y +
(y − x)2

2t
(55)

G(y; x, t) = u2y +
(y − x)2

2t
(56)

Then, we obtain

∫

R

exp

[

− 1

2ν
G(y; x, t)

]

dy =

∫ 0

−∞
exp

[

−(y − x)2

4νt
− u1y

2ν

]

+

∫ ∞

0

exp

[

−(y − x)2

4νt
− u2y

2ν

]

(57)
After some algebra, you write the result as

u = u2 +
u1 − u2

1 + h exp
[

u1−u2

2ν
(x− ct)

] , (58)

where

h =

∫ ∞
−(x−u2t)/

√
4νt
e−ζ2

dζ
∫ ∞
(x−u1t)/

√
4νt
e−ζ2dζ

(59)

For fixed x
t

in the range u2 <
x
t
< u1, h → 1 as t → ∞ and the solution approaches the

steady solution of the last section.
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