
Week 12 Lecture Notes, Math 6451, Tanveer

1 Introduction to Energy Methods for existence of

solution

We now seek to illustrate the energy method to prove existence of solution to evoluationary
PDE. We choose the simple case of 1-D Burger’s equation for presentational simplicity:

ut − uxx + uux = 0 , x ∈ (0, 1) , t > 0 , (1)

with initial and boundary conditions

u(x, 0) = u0(x) , , u(0, t) = 0 = u(1, t) , (2)

where u0 is a real valued function. With an attempt to avoid heavy mathematical machinery
in the proof, we will assume u

(iv)
0 ∈ L2(0, 1). This is not necessary; it turns out u′0 ∈ L2(0, 1)

suffices. We will prove the following theorem by energy method

Theorem 1 If u
(iv)
0 ∈ L2(0, 1), for any T > 0, there exists classical solution to the initial

value problem (1)-(2)

The proof of this theorem will have to await some preliminary lemmas. The energy method
for existence of solution consists of three essential steps:

1. Determine upper bounds on L2 norms of u and its higher derivative. This process is
called a priori ‘energy’ estimates since estimates are based on a u satisfying (1)-(2).

2. Appeal to ODE theory to get local in time solution to a finite dimensional approxi-
mation un of (1)-(2) satisfying the same energy bounds as u.

3. Appeal to some compactness argument to show that there exists a subsequence of
{un}∞n=1 that converges and that the limiting solution u satisfies (1)-(2)

2 A priori energy estimate

In this section, we will prove the following proposition

Proposition 2 If smooth classical solution u(·, t) to (1)-(2) exists for t ∈ [0, T ], then if

u
(iv)
0 ∈ L2(0, 1), then ‖∂jxu‖L2(0,1) ≤ C for some constant C independent of t, T and only

depends on ‖u(iv)0 ‖L2(0,1).
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The proof will involve a lengthy calculation, which we will initiate after some preliminaries.
In the following, the notation (·) denotes the L2(0, 1) real valued inner-product and ‖ · ‖
denoted the L2(0, 1) norm, while ‖ · ‖∞ will denote the sup norm in space. The following
simple statement is most useful in obtaining energy bounds.

Lemma 3 (Gronwall): Assume k(t), g(t) ∈ C0 and a(t) ∈ C1 for t ≥ 0 and it satisfies

a′(t) ≤ k(t)a(t) + g(t) (3)

then

a(t) ≤ µ(t)a(0) +

∫ t

0

µ(t)

µ(τ)
g(τ)dτ , where µ(t) = exp

[∫ t

0

k(τ)dτ

]
(4)

Proof. Note (3) on multiplication by µ−1 implies

a′(t)

µ(t)
− k(t)a(t)

µ(t)
≤ g(t)

µ(t)

Then, using the fact that d
dt
µ−1 = −kµ−1, it follows that

d

dt

(
a

µ

)
≤ g(t)

µ(t)

Integration leads to
a(t)

µ(t)
− a(0)

µ(0)
≤
∫ t

0

µ−1(s)g(s)ds

Using µ(0) = 1, we obtain

a(t) ≤ a(0)µ(t) +

∫ t

0

µ(t)

µ(s)
g(s)ds

and the lemma follows.

Remark 1 Gronwall’s Lemma as stated above does not prevent a(t)→ −∞. However, it
is used mostly in situations where a(t) > 0 in which case, we have a useful bound on a.

Lemma 4 The following statements hold:

1. If vx ∈ L2(0, 1) and v satisfies v(0) = 0 = v(1), then ‖v‖ ≤ ‖v‖∞ ≤ ‖vx‖.

2. If vxx ∈ L2(0, 1), with v(0) = 0 = v(1), then ‖vx‖ ≤ ‖vx‖∞ ≤ ‖vxx‖.
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Proof.

v(x) =

∫ x

0

vxdx , implies |v(x)| ≤
∫ 1

0

|vx|dx ≤ ‖vx‖

using Cauchy-Schwartz inequality. Therefore, ‖v‖∞ ≤ ‖vx‖. Further, from integral expres-
sion for ‖ · ‖, it follows at once that ‖v‖ ≤ ‖v‖∞. The first part of the Lemma follows.

For the second part, since vxx ∈ L2(0, 1), from integration by parts it follows that
(φj, vxx) = −π2j2 (φj, v) = −π2j2bj. Therefore, Parseval’s equality applied to the L2(0, 1)
basis {φj}∞j=1 implies that

∞∑
j=1

j4π4b2j = ‖vxx‖2

Therefore,

‖∂xv‖∞ = ‖ d
dx

∞∑
j=1

bj sin(jπx)‖∞ ≤
∞∑
j=1

|bj|jπ ≤
1

π

(
∞∑
j=1

1

j2

)1/2

‖vxx‖ =
1

π

√
π2

6
‖vxx‖ ≤ ‖vxx‖

From integral expression ‖ · ‖, ‖vx‖ ≤ ‖vx‖∞.

Remark 2 While the fundamental theorem of calculus is being used above in the first
part of the proof, if v is not so regular, we can replace a sequence of smooth functions vn
satisfying vn(0) = 0 = vn(1) so that ∂xvn converges to ∂xv in the L2(0, 1) sense. We can
use the above to show that {vn}n is a Cauchy sequence in the sup norm and hence v is
continuous.

Now, we determine a priori energy bounds on u and its derivatives. Taking inner-
product of (1) with u and use∫ 1

0

utudx =
1

2

d

dt

∫ 1

0

u2dx ,

∫ 1

0

uuxxdx = −
∫ 1

0

u2xdx ,

∫ 1

0

u2uxdx =

[
u3

3

]1
0

= 0

to obtain
d

dt

1

2
‖u(·, t)‖2 + ‖ux(·, t)‖2 = 0 (5)

Time integration leads to

1

2
‖u(·, t)‖2 +

∫ t

0

‖ux(·, τ)‖2dτ =
1

2
‖u0‖2 =: E0 (6)
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It follows that each of ‖u(·, t)‖ and
∫ t
0
‖ux(·, τ)‖2dτ is bounded as long as solution exists.

From Lemma 4 and (6), it follows that∫ t

0

‖u(·, τ)‖2∞dτ ≤
∫ t

0

‖ux(·, τ)‖2dτ ≤ E0 (7)

Taking the x derivative of (1) results in

∂tux − uxxx = −∂x(uux) (8)

Inner product of (8) with ux, using uxx = 0 at x = 0, 1 which follows from (1), we obtain
on integration by parts

d

dt

1

2
‖ux‖2 + ‖uxx‖2 = (uxx, uux) ≤ ‖u(·, t)‖∞‖ux‖‖uxx‖ (9)

Using cd ≤ 1
2
c2 + 1

2
d2, where c = ‖uxx‖ and d = ‖u(·, t)‖∞‖ux‖, (9) implies

d

dt

1

2
‖ux‖2 +

1

2
‖uxx‖2 ≤

1

2
‖u(·, t)‖2∞‖ux‖2 (10)

This implies
d

dt
‖ux‖2 ≤ k(t)‖ux‖2 , where k(t) = ‖u(·, t)‖2∞ (11)

Using Gronwall’s lemma on (11), this time with a(t) = ‖ux‖2 and g(t) = 0, we obtain from
(7),

‖ux(·, t)‖2 ≤ ‖u′0‖2 exp

[∫ t

0

k(τ)dτ

]
≤ ‖u′0‖2eE0 =: E1 (12)

From Lemma 4, applied to v = u,

‖u(·, t)‖2∞ ≤ ‖ux(·, t)‖2 ≤ ‖u′0‖2eE0 = E1 (13)

Note maximum principle gives the bound ‖u(·, t)‖∞ ≤ ‖u0‖∞. Now, returning to (10) and
carrying out time integration, we have

‖ux(·, t)‖2 +

∫ t

0

‖uxx(·, τ)‖2dτ ≤ ‖u′0‖2 +

∫ t

0

k(τ)‖ux(·, τ)‖2dτ (14)

Dropping ‖ux(·, t)‖2 on the left hand side of (14), and using (12) to estimate the right hand
side, we obtain∫ t

0

‖uxx(·, τ)‖2dτ ≤ ‖u′0‖2 + ‖u′0‖2
∫ t

0

k(τ) exp

[∫ τ

0

k(τ ′)dτ ′
]
dτ

≤ ‖u′0‖2 exp

[∫ t

0

k(τ)dτ

]
≤ ‖u′0‖2eE0 = E1 (15)

4



However, the derivation (16) solely based on energy argument is signicant since similar
ideas are sometimes applicable when maximum principle does not hold. Going back to
(14) and ignoring ‖ux(·, t)‖2 on the left side, using (12), we obtain∫ t

0

‖uxx(·, τ)‖2dτ ≤ ‖u′0‖2 + ‖u′0‖2
∫ t

0

k(τ) exp

[∫ τ

0

k(τ ′)dτ ′
]
dτ

≤ ‖u′0‖2 exp

[∫ t

0

k(τ)dτ

]
≤ ‖u′0‖2eE0 = E1 (16)

Using second part of Lemma 4, with v = u, (16) implies∫ t

0

‖ux(·, τ)‖2∞dτ ≤ ‖u0‖2eE0 = E1 (17)

Now, consider Energy bounds on ‖uxx‖. Taking two derivatives of (5) with respect to x,
results in

uxxt − uxxxx = −∂x
(
u2x + uuxx

)
= −3uxuxx − uuxxx (18)

We note that since u, uxx is zero at x = 0, 1, it follows from (20) that uxxxx = 0 at x = 0, 1.
Inner-product of (20) with uxx, and using uxx = 0 at x = 0, 1, integration by parts leads to

1

2

d

dt
‖uxx‖2+‖uxxx‖2 = − (uxx, 2uxuxx)+(uxxx, uuxx) = 5 (uxxx, uuxx) ≤ 5‖u(·, t)‖∞‖uxxx‖‖uxx‖

(19)
Again using cd ≤ 1

2
c2 + 1

2
d2, with c = uxxx and d = 5‖u(·, t)‖∞‖uxx‖, it follows that

5‖u(·, t)‖∞‖uxx‖‖uxxx‖ ≤
1

2
‖uxxx‖2 +

25

2
k(t)‖uxx‖2 (20)

with k(t) given by (11). Then (19) implies

1

2

d

dt
‖uxx‖2 +

1

2
‖uxxx‖2 ≤

25

2
k(t)‖uxx‖2 (21)

Dropping 1
2
‖uxxx‖2 on the left of (21) and using Gronwall’s Lemma, we have

‖uxx‖2 ≤ ‖u′′0‖2 exp

[
25

∫ t

0

k(τ)dτ

]
≤ ‖u′′0‖2e25E0 =: E2 (22)

Going back to (21) and doing time integration and using (22), we obtain∫ t

0

‖uxxx(·, τ)‖2dτ ≤ ‖u′′0‖2 + 25

∫ t

0

k(τ)‖uxx(·, τ)‖2dτ ≤ E2 (23)
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From ‖ux‖∞ ≤ ‖uxx‖, (22) implies∫ t

0

‖uxx(·, τ)‖2∞dτ ≤ ‖u′′0‖2e25E0 = E2 (24)

This implies On taking third derivative of (1) with respect to x, we obtain

uxxxt − uxxxxx = ∂x (−3uxuxx − uuxxx) (25)

Inner product with uxxx, using u, uxx, uxxxx = 0 at the boundary points, we obtain on
integration by parts

1

2

d

dt
‖uxxx‖2 + ‖uxxxx‖2 = (uxxxx, 3uxuxx + uuxxx)

≤ 3‖ux‖∞‖uxxxx‖‖uxx‖+‖u‖∞‖uxxx‖ ≤ ‖uxxxx‖2+
9

2
‖ux(·, t)‖2∞‖‖uxx‖2+

1

2
‖u(·, t)‖2∞‖uxxx‖2

(26)

Using Lemma ?? with v = uxx, ‖uxx‖ ≤ ‖uxxx‖ and therefore (26) implies

d

dt
‖uxxx‖2 ≤

(
9‖ux(·, t)‖2∞ + ‖u(·, t)‖2∞

)
‖uxxx‖2 (27)

Using Gronwall’s lemma, (7) and (17), it follows that

‖uxxx(·, t)‖2 ≤ ‖u′′′0 ‖2 exp

[∫ t

0

k̃(τ)dτ

]
, (28)

where
k̃(t) = 9‖ux(·, t)‖2∞ + ‖u(·, t)‖2∞ . (29)

Therefore, using bounds on each term constiuting
∫ t
0
k̃(τ)dτ (28) implies

‖uxxx(·, t)‖2 ≤ ‖u′′′0 ‖2 exp

[∫ t

0

k̃(τ)dτ

]
≤ ‖u′′′0 ‖2e9E2+E0 =: E3 (30)

This implies that
‖uxx(·, t)‖2∞ ≤ E3 (31)

Now, going back to (26) and integrating from 0 to t, we have

‖uxxx(·, t)‖2 +

∫ t

0

‖uxxxx(·, τ)‖2dτ ≤ ‖u′′′0 ‖2 +

∫ t

0

k̃(τ)‖uxxx(·, τ)‖2dτ (32)
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Dropping ‖uxxx(·, t)‖2 on the left hand side of (32), and using (30), we have∫ t

0

‖uxxxx(·, τ)‖2dτ ≤ ‖u′′′0 ‖2e9E2+E0 =: E3 (33)

We note taking an additional derivative of (25) with respect to x gives

∂t[∂
4
xu]− ∂6xu = −∂x

(
3u2xx + 4uxuxxx + uuxxxx

)
(34)

Therefore, on inner-product with ∂4xu, and integration by parts using u, uxx, uxxxx = 0 at
x = 0, 1, we obtain

1

2

d

dt
‖∂4xu‖2 + ‖∂5xu‖2 =

(
∂5xu, 3(∂2xu)2 + 4∂xu∂

3
xu+ u∂4xu

)
≤ 1

2
‖∂5xu‖2 +

{
3‖uxx(·, t)‖∞‖‖uxx‖+ +4‖ux(·, t)‖∞‖uxxx‖+ ‖u(·, t)‖∞‖∂4xu‖

}
≤ 1

2
‖∂5xu‖2 + c0‖uxx(·, t)‖2∞‖uxx‖2 + c1‖ux(·, t)‖2∞‖uxxx‖+ c2‖u(·, t)‖2∞‖∂4xu‖2

≤ 1

2
‖∂5xu(·, t)‖2 +

1

2
k1(t)‖∂4xu‖2 (35)

where
k1(t) = 2c0‖uxxx(·, t)‖2 + 2c1‖uxx(·, t)‖22c2‖ux(·, t)‖2 (36)

for constants c0, c1 and c2 independent of t, where we used ‖uxx‖ ≤ ‖uxxx‖ ≤ ‖∂4xu‖.

d

dt
‖∂4xu(·, t)‖2 + ‖∂5xu(·, t)‖2 ≤ k1(t)‖∂4xu‖2 (37)

It follows from (37) that
d

dt
‖∂4xu‖2 ≤ k1(t)‖∂4xu‖2 (38)

Therefore, using bounds (7), (17), (??), we obtain from Gronwall’s lemma applied to (38)

‖∂4xu‖2 ≤ ‖u
(iv)
0 ‖2 exp

[∫ t

0

k1(τ)dτ

]
(39)

Using (7), (17) we obtain

‖∂xu‖2 ≤ ‖u(iv)0 ‖2 exp [2c0E2 + 2c1E1 + 2c2E0] =: 2E4 , (40)

Going back to (37), and integrating in t, and using (39), we also obtain∫ t

0

‖∂5xu(·, τ)‖2dτ ≤ E4 (41)
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3 Galerkin Approximation and Energy Estimates

We now introduce a finite-dimensional approximation of (1)-(2). Define φj(x) =
√

2 sin(jπx).
We note that {φj}∞j=1 forms an orthonormal basis for functions in L2(0, 1). We define
Sn ⊂ L2(0, 1) a finite dimensional subspace

Sn =

{
v ∈ L2(0, 1) : v(x) =

n∑
j=1

bjφj(x)

}

We define projection operator Pn from L2(0, 1) to Sn so that if v ∈ L2(0, 1) with

v =
∞∑
j=1

vj(t)φj(x) , , then Pnv =
n∑
j=1

vj(t)φj(x) (42)

Note that ‖Pnv‖ ≤ ‖v‖, the equality holding for v ∈ Sn. Here is a preliminary lemma that
will prove useful later.

Lemma 5 For any integer k ≥ 0, if v ∈ Sn then, for any w ∈ L2(0, 1), we have(
∂kxv, ∂

k
xPnw

)
=
(
∂kxv, ∂

k
xw
)

(43)

Proof. For k = 0, we note from orthogonality of {φj(x)}∞j=1 that

(v,Pnw) =
n∑
j=1

vjwj = (v, w)

If k is even, then it is clear from defining of Pn that ∂kx and Pn commute and we obtain(
∂kxv,Pn[∂kxw]

)
=
(
∂kxv, ∂

k
xw
)

Using the result for k = 0, this time with w replaced by ∂kxw and v replaced by ∂kxv, the
lemma follows. If k is odd, using even derivatives of v to be zero at x = 0, 1, on integration
by parts, (

∂kxv, ∂
k
xPnw

)
= −

(
∂(k−1)x v, ∂(k+1)

x Pnw
)

= −
(
∂(k−1)x v,Pn∂(k+1)

x w
)

= −
(
∂(k−1)x v, ∂(k+1)

x w
)

=
(
∂kxv, ∂

k
xw
)

Lemma 6 If wn → w in C1[0, 1], then ‖Pnwn − w‖∞ → 0 as n→∞.
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Proof. Clearly w, ∂xw ∈ L2; therefore there exists N so so that ‖(I − PN)w‖∞ ≤
‖∂x(I − PN)w‖ → 0 as N →∞. Now, we have

‖PN(wn − w)‖∞ ≤ ‖∂xPn(wn − w)‖ ≤ ‖∂x(wn − w)‖ → 0

In the spirit of numerical computation, we define a Galerkin approximation to (1)-(2)

by seeking solution un ∈ Sn with a finite representation

un(x, t) =
n∑
j=1

aj(t)φj(x) (44)

with aj chosen to satisfy
∂tun − ∂xxun = −Pn [un∂xun] (45)

un(x, 0) = Pnu0 (46)

This is equivalent to the set of finite nonlinear ODEs for j = 1, ...n:

d

dt
aj = −j2π2aj − π

(
φj,

n∑
m=1

n∑
k=1

k {amakφm+k + amakφm−k}

)
(47)

with initial condition
aj(0) = (φj, u0) (48)

Note that we write (45)-(46) in the integral form

un(x, t) = Pnu0 +

∫ t

0

{
∂2xun(x, τ)− Pn [un∂xun] (x, τ)

}
dτ (49)

We will prove that

Proposition 7 For any integer n, for any T > 0, there exists unique solution to the ODE
system (47)-(48) for t ∈ [0, T ] implying unique solution un satisfying (45)-(46).

Proof. For any fixed n ≥ 1, the proof of local existence of solution of the ODE system
(47)-(48) follows from ODE theory for interval t ∈ [0, Tn]. However, it is also known from
ODE theory that if solution a(t) = {aj(t)}nj=1 remains bounded as t → T−n , then the

solution can be continued beyond t = T−n . Now, since (47)-(48) is equivalent to (45)-(46),
we multiply (45) by un and integrate by parts to obtain

d

dt

1

2
‖un‖2 + ‖∂xun‖2 = 0
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Here we used

(un,Pn[un∂xun]) = (un, un∂xun) =
1

3

∫ 1

0

∂x(u
3
n)dx = 0

Therefore, it follows that

‖un(·, t)‖2 ≤ ‖Pnu0‖2 ≤ ‖u0‖2 = E0

Therefore, from Parseval’s inequality,

n∑
j=1

a2j ≤ E0

where E0 is independent of t and therefore blow up of a(t). Hence the ODE solution a(t)
can be continued indefinitely. This implies un satisfies (45)-(46).

Lemma 8 For any integer n, the solution un found in Propositon 7 for satisfies the same
bounds as the a priori bounds on u, i.e. for j = 0, · · · , 4,

‖∂jxun‖ , (50)

where C is independent of n and T and only depends on L2 bounds of u
(iv)
0 . Furthermore,∫ t

0

‖∂jxun (·, t) ‖2 ≤ C (51)

for j = 1, ·, 5, where C is independent of n and T and only depends on L2 bounds of u
(iv)
0 .

Proof. The proof is very similar to calculation of a priori bounds on u, except that we
will need to use Lemma 5 to rid ourselves of PN in the inner product. Note we use the
same procedure to find time integral estimates of un as we did for u in determining (7),
(16), (24), (33), (41) since Pn drops out in the L2 inequalities. The details are left as an
exercise.

Lemma 9 For any integer n ≥ 1, the solution un found in Propositon 7 for also satisfies

‖∂tun‖ , ‖∂xxtun‖, ‖∂ttun‖ ≤ C (52)

with C independent of n and T , while for t ∈ [0, T ], while∫ t

0

‖∂ttxun (·, τ) ‖2dτ ≤ C3(T ) (53)
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Proof. As far as controlling the t derivatives of un We note first that

∂tun = ∂xxun − Pn [un∂xun] (54)

and therefore taking L2 estimates and realizing that Pn is irrelevant in the inequality, we
have

‖∂tun‖ ≤ ‖∂xxun‖+ ‖un‖∞‖∂xun‖ ≤ C , (55)

since each term has a bound as given, noticing in particular ‖un‖∞ ≤ ‖∂xun‖. Moreover,
we note that

∂t∂xun = ∂xxxun − ∂xPn [∂xun∂xun] (56)

and so taking L2 estimates and realizing that Pn is irrelevant in the inequality, we have

‖∂t∂xun‖ ≤ ‖∂xxxun‖+ ‖∂xun‖∞‖∂xun‖+ ‖un‖∞‖∂xxun‖ ≤ C (57)

noticing that ‖∂xun‖∞ ≤ ‖∂xxun‖. Also, note that

∂xxtun = ∂xxxxun − ∂xxPn [un∂xun] (58)

So, it follows that

‖∂xxtun‖ ≤ ‖∂xxxxun‖+ 3‖∂xun‖∞‖∂xxun‖+ ‖un‖∞‖∂xxxun‖ ≤ C (59)

Now, taking an additional x derivative, we have

∂xxxtun = ∂5xun − ∂xxxPn [un∂xun] (60)

and so

‖∂xxxtun‖ ≤ ‖∂5xun‖+ 3‖∂xxun‖∞‖∂xxun‖+ 4‖∂xun‖∞‖∂xxxxun‖ ≤ C + ‖∂5xun‖ (61)

From the Burger’s equation, we

∂xttun = ∂xxxtun − ∂xPn [∂tun∂xun]−−∂xPn [un∂xtun] (62)

It follows that

‖∂xttun‖ ≤ ‖∂xxxtun‖+2‖∂xun‖∞‖∂xtun‖+‖∂xun‖∞‖∂xtun‖∞+‖un‖∞‖uxxt‖ ≤ C+‖∂5xun‖
(63)
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So, it follows that1∫ t

0

dτ‖∂xutt(·, τ)‖2 ≤
∫ t

0

dτ
(
C + ‖∂5xun(·, t)‖

)2
≤ Ĉ3(T )

(
1 +

∫ t

0

‖∂5xun(·, τ)‖2dτ
)
≤ C3(T ) (64)

Lemma 10 For any fixed x, {∂tun(x, t)}∞n=1 is an equicontinuous family of functions of
t ∈ [0, T ] and therefore has a subsequence that converges uniformly for t ∈ [0, T ]

Proof. We note that it is enough to show
∫ T
0

(∂ttun(x, t))2 < C, for some constant C
independent of n since for T ≤ t2 > t1 ≥ 0,∣∣∣∂tun(x, t2)− ∂tun(x, t1)

∣∣∣ ≤ ∫ t2

t1

∣∣∣∂ttun(x, τ)
∣∣∣dτ ≤ C1/2

√
t2 − t1

However, we have for each x,
∣∣∣∂ttun(x, t)

∣∣∣ ≤ ‖∂x∂ttun(·, t)‖ and hence

∫ T

0

(∂ttun(x, t))2 dt ≤
∫ T

0

‖∂xttun (·, t) ‖2dt ≤ C3(T )

from previous lemma, and hence {∂tun(x, t)}∞n=1 is equicontinuous in t ∈ [0, T ] for each x.
Therefore, it must have a convergent subsequence that converges uniformly for t ∈ [0, T ].

Lemma 11 Define vn = (un, ∂xun, ∂xxun). Then for t ∈ [0, T ], exists a subsequence{
vnj

}∞
j=1

which converges in the sup norm to v = (u, ux, uxx), where u satisfies the in-

tegral equation

u(x, t) = u0(x) +

∫ t

0

{
∂2xu(x, τ)− [uux](x, τ)

}
dτ

implying u satisfies (1)-(2)

Proof. Since ‖∂jxun‖ for j = 0, · · · 4 have bounds independent of t and n, it follows that
‖∂jxun‖∞ for j = 0, · · · 3 has bounds independent of t and n. Therefore {vn}∞n=1 forms an

1A more refined estimate will have shown that C3 does not depend on T , but for our purposes, what is
shown is enough
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equi-continuous family of functions which has a subsequence vnj
that converges in the sup

norm for each t ∈ [0, T ] to v. zero at x = 0, 1. Using the form of vn, it is not difficult to
prove that v = (u, ux, uxx) for some scalar function u. We now prove that u satisfies Burgers
equation. Since unj

→ u in C3(0, 1) for each t ∈ [0, T ], it follows that ‖unj
∂xunj

−u∂xu‖∞,
‖∂x

{
unj

∂xunj
− u∂xu

}
‖∞ → 0 as j →∞. Also each term in the time integral∫ t

0

{
∂3xunj

− Pnj
(unj

∂xunj
)
}

(x, τ)dτ

is bounded independent of t in the supx∈[0,1] sense. Furthermore, using previous lemma,

for any given x, a subsequence of this
{
unj

}∞
j=1

, which with slight abuse of notation is

still denoted by unj
(x, t) converges uniformly for t ∈ [0, T ] as j → ∞. Therefore, from

dominating convergence theorem, and using Lemma 6, we have

lim
j→∞

∫ t

0

{
∂3xunj

− Pnj
(unj

∂xunj
)
}

(x, τ)dτ =

∫ t

0

{
∂3xu− u∂xu)

}
(x, τ)dτ

Further, it is clear that ‖Pnu0 − u0‖∞ → 0. On the other hand, limj→∞ unj
(x, t) = u(x, t).

It follows from (49) that u satisfies

u(x, t) = u0(x) +

∫ t

0

{
∂2xu− u∂xu

}
(x, τ)dτ

which immediately implies u(x, t) satisfies Burgers equation with initial condition u0(x).
This completes the proof of Theorem1

4 Blow-up of solution to PDE

Consider
ut −∆u = u2 for x ∈ Rn, t > 0 , u(x, 0) = F (x) (65)

We can prove existence of solution for [0, T ] for T small enough in the same way as we did
for viscous Burger’s equation. However, unlike the viscous Burger’s equation, there is no
maximum principle for this problem, though it satisfies minimum principe. In particular
if F > 0, then u > 0 as long as a smooth classical solution exists that is bounded at ∞.
Indeed, as we will prove now, solution in this class will blow up in finite time if F > 0. For
that purpose define G(x, t)

G(x, t) =
1

[4π(T1 − t)]n/2
exp

[
− |x|2

4(T1 − t)

]
(66)
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Note that G(x, t) is a smooth solution of backwards heat equation for t ∈ (0, T1):

Gt = −∆G (67)

We will choose T1 large enough so that

T1 >

(∫
Rn

G(x, 0)F (x)dx

)−1
(68)

This can always be arranged for F (x) > Fm > 0 since the right hand side of (68) ≤ 1
Fm

Using (67) and (65), it follows on using Green’s identity that for functions u that are
bounded at ∞,

d

dt

∫
Rn

u(x, t)G(x, t)dx =

∫
Rn

G(x, t)u2(x, t)dx (69)

If F (x) > 0, any classical solution u(x, t) > 0 within the existence time. Then, we also
note that using Cauchy-Schwartz inequality∫
Rn

G(x, t)u(x, t)dx ≤
{∫

Rn

G(x, t)u2(x, t)dx

}1/2{∫
Rn

G(x, t)dx

}1/2

=

{∫
Rn

G(x, t)u2(x, t)dx

}1/2

(70)
Therefore, it follows from (69) that if we define

y(t) =

∫
Rn

u(x, t)G(x, t)dx , (71)

then (70) implies that

dy

dt
≥ y2 , y(0) = y0 :=

∫
Rn

G(x, 0)F (x, 0) > 0 (72)

Then
y(t) ≥ y0

(1− ty0)
(73)

which blows up at t = Tc ≤ 1
y0

. Therefore, diffusion is not strong enough to prevent finite
time blow up.
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