
Week 14 Lecture Notes, Math 6451, Tanveer

1 Fourier Approach to contraction mapping

Consider once again Burger’s equation with

ut + uux = uxx , u(x, 0) = F (x) for x ∈ R (1)

We will assume the Fourier Transform of initial condition F exists and is in L1(R) and we
will prove that classical solutions to (1) exists for t ∈ (0, T ] for sufficiently small T . Since
this solution is smooth for t ∈ (0, T ] and in particular u(·, T ) is continuous, we can use
previous approach in the physical domain to march from t ∈ [T, 2T ], and then use maximum
principle to show global existence. Note the Fourier approach uses a different assumption
on initial condition than what we have seen before. This approach is particularly efficient
in showing instantaneous smoothness of solution for t small but positive and is a general
enough as a method to be applicable in many complicated problems like Navier-Stokes PDE.
We will start by formally carrying out Fourier Transform in x. We will then show that
the transformed equation has a solution in a space of functions that guarantees, its inverse
Fourier transform satifies (1) There is also other advantages to this approach, including
easy extension to higher space dimensions. We define

û(k, t) = F [u(·, t)] (k) =
1√
2π

∫
R
e−ikxu(x, t)dx (2)

We also note that if Fourier Transform of uxx, [u2]x, ut were to exist, then

F [ut(·, t)] = ût(k, t) , (3)

F [uxx(·, t)] = −k2û(k, t) , (4)

F
[
(u2))x(·, t)

]
= ik [û ∗ û] (k, t) , (5)

where the Fourier Convolution ∗ is defined by

[û ∗ û] (k, t) =
1√
2π

∫
R
û(η, t)û(k − η, t)dη . (6)

Note if indeeed û(·, t) ∈ L1(R), the by using Fubini’s theorem, we can directly prove from
expression (6) that

F−1 [û ∗ û] (x, t) ==
1√
2π

∫
R
e−ikx

∫
R
û(k − η, t)û(η, t)dηdk = u2(x, t) (7)
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which justifies (5) with some assumption on û. At this stage, since all the steps are formal,
we don’t worry about the assumptions. Using (3)-(5) in (1), we formally obtain

ût + k2û = −ikû ∗ û , û(k, 0) = F̂ (k) (8)

Using method of integrating factor (8) for first order ODEs, (8) is equivalent to

û(k, t) = û(0)(k, t)− ik
∫ t

0

e−k
2(t−τ) [û ∗ û] (k, τ)dτ =: N [û] (k, t) , (9)

where
û(0)(k, t) = F̂ (k)e−k

2t . (10)

Definition 1 For t ∈ [0, T ], we define S as functions in t for each k, that is integrable in
k with norm

‖û‖ =

∫
R

sup
(0,T ]

∣∣∣û(k, ·)
∣∣∣dk (11)

Lemma 2 u(0) ∈ S with
‖u(0)‖ ≤ ‖F̂‖L1 (12)

Proof. We note from expression (10) that since F̂ (k) exists almost everywhere

sup
(0,T ]

∣∣∣û(0)(k, t)
∣∣∣ ≤ |F̂ (k)| (13)

and hence from definition of ‖ · ‖, the Lemma follows.

Theorem 3 If

T <
π

8C2
0‖F̂‖2

L1

, where C0 = sup
ξ≥0

1− e−ξ√
ξ

, (14)

N defined in (9) maps the closed ball B2‖F̂‖L1
⊂ S back to itself and is contractive, implying

that (9) has a unique solution û(k, t) in the space S for t ∈ [0, T ].

Proof. We define cumulative function w(k, t) through

w(k, t) = sup
τ∈[0,t]

∣∣∣û(k, τ)
∣∣∣ (15)

We note that for τ ∈ [0, t], for any k,∣∣∣ [û ∗ û] (k, τ)
∣∣∣ ≤ ∫

R

∣∣∣û(η, τ)
∣∣∣∣∣∣û(k − η, τ)

∣∣∣dη ≤ ∫
R
w(η, t)w(k − η, t)dη = [w ∗ w] (k, t) (16)
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and therefore, it follows from (9) that for t ∈ [0, T ]

∣∣∣− ik ∫ t

0

e−k
2

(t− τ) [û ∗ û] (k, τ)dτ
∣∣∣ ≤ [w ∗ w] (k, t)

∫ t

0

e−k
2(t−τ)|k|dτ

≤
√
T [w ∗ w] (k, T ) sup

ξ≥0

1− e−ξ√
ξ
≤ C0

√
T [w ∗ w] (k, T ) (17)

Noting that ‖û‖ = ‖w(·, T )‖L1(R and that for w(·, t) in L1,

‖w(·, T ) ∗ w(·, T )‖L1 =
1√
2π
‖w(·, T )‖2

L1 (18)

we obtain from (9), (17) and Lemma 2, with given restriction on T ,

‖N [û]‖ ≤ ‖F̂‖L1 +
C0

√
T√

2π
‖û‖2 ≤ 2‖F̂‖L1 (19)

In an anologous sequence of steps, we also have

‖N [û1]−N [û2]‖ ≤ C0

√
T√

2π
(‖û1‖+ ‖û2‖) ‖û1 − û2‖ ≤ α‖û1 − û2‖ , (20)

where

α =
4C0

√
T√

2π
‖F̂‖L1 < 1 (21)

This proves the contractivity of N in the ball B2‖F̂‖L1
⊂ S and from Banach fixed point

theorem, there exists unique solution û to (9) in that ball.

Remark 1 Though the uniqueness of solution has only been proved in a ball B, any other
solution continuous in time in the space S must be in this ball for T is small enough as it
contains the initial condition F̂ .

Lemma 4 For ε > 0, t ∈ [ε, T ], the solution û in Theorem 3, kû(·, t), k2û(·, t) are each in
l1 as is k [û ∗ û] (·, t), with uniform bounds for t ∈ [ε, T ].

Proof. For any ε > 0 small, consider t ∈ [ε, T ]. Define

ŵε(k) = sup
t∈[ε,T ]

∣∣∣û(k, t)
∣∣∣ (22)
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We note that on this time interval∣∣∣kû(0)(k, t)
∣∣∣ ≤ ∣∣∣F̂ (k)‖ sup

t∈[ε,T ]

(
|k|e−k2t

)
≤ ε−1/2

(
sup
ξ≥0

√
ξe−ξ

)
|F̂ (k)| , (23)

implying at once that kû(0) (·, t) ∈ L1. The same argument as above shows that∣∣∣k2û(0)(k, t)
∣∣∣ ≤ ∣∣∣F̂ (k)‖ sup

t∈[ε,T ]

(
|k|2e−k2t

)
≤ ε−1

(
sup
ξ≥0

ξe−ξ
)
|F̂ (k)| , (24)

Therefore, we have from (9)∣∣∣kû(k, t)
∣∣∣ ≤ ∣∣∣kû(0)(k, t)

∣∣∣+ [ŵε ∗ ŵε]
∫ t

0

k2e−k
2(t−τ)dτ ≤

∣∣∣kû(0)(k, t)
∣∣∣+ C1ŵε ∗ ŵε , (25)

implying at once that

w1
ε (k) := sup

t∈[ε,T ]

∣∣∣kû(·, t)
∣∣∣ ∈ L1 (26)

Now, we note on replacing integration variable η → (k − η) that∫
R
dηηû(k − η)û(η) =

∫
R
dη(k − η)û(k − η)û(η) (27)

and therefore

kû ∗ û = k

∫
R
dηηû(k − η)û(η) =

∫
R
dη(k − η)û(k − η)û(η) +

∫
R
dηηû(k − η)û(η)

= 2û ∗ (kû) (28)

Therefore, it follows that since each of û and kû is in L1,

F−1 [ikû ∗ û] (x) =
(
F−1 [û] (x)

) (
F−1 [ikû] (x)

)
= uux (29)

Using (28) in (9), we have

k2û(k, t) = k2û(0)(k, t)− ik2

∫ t

0

e−k
2(t−τ) [(kû) ∗ û] (k, τ)dτ , (30)

from which it follows that for t ∈ [ε, T ], we have∣∣∣k2û(k, t)
∣∣∣ ≤ C2ε

−1
∣∣∣F (k)

∣∣∣+ C1

[
w1
ε ∗ wε

]
(31)

Therefore, k2û(·, t) ∈ L1 for t ∈ [ε, T ] with

‖k2û(·, t)‖L1 ≤ C2ε
−1‖F‖L1 + C1‖w1

ε‖L1‖wε‖L1 (32)
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Proposition 5 We define
u(x, t) = F−1 [û(·, t)] (x) , (33)

where û(k, t) is the solution to (9) found in Theorem 8. u(x, t) is a classical solution to
viscous Burgers equation for t ∈ (0, T ].

Proof. Note for û(k, t) ∈ S, (9) is equivalent tto the initial value problem

ût = −k2û− ikû ∗ û , (34)

with
û(k, 0) = F̂ (k) (35)

Now, every term on the right hand side of (34) is in L1, as must therefore be ût. On inverse
Fourier-Transform we get continous uxx, uux and ut, which from (34)-(35) satisfies

ut = uxx − uux , u(x, 0) = F (x) (36)

Note that uniform l1 bounds of ût(·, t), dependent of t ∈ [ε, T ] is what allows to claim

ut(x, t) = lim
h→0

u(x, t+ h)− u(x, t)

h
= lim

h→0

1√
2π

∫
R
eikx

û(k, t+ h)− û(k, t)

h

=
1√
2π

∫
R
ût(k, t)e

ikx (37)

2 Contraction Mapping application in other problems

Contraction mapping Theorem is quite powerful in a large number of problems. As another
example, consider for instance the following nonlinear elliptic problem

∆u = u2 for x ∈ Ω ⊂ Rn with u(x) = h on ∂Ω (38)

where we will assume Ω is bounded and has appropriate smoothness for existence of Greens
Function for Laplacian. Then inverting Laplacian by using Green’s function, we have

u(x) = u(0)(x) +

∫
Ω

G(y,x)u2(y)dy ,=: [u](x) (39)

where

u(0)(x) =

∫
∂Ω

∂G

∂ny
(y,x)h(y)dy (40)
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Definition 6 Define S as the space of continuous functions of x ∈ Ω equipped with the
sup norm.

Theorem 7 If ‖h‖∂Ω is small enough then (39) has a unique solution in a ball of size
2‖h‖∂Ω.

Proof. We know that u(0) is the solution of Laplace equation with boundary data h, and
therefore from max/min principle, it follows that

‖u(0)‖ ≤ ‖h‖∂Ω (41)

Now, we know that ∣∣∣ ∫
Ω

∣∣∣G(x,y)dy
∣∣∣∣∣∣ ≤ C (42)

independent of x, and therefore, it follows that

‖N [u]‖ ≤ ‖h‖∞ + C‖u‖2 ≤ ‖h‖∞ + 4C‖h‖2
∞ ≤ 2‖h‖∞ (43)

Similarly, it follows that

‖N [u]−N [v]‖ ≤ C‖(u+ v)‖‖u− v‖ ≤ 4C‖h‖∞‖u− v‖ ≤ α‖u− v‖ (44)

Therefore, contractivity is assured and we have a unique solution to the integral equation
u = N [u].

3 General Usage of Contraction Mapping

Consider a nonlinear problem that is written abstractly as

N [u] = 0 , (45)

for some operator N . Boundary initial data is incorporated in this framework by putting
restriction on class of u on which N is allowed to operate. Suppose we expect a solution
u to be near some u(0). In the case of the Burger’s equation, we chose u(0) was a solution
of the linear heat equation. In the case of nonlinear elliptic problem, we chose this to be
the solution to ∆u = 0 with given boundary data. Then, to determine a solution u in the
neighborhood fo u(0) we define

E = u− u(0) (46)
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Then, it is clear that E will satisfy

N [u0 + E]−N [u0] = −N [u0] =: R (47)

Suppose we a linear operator L defined such that

M[E] := N [u0 + E]−N [u0]− LE (48)

has the property that in some suitable Banach space S

‖M[E]‖ ≤ C0‖E‖2 (49)

Then, we may write the equivalent problem for E as

LE = R +M[E] (50)

If L is invertible in S with
‖L−1G‖ ≤ C1‖G‖ (51)

then, we obtain
E = L−1R + L−1M[E] =: N1[E] (52)

Now, we notice that from assumption R is small, and therefore, we have the estimate

‖N1[E]‖ ≤ C1‖R‖+ C1C0‖E‖2 (53)

When ‖R‖ is sufficiently small, we can show easily under the above assumptions that
N1 maps a ball of size 2C1‖R‖ back to itself and is contractive over there. This is a fairly
general characterization of the set of all problems that are amenable to contraction mapping
methods.
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