Week 14 Lecture Notes, Math 6451, Tanveer

1 Fourier Approach to contraction mapping

Consider once again Burger’s equation with
Up + Uy = Ugy ,u(z,0) = F(z) forx € R (1)

We will assume the Fourier Transform of initial condition F exists and is in L'(R) and we
will prove that classical solutions to (1) exists for ¢ € (0,7 for sufficiently small T". Since
this solution is smooth for ¢ € (0,7] and in particular u(-,7") is continuous, we can use
previous approach in the physical domain to march from ¢ € [T, 27|, and then use maximum
principle to show global existence. Note the Fourier approach uses a different assumption
on initial condition than what we have seen before. This approach is particularly efficient
in showing instantaneous smoothness of solution for ¢ small but positive and is a general
enough as a method to be applicable in many complicated problems like Navier-Stokes PDE.
We will start by formally carrying out Fourier Transform in x. We will then show that
the transformed equation has a solution in a space of functions that guarantees, its inverse
Fourier transform satifies (1) There is also other advantages to this approach, including
easy extension to higher space dimensions. We define

u(k,t) = Fu(-,1)] (k) = \/%/Re_ikxu(x,t)dx (2)

We also note that if Fourier Transform of wu,,, [u%],, u; were to exist, then

Flu (-, 1)] = (k) (3)
‘F[uxx(vt)] = _kQQ(k7t) ) (4>
F @)l t)] = ik [axa] (k, 1) , (5)

where the Fourier Convolution * is defined by
1
uxal(k,t) = — [ u(n,t)u(k —n,t)dn . 6
el (k) = = [ i)k = .ty )

Note if indeeed (-, t) € L'(R), the by using Fubini’s theorem, we can directly prove from
expression (6) that

F ik ] () == ¢L2_7r /]R ek /R (ke — .y, )dndk = v (x, ) (1)
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which justifies (5) with some assumption on 4. At this stage, since all the steps are formal,
we don’t worry about the assumptions. Using (3)-(5) in (1), we formally obtain

 + K2t = —iktix 0, a(k,0) = F(k) (8)
Using method of integrating factor (8) for first order ODEs, (8) is equivalent to
t
a(k,t) = a' (k,t) — Zk/ e [ax ] (kym)dr =2 N [a] (k,t) (9)
0
where )
4Ok, t) = F(k)e ™" . (10)

Definition 1 Fort € [0,T], we define S as functions in t for each k, that is integrable in
k with norm

Jafl = / sup [i(k, )|k ()

(0,77

Lemma 2 u© € S with R
[ < (||| 2 (12)

PROOF. We note from expression (10) that since F'(k) exists almost everywhere

sup @) (k, )] < | (k)| (13)
(0,77
and hence from definition of || - ||, the Lemma follows. O
Theorem 3 If
T<—"_  whereC Loc (14)
~ , where Cjy = sup ,
G FIIZ 0 Ve

N defined in (9) maps the closed ball B2HFIIL1 C S back to itself and is contractive, implying
that (9) has a unique solution u(k,t) in the space S fort € [0,T].

PROOF. We define cumulative function w(k,t) through

w(k,t) = sup
T€[0,¢]

ﬁ(k:,T)‘ (15)
We note that for 7 € [0, t], for any k,
@] (k,7)| < / [, )|k = m,7) | < / w(, yw(k =, )y = [ww] (k1) (16)
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and therefore, it follows from (9) that for ¢ € [0, 7]

‘—ik/ote_kQ(t—T) (i 4] (k, 7)dr| < [w*w)] (k, 1) /Ote—k2<t—f>|k|d7

—£

< VT w s w] (k, T)sup ——— < Cov/T [w +w] (k,T) (17)

£20 \/E

Noting that ||a|| = ||w(-,T)||,: and that for w(-,¢) in L,

i ) (e ) = =t T (13)

we obtain from (9), (17) and Lemma 2, with given restriction on 7T,

CovV'T

IVTalll < [IF |z + 5 It I* < 2( £z (19)
In an anologous sequence of steps, we also have
. X CoVT . e o
INTtn] — Nao]|| < (laall + llazll) lar — aofl < afltn — o} (20)

V2r

where

a= 46\})1_||F||L1 <1 (21)

This proves the contractivity of A in the ball Bygy,. C S and from Banach fixed point

theorem, there exists unique solution % to (9) in that ball. O

Remark 1 Though the uniqueness of solution has only been proved in a ball B, any other
solution continuous in time in the space S must be in this ball for T is small enough as it
contains the initial condition F.

Lemma 4 Fore >0, t € [¢,T], the solution @ in Theorem 3, ki(-,t), k*u(-,t) are each in
IV as is k[ * 4] (-, t), with uniform bounds for t € [e, T].

PROOF. For any e > 0 small, consider ¢t € [¢,T]. Define

we(k) = sup |a(k, t)‘ (22)

tele, T



We note that on this time interval

k0,0 < [P0l s (1) < = (sup V&) 176
£>0

tele,T]

implying at once that k4(”) (-,¢) € L'. The same argument as above shows that

P sup (ke ) < et (supse—é) ()]
]

tele, T £>0

k20O (k, t)‘ <

Therefore, we have from (9)

t
ka@)(k,t)( + [t * ] / e M0 gr <
0

ka(k,t)( <

ka(o)(k,t)‘ + Cyib, # b, |

implying at once that
w!(k) ;== sup ‘kﬁ(,t)‘ e L
]

tele, T

Now, we note on replacing integration variable n — (k — 1) that

/Rdnml(k —n)a(n) = /Rdn(k —n)u(k —n)i(n)

and therefore

b i =k [ itk = n)i(o) = [ otk =itk = n)itn) + | dmick = i)
= 20 * (k)
Therefore, it follows that since each of @ and ki is in L',
F fikix a) (2) = (F7 [a] (2)) (F fikd] (2)) =
Using (28) in (9), we have

t
K2k, t) = K20 (k, t) — ik> / e ) [(ka) = a) (k, 7)dr |
0

from which it follows that for ¢ € [e, T, we have

Kk, 1)] < Cae™!

F(k)‘ + C [w! * w]
Therefore, k*a(-,t) € L' for t € [¢, T] with
B2, )l < Coe M| F I + Cullwel|a Jwell s

(31)

(32)



Proposition 5 We define
u(z,t) = FH[a(, 1)) (2) (33)

where u(k,t) is the solution to (9) found in Theorem 8. w(z,t) is a classical solution to
viscous Burgers equation for t € (0,T].

PRrROOF. Note for u(k,t) € S, (9) is equivalent tto the initial value problem
Uy = —k*0 — ik x4 (34)

with
a(k,0) = F(k) (35)

Now, every term on the right hand side of (34) is in L', as must therefore be ;. On inverse
Fourier-Transform we get continous u,,, uu, and wu;, which from (34)-(35) satisfies

Up = Ugy — Uty , u(z,0) = F(x) (36)

Note that uniform I' bounds of (-, t), dependent of ¢ € [¢, T] is what allows to claim

ut(x’t)_}lg%u(x,t—i-h]z—u(x,t)_}ILIL%_Q/ ik U k:t—i—h})l—u(k 1)
V2m
1

v /R Gy (k,t)e™™  (37)

2 Contraction Mapping application in other problems

Contraction mapping Theorem is quite powerful in a large number of problems. As another
example, consider for instance the following nonlinear elliptic problem

Au=u? forx € Q CR" with u(x) =h on O (38)

where we will assume €2 is bounded and has appropriate smoothness for existence of Greens
Function for Laplacian. Then inverting Laplacian by using Green’s function, we have

u(x) = u®(x) + / Gy, ) (y)dy ,= [u](x) (39)
where 50
u(x) = o (v.x) h(y)dy (40)
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Definition 6 Define S as the space of continuous functions of x € Q0 equipped with the
sup norm.

Theorem 7 If ||hllgq is small enough then (39) has a unique solution in a ball of size
2||hllog-

PRrROOF. We know that u(?) is the solution of Laplace equation with boundary data h, and
therefore from max/min principle, it follows that

[« < [1Allac (41)
Now, we know that
| [ Jeoxyias|| <c (12)
Q
independent of x, and therefore, it follows that
IVl < [[Alloe + Cllull* < (Al + 4CIAIS, < 2[Rl (43)
Similarly, it follows that
INu] = Noll| < Cll(u+ v)[[lu — || <AC|[R]|o|lu = v]] < alju — o] (44)

Therefore, contractivity is assured and we have a unique solution to the integral equation

uw=Nu]. O

3 General Usage of Contraction Mapping
Consider a nonlinear problem that is written abstractly as
Nlul =0, (45)

for some operator A. Boundary initial data is incorporated in this framework by putting
restriction on class of u on which N is allowed to operate. Suppose we expect a solution
u to be near some u(®. In the case of the Burger’s equation, we chose u(®) was a solution
of the linear heat equation. In the case of nonlinear elliptic problem, we chose this to be
the solution to Au = 0 with given boundary data. Then, to determine a solution u in the
neighborhood fo u(®) we define

E=u—u® (46)



Then, it is clear that F will satisfy
Nluo + E] = Nuo] = =Nug] =: R (47)
Suppose we a linear operator £ defined such that
MI[E] := Nug + E] — Nug] — LE (48)
has the property that in some suitable Banach space &
IME]|| < Col B2 (49)

Then, we may write the equivalent problem for E as

LE =R+ M[E] (50)
If £ is invertible in S with
1£7'G| < GGl (51)
then, we obtain
E=L"R+ L'M[E] = M[E] (52)

Now, we notice that from assumption R is small, and therefore, we have the estimate
IME]| < CLIR|| + CiCol | E|I? (53)

When ||R|| is sufficiently small, we can show easily under the above assumptions that
N1 maps a ball of size 2C || R|| back to itself and is contractive over there. This is a fairly
general characterization of the set of all problems that are amenable to contraction mapping
methods.



