
Week 2, Math 6451

1 Linear 1st order PDEs in two independent variables

Consider first a special class of linear 1st order PDEs in two independent variables (x1, x2):

a1(x1, x2)ux1 + a2(x1, x2)ux2 = c(x1, x2) (1)

where a1, a2 and c are continuous function in some domain Ω ⊂ R2. Denote x = (x1, x2). We
will assume the following:

1. On some differentiable curve Γ = {x : x = x0(s) , 0 ≤ s ≤ b}, the tangent

dx0

ds
∦ a(x0(s)), (2)

where a ≡ (a1, a2). This is called the non-characteristic condition, and its significance will
be clear later.

2. On the non-characteristic curve Γ, we specify initial condition:

u(x0(s)) = u0(s) (3)

We now seek a solution in a domain Ω adjoining Γ.
We notice (1) geometrically implies that the directional derivative of u along a is specified

since (1) may be written as
a · ∇u = c (4)

We introduce characteristic curves X(t; s) parametrized by t ∈ I ⊂ R, with 0 ∈ I for each
0 ≤ s ≤ b such that

∂X

∂t
= a(X(t; s)) , with initial condition X(s; 0) = x0(s) (5)

A unique C1 solution X(t; s) for each s is guaranteed locally from theory of ODEs for sufficiently
small size of interval I. On such a curve X(t, s), (4)-(5) imply

∂

∂t
u(X(t; s)) = c(X(t; s)) , u (X(0, s)) = u0(s) (6)

The theory of ODEs guarantees a locally unique solution to (6) for t ∈ I, some open interval
containing t = 0. Denote this solution by

u = U(t; s) (7)

Note however, this solution process requires non-characteristic condition (2), as otherwise, dx0(s)
ds ·

∇u = u′0(s) for arbitrary u0 will be incompatible with (6) at a point of tangency.
Also, non-charactertistic condition (2) above implies that the inverse function theorem applies

locally in a neighborhood of t = 0, since at t = 0,

∂(X1, X2)

∂(t, s)
= (a1, a2) · (X2s,−X1s) 6= 0 . (8)
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Thus x = X(t; s) may be inverted locally for small enough t to obtain

(t, s) = (T (x), S(x)) (9)

Thus, using (7), we have solution to the initial value problem (consisting of PDE and given initial
condition):

u(x) = U(T (x), S(x)) (10)

You may verify this to be true by directly substituting (10) into the original PDE and using ∇T ,
∇S that follows from inverse function theorem.

The method of characteristics introduced here is not limited to two independent variables.
Indeed, in general, in n independent variables, the initial data is given on a non-characteristic
n− 1 dimensional surface, characterized by real parameters (s1, s2, ..sn−1) ≡ s so that vector a
is no where tangent to this surface. Then the procedure above generalizes, if we replace scalar
s by vector s.

1.1 Example of an explicit calculation

Consider for instance

ux1
+ x2ux2

= 0 with initial condition u(0, x2) = f(x2) (11)

for some differentiable function f(x2), and the domain of u is all of R2. It is clear that the curve
Γ = {(x1, x2) : x1 = 0}, characterized by parameter s = x2 is everywhere non-characteristic
since the tangent vector (0, 1) is not parallel of a = (1, x2) for any value of x2. Hence, it is
proper to specify initial data on Γ. Further, the characteristic starting from each point on Γ is
determined by

d

dt
(X1(t; s), X2(t; s)) = (1, X2(t; s)) with (X1(0; s), X2(0; s) = (0, s) (12)

The solution is clearly
x1 = X1(t; s) ≡ t ; x2 = X2(t; s) ≡ set (13)

For fixed s, on each characteristic curve (X1(t; s), X2(t; s), we have from the PDE:

d

dt
u = 0 with initial condition u(X1(0; s), X2(0; s)) = f(s) (14)

Hence
u = U(t; s) = f(s) (15)

Inverting (13),
t = T (x1, x2) = x1 ; s = S(x1, x2) = x2e

−x1 (16)

Therefore,
u(x, t) = f(S(x1, x2)) = f(x2e

−x1) (17)

Indeed, we can directly check that (17) solves the PDE for a differentiable f and that it also
satisfies the given initial condition on x1 = 0.
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2 1st Order quasi-linear PDEs in 2 dimensions

The method of characteristics works for quasi-linear PDEs as well:

a1(x1, x2, u)
∂u

∂x1
+ a2(x1, x2, u)

∂u

∂x2
= c(x1, x2, u) (18)

with initial condition

u = u0(s) on Γ :=
{
x ∈ R2, x = x0(s), s ∈ [0, b]

}
, (19)

where x0(s), u0(s) ∈ C1[0, b]. We will assume a = (a1, a2) and c to be in C1. Further, we
will assume the non-characteristic condition that a(x0(s), u0(s)) is not parallel to x′0(s) for any
s ∈ [0, b]. We show the situation geometrically in figure 1. Corresponding to Γ in the (x1, x2)

u

x
1

x2

Γ

0
x( , u

0
)

Figure 1: Solution Curves and Solution Surface for quasi-linear PDEs

plane, there is a curve (x1,0(s), x2,0(s), u0(s)) ≡ (x0(s), u0(s)) in the (x1, x2, u) space which will
be referred to as the initial curve. At each point of this curve, characterised by parameter s, we
generate a trajectory by solving the coupled system of two nonlinear ODEs (20) and (21) below:

dx

dt
= a(x, u) with x(0; s) = x0(s) (20)

du

dt
= c(x, u) with u(0; s) = u0(s) (21)
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For each fixed s, equations (20) and (21) generate solutions to quasi-linear PDE (18) along
characteristic curves determined from (20) since (18)-(20) imply

c =
d

dt
u(x(t)) =

dx

dt
· ∇u(x(t), t) = a · ∇u

Since a(x0(s), u0(s)) is no where parallel to dx0(s)
ds , it follows xt(0; s) is not parallel to Γ. We

denote the unique C1 solution to (20) and (21) guaranteed by ODE theory by (X(t; s), U(t; s)).
The solution curve generated by marching in t for fixed s is shown in Figure 1. Note that the
figure only shows t marching in one direction, say with t increasing. Depending on what the
intended domain Ω is of the PDE, we may need to march in the direction of decreasing t as
well. The union of all such solution curves generates the solution surface, sketched in Figure
1. To complete the solution, we need to invert the relation (x1, x2) = X(t; s) to find (t, s) =
(T (x1, x2), S(x1, x2)). This is possible locally near Γ since the non-characteristic condition on Γ

implies that the Jacobian of the transformation ∂(X1,X2)
∂(t,s) is nonzero at t = 0 (check this yourself).

Thus, the solution of the PDE (18), with initial condition (19) is

u = U(T (x1, x2), S(x1, x2) (22)

You can directly verify that this is a solution to the PDE by using the differential equation
relations (20) and (21) and noting the relation between derivatives of T , S and derivatives of
X1, X2 from inverse function theorem.

The method of characteristics is not limited to 2-D. It can be applied to 1st order PDEs
with n-variables. In that case, the initial curve Γ is replaced by an (n − 1)-dimensional initial
surface, characterized by vector parameter s = (s1, s2, ..., sn−1), were u is specified. The non-
characteristic condition on Γ is that a(x, u0(s)) is never tangential to Γ.

Also, it is to be noted that for nonlinear 1st order PDEs1, the solution generally exists only
locally in a neighborhood of the initial curve Γ. Smooth solutions for all x is not to be expected.
This will be illustrated in the example below:

2.1 Example of a simple nonlinear PDE (inviscid Burger’s equation)

Consider the nonlinear equation2

ux2
+ uux1

= 0, with u(x1, 0) = f(x1) with x2 > 0 (23)

The initial curve is Γ = {(x1, x2) : (x1, x2) = (s, 0) = x0(s)} Note that d
dsx0(s) = (1, 0) is

nowhere parallel to a = (u, 1). Therefore, the non-characteristic condition is met. Now, ac-
cording to the theory above, we find solution curve for each s by solving coupled system of
ODEs

dx

dt
= (u, 1) ,

du

dt
= 0 with x(0; s) = x0(s), u(0; s) = f(s) (24)

The solution to the ODEs (24) satisfying the initial conditions is found to be

u = U(t; s) = f(s) (25)

1More generally, the statement is true for the class of hyperbolic PDEs
2It is common to use independent variable symbols (x, t) instead of (x1, x2), since t has the connotation of .

We avoided this so that t is not confused with the characteristic marker variable t

4



x = X(t; s) = (s+ f(s)t, t) (26)

Note that in this case, s is the value of x1 at t = 0, i.e. on the initial curve Γ. To complete
the solution we need to solve for (t, s) in terms of (x1, x2). This is possible in principle for

small t since the Jacobian ∂(X1,X2)
∂(t,s) = −1 6= 0. However, explicit expressions are only possible

for particularly simple choice of f(s). Otherwise, we think of (26) as providing the inversion
(t, s) = (T (x1, x2), S(x1, x2)) in an implicit form, and the solution to PDE will be

u = f(S(x1, x2)) (27)

Besides describing the solution in terms of Fig. 1, it is instructive to look at the characteristic
curves in the (x1, x2) domain, as in Figures 2 and 3. In the case when f(s) is increasing with s,the
initial value of x1 (see eqn (26)), we note that each point in the (x1, x2)-plane is associated with
a unique characteristic curve that passes through it corresponding to a unique s. Hence we can
invert and find (t, s) = (T (x1, x2), S(x1, x2)) = (x1, S(x1, x2) for any (x1, x2). Classical solution
will exist in this case for any (x1, x2) for x2 > 0 if f ∈ C1. This is really an exceptional case.
Generically, f(s) will decrease in some interval in s. Hence the characteristic curves intersect

x 2

x
1

x = x
1 2

f(s) + s

Figure 2: Characteristic Curves for (22) in the (x1, x2) plane for increasing f

and cross each other for some set of (x1, x2), as shown in Fig. 3 This means that the inversion
process to find s = S(x1, x2) must fail beyond x2 > xb for some xb shown in Fig. 3.

To see what happens in such cases, we plot u(x1, x2) against x1 for different x2, as shown
in Fig. 4, where we assumed 0.5 < xb < 3. Equations (25) implies that a point (x1, u) curve
initially, i.e. at x2 = t = 0, is translated to (x1 + f(s)x2, u) for x2 > 0, where s is the initial
value of x1, and f(s) is the initial profile of u. Since the translation for points with larger f is
larger, it follows that the curve will fold into an backward S-shape and u(x1, x2) will become
multi-valued for x2 > xb for some critical xb that depends on f . The multi-valued solution makes
no sense and has to be replaced by a weak solution that allows solution and/or its derivatives to
be discontinous. This is a generic feature of nonlinear PDEs.

Later in the course, as time allows, we will discuss how weak solution theory may be developed
in nonlinear contexts to accommodate solutions which are not C1. Below, we illustrate how this
is done for a simple linear case.
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Figure 3: Intersecting Characteristic Curves for (22) for locally decreasing f(s)

u(x
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x
1

u

Figure 4: Profile of u(x1, x2) as a function of x1 for different x2

3 Introduction to Weak Solution Concept

In the last week notes, you will see references to weak solution. A classical solution to a PDE
is one where requires that the solution u has as many derivatives as needed for the equation
to make sense. For instance a classical solution to Laplace equation ∆u = 0 must be in C2.
Similarly solution to the heat equation ut = ∆u must be in C2 in x and C1 in time t. However,
it becomes necessary sometimes not to require solution to have as much smoothness. We like
to be able to say for instance that u(x, t) = f(x − ct) + g(x + ct) is a solution to the wave
equation in one space dimension: utt − c2uxx without requiring f, g ∈ C2. For a large class of
nonlinear PDEs, this extension of the notion of a solution is necessary because there may not be
any classical solution.

In other cases, the introduction of weak solution is a convenient technical tool, because in
many cases it is easier to first prove that there there exists weak solutions, followed by proof of
regularity than to show that directly that a classical solution exists.
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We illustrate the concept of solution concept through a simple PDE. Consider

ut + cux = 0 for constant c (28)

Using method of characteristics, we know this has a classical solution u(x, t) = f(x − ct) for
f ∈ C1. We seek to relax this assumption on f . We introduce a class of test functions, denoted
generically by φ, each of which is a a smooth function of (x, t) and has a compact support, i.e.
vanishes outside a bounded set ⊂ R2.

Definition 1 We define u(x, t) to be a weak solution to (28) if it satisifies∫ ∞
−∞

∫ ∞
−∞

(φt + cφx)udxdt = 0 (29)

for any test function φ.

Lemma 2 If u is a weak solution of (28), but is C1 in both x and t, then u is a classical (strong)
solution to (28). Further, a classical (strong) solution is always a weak solution.

Proof.
Simply integrate by parts (29) with respect to t or x, depending on whether it is the term φt

or φx. Noting no contribution at the end points (because of compactness assumption on support
of φ), it follows that ∫ ∞

−∞

∫ ∞
−∞

(ut + cux)φdxdt = 0 (30)

Since ut + cux is continuous in (x, t) and the above equation holds for any φ, it follows that u
satisfies (28). To show classical solution (strong solution) is also a weak solution, we note that
(30) holds for any classical solution. Integrating by parts we obtain (28).

We now show that for the problem (28), u(x, t) = f(x− ct) is a weak solution when f ∈ C0

only. To do so, we must show that∫ ∞
−∞

∫ ∞
−∞

[φt + cφx] f(x− ct)dxdt = 0 (31)

for any test function φ. It is convenient to introduce change of variable (x, t)→ (x−ct, t) ≡ (ξ, t)
in the integration in (31). Using chain rule, it is clear that if we write φ(x(ξ, t), t) = Φ(ξ, t), then
Φt = φt + cφx. Therefore, that the left hand side of (31) reduces to∫ ∞

−∞

∫ ∞
−∞

Φtf(ξ)dtdξ (32)

This is zero since t integration of Φt is zero, as Φ is zero at outside a finite region in the (x, t)
plane.

More generally, weak solution of

a(x, t)ut + b(x, t)ux = c(x, t)u (33)

may be defined as one that satisfies∫ ∞
−∞

∫ ∞
−∞

[(aφ)t + (bφ)x + cφ]u(x, t)dxdt (34)

for any complactly supported test function φ.
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4 Classification of 2nd order Linear PDEs

Consider a general second order linear PDE in n independent variables:

n∑
i,j=1

aijuxixj
+

n∑
i=1

aiuxi
+ a0u = g (35)

for constants aij , ai and a0. Since the mixed derivative uxixj
= uxjxi

, there is no loss of generality
in taking aij = aji. Consider a linear change in variable (for constant n× n materix B):

ξ = (ξ1, ξ2, ..ξn)T = Bx (36)

Then, it follows on using chain rule that

∑
i,j

aijuxixj
=
∑
k,l

∑
i,j

bkiaijblj

uξkξl ,
∑
i

aiuxi
=
∑
k

[∑
i

bkiai

]
uξk (37)

Hence the PDE (35) reduces to∑
k,l

ckluξkξl +
∑
k

ckuξk + a0u = g (38)

Therefore, the coefficient matrix of the PDE has been changed from A (defined by elements aij)
to C = BABT (C is defined here by elements ckl). Since we arranged A to be a symmetric real
matrix, there exists an orthogonal matrix B with determinant 1 (i.e. rotation matrix) so that

BTAB = D =

d1 0 ..
0 d2 ..
. . .

 (39)

a diagonal matrix. With this choice of B, the PDE (38) has the form

d1uξ1ξ1 + d2uξ2ξ2 + ..dnuξnξn +
∑
k

ckuξk + a0u = g (40)

Further note that by simply rescaling ξj by factors of
√
|dj |, we can ensure that the coefficient

of the second derivative terms are all either +1 or -1 for all terms for which dj 6= 0.

Definition 3 The PDE (35) is called elliptic if all eigenvalues d1, d2, ..dn are positive or all
are negative (This is equivalent to matrix A (or −A) being positive definite). The PDE is called
hyperbolic if none of d1, d2, ..dn vanish and one of them has the opposite sign of the (n − 1)
others. If exactly one eigen values is zero and all the others have the same sign, the PDE is
called parabolic.

Remark 1 When n = 2, the condition for being elliptic, hyperbolic and parabolic can be shown
to reduce to a212 < a11a22, a212 > a11a22 and a212 = a11a22, respectively. Also, note that for n > 2,
there can be equations that do not belong to any of these three categories. For instance, if no
eigenvalues vanish and at least two of them are positive and at least another two negative, then
it is referred to as ultra-hyperbolic.
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You can directly check that Laplace equation ∆u = 0 is elliptic, wave equation utt −∆u = 0
is hyperbolic and heat equation ut − κ∆u = 0 is parabolic. It also follows from (40) that there
exists change of variable independent variables so that any elliptic equation of the form (35) can
be transformed into

∆u+ ..(lower order derivatives of u) = g (41)

while hyperbolic equations can be transformed to

utt −∆(n−1)u+ ..(lower order derivatives) = g (42)

where we choose the t = ξl (after rescaling by
√
|dl|), l being the index for which dl has opposite

sign from other eigen values of A, and where ∆(n−1) is is the Laplacian operator in n−1 variables

(ξ1, ξ2, , , ξl−1, ξl+2, ...ξn), after rescaling by factors of
√
|dk|, as mentioned before. It can also be

shown that parabolic equations can be transformed to

∆(n−1)u+ ..(lower order derivatives) = g (43)

This is the reason why study of Laplace, Wave Equation and Diffusion (or Heat) gives general
idea of the behavior of Elliptic, Hyperbolic and Parabolic class of differential equations.

5 2nd Order Linear Wave Equation in 1-D

We consider for constant c,

utt = c2uxx for −∞ < x <∞ (44)

We notice that we can factorize operator ∂2t −c2∂2x = (∂t−c∂x)(∂t+c∂x). Hence, if we introduce
a new variable v = ut + cux, then it follows that v must satisfy vt − cvx = 0. From using the
method of characteristics, we know v(x, t) = h(x+ ct). Therefore, (44) reduces to

ut + cux = h(x+ ct)

We now note that a particular solution to the above is u(x, t) = f(x + ct) where f ′(s) = h(s)
2c .

So, we can decompose u(x, t) = f(x+ ct) + w(x, t) and obtain

wt + cwx = 0

From method of characteristics again, we know w(x, t) = g(x − ct). Hence the general solution
to (44) is given by

u(x, t) = f(x+ ct) + g(x− ct) (45)

which is a classical solution for f , g ∈ C2.
Alternate method of finding the solution is to introduce change of variables (ξ, η) = (x+ct, x−

ct). Then, on using chain rule, it can be easily shown that PDE (44) reduces to −4c2uξη = 0,
which on integration with respect to ξ and η gives rise to (45).

We now discuss solution to (44) satisfying initial conditions

u(x, 0) = φ(x) ; ut(x, 0) = ψ(x) (46)
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If we use the representation (45), it follows that

u(x, 0) = f(x) + g(x) = φ(x) (47)

and
ut(x, 0) = cf ′(x)− cg′(x) = ψ(x) (48)

Hence f(s) = 1
2φ(s) + 1

2c

∫ s
0
ψ(s′)ds′ +A and g(s) = 1

2φ(s)− 1
2c

∫ s
0
ψ(s′)ds′ +B for constants A

and B. But since φ(s) = f(s) + g(s), A+B = 0. It follows that

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s)ds (49)

This is called the D’Alembert solution. One can directly check that (49) is a classical solution to
the PDE and satisfies the initial conditions provided φ ∈ C2 and ψ ∈ C2.

5.1 Domains of Dependence and Influence

It is to be noted from expression (49) that the solution at any point (x, t) only depends on initial
conditions φ(ξ) and ψ(ξ) for ξ ∈ (x− ct, x+ ct). Since the equations are autonomous, (49) also
can be used to relate solution u(x, t) to solution at time t− τ :

u(x, t) =
1

2
(u(x+ cτ, t− τ) + u(x− cτ, t− τ)) +

1

2c

∫ x+ct

x−ct
ut(s, t− τ)ds (50)

where u and ut at time t− τ are calculated using (49). Indeed, in the x− t plane, if we a triangle
with vertices at (x, t), (x−ct, 0) and (x+ct, 0); the solution at the vertex (x, t) is only influenced
by the solution at earlier t within this triangle. This triangle is referred to as the domain of
dependence. Anything outside this triangle has no influence on the solution at (x, t).

Similarly, if we ask the question what is the domain later in time which is influenced by
the solution at a point (x, t) influence. Equation (49) implies that a point (x, t) only influences
solution inside the cone with slopes ±c with vertex at (x, t). This is the domain of influence.
This is referred to as the principle of causality in the text.

This is a generic feature of hyperbolic partial differential equation–solution at any point is only
by parts of the initial and boundary conditions; also solution at any (x, t) affects solution later in
time, if it is inside the domain of influence. Physically, consider propagation of electromagnetic
radiation, say light, emanating from some source at t = 0. Note this propagation is governed
by wave equation. Clearly this light will not felt at time t at a point x, if there was not enough
time for the light to have travelled the distance from the source.

5.2 Energy and Uniqueness of Solution of IVP

We go back to the idealization of a homogeneous vibrating string for x ∈ (−∞,∞). The Kinetic
Energy (KE) of this string will be KE = ρ

2

∫∞
−∞ u2tdx. It’s rate of change is

d

dt
KE = ρ

∫ ∞
−∞

ututtdx
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Using the PDE for the vibrating string: ρutt = Tuxx we obtain

d

dt
KE = T

∫ ∞
−∞

utuxxdt = −T
∫ ∞
−∞

utxuxdt = − d

dt

T

2

∫ ∞
−∞

u2x

Therefore, the expression for string potential energy (PE) due to tension must be

PE =
T

2

∫ ∞
−∞

u2x,

so that the equation before reads as conservation of total energy E = PE +KE

d

dt
E = 0,

where

E =

∫ ∞
−∞

(
ρ

2
u2t +

T

2
u2x

)
dx

In general for wave equation in the form

utt = c2uxx,

we have conservation of ‘energy’ E from the equations, if we define it as

E =

∫ ∞
−∞

(
1

2
u2t +

c2

2
u2x

)
dx

The conservation of energy provides an easy proof of uniqueness:

Lemma 4 For the linear wave equation (44), with specified initial condition (46), any solution
that is a priori C1, is unique.

Proof.
Assume two solutions u and v satisfying both (44) and (46) with the same φ and ψ. It follows

that w = u− v ∈ C1 and satisfies (44) and zero initial conditions. Since Energy is conserved in
time, it follows E = 0, since w = 0 and wt = 0 initially. Hence it follows wx = 0 and wt = 0 for
all times. So, w = const., independent of t. Since w = 0 initially, w = 0 for all t.
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