
Week 4 Lectures, Math 6451, Tanveer

1 Diffusion in R
n

Recall that for scalar x,

S(x, t) =
1√
4πκt

exp

[

− x2

4κt

]

(1)

is a special solution to 1-D heat equation with properties

∫

R

S(x, t)dx = 1 for t > 0, and yet lim
t→0+

S(x, t) = 0 for fixed x 6= 0 (2)

This was called a source solution of heat equation with source at the origin.
We now claim that the product S(x, t) ≡ S(x1, t)S(x2, t)S(x3, t)...S(xn, t) is a solution to

the heat equation in R
n:

ut = κ∆ for x ∈ R
n (3)

and satisfies property

∫

Rn

S(x, t)dx = 1 for t > 0, and yet lim
t→0+

S(x, t) = 0 for fixed x 6= 0 (4)

We note that by using product rule

∂S
∂t

=
n
∑

j=1

∂

∂t
S(xj , t)

∏

i6=j

S(xi, t) = κ

n
∑

j=1

∂2

∂x2j
S(xi, t)

∏

i6=j

S(xi, t) = κ∆S (5)

Further,
∫

Rn

S(x, t)dx =

∫

R

∫

R

...

∫

R

S(x1, t)S(x2, t)...S(xn, t)dx1dx2...dxn = 1 (6)

Further if x 6= 0, then direct examination of

S(x, t) =
1

(4κπt)
n/2

exp

[

−x
2
1 + x22 + ..x2n

4κt

]

=
1

(4κπt)
n/2

exp

[

− x2

4κt

]

(7)

shows that limt→0+ S(x, t) = 0 for fixed x 6= 0. The solution S is the source solution in R
n.

Analogous to 1-D, we have the following theorem:

Theorem 1 The solution to the heat equation in R
n that satisfies initial condition

u(x, 0) = φ(x) for φ ∈ C0(Rn) (8)

is given by

u(x, t) =

∫

Rn

S(x − y, t)φ(y)dy (9)
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2 Diffusion in the half-line

2.1 Dirichlet Boundary condition

We consider solution to heat equation in 1-D, with x ∈ R+ and take the Dirichlet boundary
condition at x = 0. So the problem is

vt − κvxx = 0 for x > 0, t > 0 (10)

v(x, 0) = φ(x) (11)

v(0, t) = 0 (12)

We seek to find a solution to this problem explicitly. If it exists, the classical solution for which
v(x, t) → 0 as x→ ∞ is unique by applying maximum principle or energy method.

Now the initial data φ(x) is only specified for x > 0.

φ

x

φ(x)
odd

Figure 1: Odd Extension of φ(x) to x ∈ R

We do an odd extension, i.e. define an extended function φodd(x) in R (see Fig. 1) so that

φodd(x) = φ(x) for x > 0 ; φodd(x) = −φ(−x) for x < 0 (13)

.
Let u(x, t) be a solution to heat equation so as to satisfy

u(x, 0) = φodd(x) for x ∈ R (14)

Then, applying equation (15) of week 3 notes,

u(x, t) =

∫ ∞

−∞

S(x− y, t)φodd(y)dy (15)

2



Breaking up the integral into two parts
∫ 0

−∞
and

∫∞

0
and changing variables y → −y in the first

and using (14), we note that (15) implies that

u(x, t) =

∫ ∞

0

[S(x− y, t)− S(x+ y, t)]φ(y)dy (16)

We note that this solution automatically satisfies Dirichlet boundary condition u(0, t) = 0, and
therefore from uniqueness, is the desired solution v(x, t) Therefore, using expresssions for S(x, t)
from last week notes, we obtain

v(x, t) =
1√
4πκt

∫ ∞

0

{

exp

[

− (x− y)2

4κt

]

− exp

[

− (x+ y)2

4κt

]}

φ(y)dy (17)

We have just illustrated the method of obtaining solution through odd-extension or reflection
about the origin; this is applicable to many other half-line problems involving Dirichlet boundary
conditions.

2.2 Neumann Boundary Condition and even extension

We now consider the diffusion problem on a half-line but with Neumann condition. The problem
becomes

wt − κwxx = 0 for x > 0, t > 0 (18)

w(x, 0) = φ(x) (19)

wx(0, t) = 0 (20)

In this case, it is more convenient to find solution through an even extension. We define φeven(x)

φeven(x) = φ(x) for x > 0 ; φeven(x) = φ(−x) for x < 0, (21)

and solve the initial value problem

ut = κuxx ; u(x, 0) = φeven(x) (22)

The solution to this is

u(x, t) =

∫ ∞

−∞

S(x− y, t)φeven(y)dy (23)

Once again breaking up the above integral into
∫ 0

−∞
+
∫∞

0
and using change of variable y → −y

in the first integral, and using relation (21), one finds

u(x, t) =

∫ ∞

0

[S(x− y, t) + S(x+ y, t)]φ(y)dy (24)

On differentiating (24) with respect to x and noting that Sx(−y, t) = −Sx(y, t), it follows that
ux(0, t) = 0 for all t > 0. Thus the solution (24) indeed solves the Neumann problem for w.
Using energy method again, we can prove that the classical solution to the initial value problem
(18)-(20) is unique. Hence, using expressions for S(x, t), we obtain from (24) solution to (18)-(20)
in the form:

w(x, t) =
1√
4πκt

∫ ∞

0

{

exp

[

− (x− y)2

4κt

]

+ exp

[

− (x+ y)2

4κt

]}

φ(y)dy (25)
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3 Half-line problem for linear wave equation

Now, we try the same type of reflection approach for second order wave equation. Consider first
Dirichlet boundary condition. Thus the problem (IVP) is

vtt − c2vxx = 0 for x > 0 ,−∞ < t < ∞ (26)

v(x, 0) = φ(x), vt(x, 0) = ψ(x) for x > 0 (27)

v(0, t) = 0 (28)

where φ ∈ C2, ψ ∈ C1.
As for the diffusion equation on a line, we carry out an odd extension over R, in this case

both for φ(x) and ψ(x). We define the oddly extended functions to be φodd(x) and ψodd(x). We
seek solution u(x, t) to wave equation for x ∈ R so that it satisfies

u(x, 0) = φodd(x) , ut(x, 0) = ψodd(x) for x ∈ R (29)

From d’Alembert formula, the solution is

u(x, t) =
1

2
[φodd(x+ ct) + φodd(x− ct)] +

1

2c

∫ x+ct

x−ct

ψodd(y)dy (30)

We verify that u(0, t) = 0 is indeed satisfied by this expression. Also, using energy arguments,
we can prove uniqueness of soluion satisfying (26)-(28). Hence, desired v(x, t) is given by (30).

Now the formula (30) can be re-expressed in terms of φ(x) and ψ(x), but the expression is
different in different regimes of (x, t).

First, for x > c|t|, we notice that each of the arguments x− ct and x+ ct are positive. Hence,
(30) reduces to

v(x, t) =
1

2
[φ(x+ ct) + φ(x − ct)] +

1

2c

∫ x+ct

x−ct

ψ(y)dy (31)

The second regime is 0 < x < ct. We have for φodd(x − ct) = −φ(ct − x), and ψodd(y) =
−ψ(−y) for y < 0. Hence

v(x, t) =
1

2
[φ(x + ct)− φ(ct− x)] +

1

2c

[
∫ x+ct

0

ψ(y)dy +

∫ 0

x−ct

[−ψ(−y)]
]

dy

=
1

2
[φ(x + ct)− φ(ct− x)] +

1

2c

[
∫ x+ct

ct−x

ψ(y)dy

]

(32)

Graphically, the result (32) can be interpreted as follows. Draw the backward characteristics
from the point (x, t) (see Fig.2). In the regime 0 < x < ct, such a backward characteristic
intersects the t-axis, before crossing the x-axis at (x − ct, 0). The formula (32) shows that the
reflection induces a change of sign. The value of v(x, t) now depends on the values of φ at the
pair of points ct±x and on ψ over the interval (ct−x, ct+x), which is shorter than (x−ct, x+ct).
This is because the integral of ψodd(y) over the symmetric interval (x− ct, ct− x) is zero.

If 0 < x < −ct, using similar arguments, we can check that (30) reduces to

v(x, t) =
1

2
[−φ(−ct− x) + φ(−ct+ x)]− 1

2c

[
∫ −ct+x

−ct−x

ψ(y)dy

]

(33)

The case of Neumann problem on a half-line for the wave equation is very similar, with an
even extension of each of φ and ψ.
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(x,t)

t

x−axis

−axis

x+ctx−ct ct−x

Figure 2: Backward characteristics from (x, t) for 0 < x < ct

4 Wave Equation in a finite line

Consider the 1-D wave equation on a finite interval in x with homogeneous Dirichlet boundary
conditions, that would correspond to say a guitar string with fixed ends. The initial value
problem is given by:

vtt = c2vxx, v(x, 0) = φ(x), vt(x, 0) = ψ(x) for 0 < x < l (34)

and
v(0, t) = v(l, t) = 0 (35)

We can extend the data for each of φ(x) and ψ(x) by first doing an odd extension to get a
function over (−l, l) and then define periodical extensios φext(x) and ψext(x) over R. Thus

φext(x) = φ(x) for x ∈ (0, l) , φext(x) = −φ(−x) for x ∈ (−l, 0) and φext(x + 2l) = φext(x)
(36)

and a similar formula is valid for ψext(x). It is then possible to write solution as

v(x, t) =
1

2
[φext(x+ ct) + φext(x − ct)] +

1

2c

∫ x+ct

x−ct

ψext(s)ds (37)

It can be checked directly that this satisfies v(0, t) = 0. To check v(l, t) = 0, we note that
φext(l − ct) = φext(−l − ct) = −φext(l + ct). Again, using periodicity and oddness of ψext, we

can prove that
∫ l+ct

l−ct ψ(y)dy = 0.
While the expression (37) for the solution is relatively simple in terms of φext and ψext, it is

much more complicated if we want to write it in terms of φ and ψ. There are different regimes
of expression, depending on how many times reflection was possible at the end points x = 0 and
x = l. I will refer you to Fig. 4 of the text on page 62 for a graphical illustration.

We will find later in this course alternate expressions of solution in terms of a Fourier Series.
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5 Diffusion with a source

In this section, we solve the inhomogeneous diffusion equation in R
n, for any dimension n ≥ 1.

So, the initial value problem of interest is

ut − κ∆u = f(x, t) (38)

u(x, 0) = φ(x) (39)

where φ, f ∈ C0. We will prove that the solution of the problem (38)-(39) is given by

u(x, t) =

∫

Rn

S(x− y, t)φ(y)dy +

∫ t

0

∫

Rn

S(x − y, t− τ)f(y, τ)dydτ (40)

This is an example of application of so-called Duhammel’s principle where solution to inhomo-
geneous linear autonomous differential equation is expressed in terms of appropriate solution to
the homogeneous solution, which in this case is S. See text page 65 for analogy to ODEs.

It is convenient to define

v(x, t) =

∫ t

0

∫

Rn

S(x− y, t− τ)f(y, τ)dydτ (41)

Then noting

lim
τ→t−

∫

Rn

S(x − y, t− τ)f(y, τ)dy = f(x, t)

we obtain

vt−κ∆v = lim
τ→t−

∫

Rn

S(x−y, t−τ)f(y, τ)dy+
∫ t

0

∫

Rn

[St(x − y, t− τ)− κ∆xS(x − y, t− τ)] = f(x, t)

(42)
Further, since

|
∫

Rn

S(x− y, t− τ)f(y, τ)dy| ≤ sup
y∈Rn

|f(y, τ)|
∫

Rn

S(x− y, t− τ)dy = ‖f(., τ)‖ for τ < t

it follows limt→0+ v(x, t) = 0. Since, we know from before that

w(x, t) =

∫

Rn

S(x − y, t)φ(ydy

solves the heat equation without any source wt − κ∆w = 0 and initial condition w(x, 0) = φ(x),
it follows that u(x, t) = v(x, t) + w(x, t) given by (40) solves the inhomogeneous heat equation
(38) and satisfies the initial condition (39).

6 Inhomogenous Heat Equation in a half space H

Note that the text on page 67 talks about solving inhomogenous diffusion equation on a half-line.
There is no problem extending this idea to n-dimensions. We define half space

H ≡ {x ∈ R
n : x1 > 0} (43)
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Our problem is to solve
vt − κ∆v = f(x, t) for x ∈ H (44)

v(x, 0) = φ(x) for x ∈ H (45)

v(x, t) = 0 for x ∈ ∂H (46)

First, we note using odd-extension of φ(x) in the component x1, as in 1-D, we can obtain a
source type solution that satisfies the boundary condition on x1 = 0 (which is the same as ∂H.
It is convenient to define

y− = (−y1, y2, y3, ..., yn) , where y = (y1, y2, ..., yn)

Then, it is easy to verify that

T (x, y, t) ≡ S(x − y, t)− S(x − y−, t) (47)

is a solution of the heat equation in the half-place H corresponding to a unit source at y that
satisfies the homogenous Dirichlet condition (36). Therefore, using the same ideas as in the last
section, we can verify that the solution to the problem posed in (44)-(46) is given by

v(x, t) =

∫

Rn

T (x,y, t)φ(y)dy +

∫ t

0

∫

Rn

T (x,y, t − τ)f(y, τ)dydτ (48)

7 Note on Inhomogenous Dirichlet or Neumann conditions

So far, our boundary conditions, either for the heat or wave equation involved homogeneous
Dirichlet or Neumann boundary conditions. However, solution for an inhomogenous condition
is not a serious problem. For the sake of being definite, consider for instance

ut − κuxx = f(x, t); for x > 0 , u(0, t) = h(t) , u(x, 0) = φ(x) (49)

We assume h ∈ C1. Noting that the function w(x, t) ≡ e−xh(t) satisfies the boundary condition
at x = 0 and well-behaved in x as x → +∞, it follows that by decomposing u(x, t) = w(x, t) +
v(x, t), v(x, t) satisfies

vt − κvxx = f(x, t)− wt + κwxx ≡ f̃(x, t) (50)

v(0, t) = 0 ; v(x, 0) = φ(x) − h(0)e−x ≡ φ̃(x) (51)

Equations (38)-(39) defines an inhomogeneous heat equation with homogeneous Dirichlet condi-
tion and is of the type for which we have a general representation of solution, as seen in the last
section.
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