1 Diffusion in \mathbb{R}^n

Recall that for scalar x,

$$S(x, t) = \frac{1}{\sqrt{4\pi\kappa t}} \exp \left[-\frac{x^2}{4\kappa t} \right]$$ \hspace{1cm} (1)

is a special solution to 1-D heat equation with properties

$$\int_{\mathbb{R}} S(x, t) dx = 1 \text{ for } t > 0, \text{ and yet } \lim_{t \to 0^+} S(x, t) = 0 \text{ for fixed } x \neq 0$$ \hspace{1cm} (2)

This was called a source solution of heat equation with source at the origin.

We now claim that the product $S(x, t) \equiv S(x_1, t)S(x_2, t)S(x_3, t)...S(x_n, t)$ is a solution to the heat equation in \mathbb{R}^n:

$$u_t = \kappa \Delta$$ \hspace{1cm} (3)

and satisfies property

$$\int_{\mathbb{R}^n} S(x, t) dx = 1 \text{ for } t > 0, \text{ and yet } \lim_{t \to 0^+} S(x, t) = 0 \text{ for fixed } x \neq 0$$ \hspace{1cm} (4)

We note that by using product rule

$$\frac{\partial S}{\partial t} = \sum_{j=1}^{n} \frac{\partial}{\partial t} S(x_j, t) \prod_{i \neq j} S(x_i, t) = \kappa \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} S(x_j, t) \prod_{i \neq j} S(x_i, t) = \kappa \Delta S$$ \hspace{1cm} (5)

Further,

$$\int_{\mathbb{R}^n} S(x, t) dx = \int_{\mathbb{R}} \int_{\mathbb{R}} ... \int_{\mathbb{R}} S(x_1, t)S(x_2, t)...S(x_n, t) dx_1 dx_2 ... dx_n = 1$$ \hspace{1cm} (6)

Further if $x \neq 0$, then direct examination of

$$S(x, t) = \frac{1}{(4\pi\kappa t)^{n/2}} \exp \left[-\frac{x_1^2 + x_2^2 + ... + x_n^2}{4\kappa t} \right]$$ \hspace{1cm} (7)

shows that $\lim_{t \to 0^+} S(x, t) = 0$ for fixed $x \neq 0$. The solution S is the source solution in \mathbb{R}^n.

Analogous to 1-D, we have the following theorem:

Theorem 1 The solution to the heat equation in \mathbb{R}^n that satisfies initial condition

$$u(x, 0) = \phi(x) \text{ for } \phi \in C^0(\mathbb{R}^n)$$ \hspace{1cm} (8)

is given by

$$u(x, t) = \int_{\mathbb{R}^n} S(x - y, t)\phi(y)dy$$ \hspace{1cm} (9)
2 Diffusion in the half-line

2.1 Dirichlet Boundary condition

We consider solution to heat equation in 1-D, with \(x \in \mathbb{R}^+ \) and take the Dirichlet boundary condition at \(x = 0 \). So the problem is

\[
v_t - \kappa v_{xx} = 0 \quad \text{for} \quad x > 0, \quad t > 0
\]
\[
v(x, 0) = \phi(x)
\]
\[
v(0, t) = 0
\]

We seek to find a solution to this problem explicitly. If it exists, the classical solution for which \(v(x, t) \to 0 \) as \(x \to \infty \) is unique by applying maximum principle or energy method.

Now the initial data \(\phi(x) \) is only specified for \(x > 0 \).

We do an odd extension, i.e. define an extended function \(\phi_{\text{odd}}(x) \) in \(\mathbb{R} \) (see Fig. 1) so that

\[
\phi_{\text{odd}}(x) = \phi(x) \quad \text{for} \quad x > 0 ; \quad \phi_{\text{odd}}(x) = -\phi(-x) \quad \text{for} \quad x < 0
\]

![Odd Extension of \(\phi(x) \) to \(x \in \mathbb{R} \)](image)

We do an odd extension, i.e. define an extended function \(\phi_{\text{odd}}(x) \) in \(\mathbb{R} \) (see Fig. 1) so that

\[
\phi_{\text{odd}}(x) = \phi(x) \quad \text{for} \quad x > 0 ; \quad \phi_{\text{odd}}(x) = -\phi(-x) \quad \text{for} \quad x < 0
\]

Let \(u(x, t) \) be a solution to heat equation so as to satisfy

\[
u(x, 0) = \phi_{\text{odd}}(x) \quad \text{for} \quad x \in \mathbb{R}
\]

Then, applying equation (15) of week 3 notes,

\[
u(x, t) = \int_{-\infty}^{\infty} S(x - y, t)\phi_{\text{odd}}(y)dy
\]
Breaking up the integral into two parts $\int_{-\infty}^{0}$ and \int_{0}^{∞} and changing variables $y \to -y$ in the first and using (14), we note that (15) implies that
\[u(x, t) = \int_{0}^{\infty} [S(x - y, t) - S(x + y, t)] \phi(y) dy \] (16)
We note that this solution automatically satisfies Dirichlet boundary condition $u(0, t) = 0$, and therefore from uniqueness, is the desired solution $v(x, t)$.

Thus, using expressions for $S(x, t)$ from last week notes, we obtain
\[v(x, t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_{0}^{\infty} \left\{ \exp \left[-\frac{(x - y)^2}{4\kappa t} \right] - \exp \left[-\frac{(x + y)^2}{4\kappa t} \right] \right\} \phi(y) dy \] (17)
We have just illustrated the method of obtaining solution through odd-extension or reflection about the origin; this is applicable to many other half-line problems involving Dirichlet boundary conditions.

2.2 Neumann Boundary Condition and even extension

We now consider the diffusion problem on a half-line but with Neumann condition. The problem becomes
\[w_t - \kappa w_{xx} = 0 \quad \text{for} \quad x > 0, \quad t > 0 \] (18)
\[w(x, 0) = \phi(x) \] (19)
\[w_x(0, t) = 0 \] (20)
In this case, it is more convenient to find solution through an even extension. We define $\phi_{\text{even}}(x)$
\[\phi_{\text{even}}(x) = \phi(x) \quad \text{for} \quad x > 0; \quad \phi_{\text{even}}(x) = \phi(-x) \quad \text{for} \quad x < 0, \] (21)
and solve the initial value problem
\[u_t = \kappa u_{xx}; \quad u(x, 0) = \phi_{\text{even}}(x) \] (22)
The solution to this is
\[u(x, t) = \int_{-\infty}^{\infty} S(x - y, t) \phi_{\text{even}}(y) dy \] (23)
Once again breaking up the above integral into $\int_{-\infty}^{0} + \int_{0}^{\infty}$ and using change of variable $y \to -y$ in the first integral, and using relation (21), one finds
\[u(x, t) = \int_{0}^{\infty} [S(x - y, t) + S(x + y, t)] \phi(y) dy \] (24)
On differentiating (24) with respect to x and noting that $S_x(-y, t) = -S_x(y, t)$, it follows that $u_x(0, t) = 0$ for all $t > 0$. Thus the solution (24) indeed solves the Neumann problem for w. Using energy method again, we can prove that the classical solution to the initial value problem (18)-(20) is unique. Hence, using expressions for $S(x, t)$, we obtain from (24) solution to (18)-(20) in the form:
\[w(x, t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_{0}^{\infty} \left\{ \exp \left[-\frac{(x - y)^2}{4\kappa t} \right] + \exp \left[-\frac{(x + y)^2}{4\kappa t} \right] \right\} \phi(y) dy \] (25)
3 Half-line problem for linear wave equation

Now, we try the same type of reflection approach for second order wave equation. Consider first Dirichlet boundary condition. Thus the problem (IVP) is
\[
\begin{align*}
 v_{tt} - c^2 v_{xx} &= 0 & \text{for } x > 0, -\infty < t < \infty \\
 v(x,0) &= \phi(x), \quad v_t(x,0) = \psi(x) & \text{for } x > 0 \\
 v(0,t) &= 0
\end{align*}
\] (26)
where \(\phi \in C^2, \psi \in C^1 \).

As for the diffusion equation on a line, we carry out an odd extension over \(\mathbb{R} \), in this case both for \(\phi(x) \) and \(\psi(x) \). We define the oddly extended functions to be \(\phi_{\text{odd}}(x) \) and \(\psi_{\text{odd}}(x) \). We seek solution \(u(x,t) \) to wave equation for \(x \in \mathbb{R} \) so that it satisfies
\[
 u(x,0) = \phi_{\text{odd}}(x), \quad u_t(x,0) = \psi_{\text{odd}}(x) \quad \text{for } x \in \mathbb{R}
\] (29)
From d’Alembert formula, the solution is
\[
u(x,t) = \frac{1}{2} \left[\phi_{\text{odd}}(x+ct) + \phi_{\text{odd}}(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{\text{odd}}(y)dy \]
(30)
We verify that \(u(0,t) = 0 \) is indeed satisfied by this expression. Also, using energy arguments, we can prove uniqueness of solution satisfying (26)-(28). Hence, desired \(u(x,t) \) is given by (30).

Now the formula (30) can be re-expressed in terms of \(\phi(x) \) and \(\psi(x) \), but the expression is different in different regimes of \((x,t) \).

First, for \(x > c|t| \), we notice that each of the arguments \(x - ct \) and \(x + ct \) are positive. Hence, (30) reduces to
\[
 v(x,t) = \frac{1}{2} \left[\phi(x+ct) + \phi(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y)dy
\] (31)
The second regime is \(0 < x < ct \). We have for \(\phi_{\text{odd}}(x - ct) = -\phi(ct - x) \), and \(\psi_{\text{odd}}(y) = -\psi(-y) \) for \(y < 0 \). Hence
\[
 v(x,t) = \frac{1}{2} \left[\phi(x+ct) - \phi(ct-x) \right] + \frac{1}{2c} \left[\int_{0}^{x+ct} \psi(y)dy + \int_{x-ct}^{0} [-\psi(-y)]dy \right]
\]
(32)
Graphically, the result (32) can be interpreted as follows. Draw the backward characteristics from the point \((x,t)\) (see Fig.2). In the regime \(0 < x < ct \), such a backward characteristic intersects the \(t \)-axis, before crossing the \(x \)-axis at \((x-ct,0)\). The formula (32) shows that the reflection induces a change of sign. The value of \(v(x,t) \) now depends on the values of \(\phi \) at the pair of points \(ct \pm x \) and on \(\psi \) over the interval \((ct-x,ct+x)\), which is shorter than \((x-ct,x+ct)\).

This is because the integral of \(\psi_{\text{odd}}(y) \) over the symmetric interval \((x-ct,ct-x)\) is zero.

If \(0 < x < -ct \), using similar arguments, we can check that (30) reduces to
\[
 v(x,t) = \frac{1}{2} \left[-\phi(-ct-x) + \phi(-ct+x) \right] - \frac{1}{2c} \left[\int_{-ct-x}^{-ct+x} \psi(y)dy \right]
\] (33)
The case of Neumann problem on a half-line for the wave equation is very similar, with an even extension of each of \(\phi \) and \(\psi \).
Consider the 1-D wave equation on a finite interval in x with homogeneous Dirichlet boundary conditions, that would correspond to say a guitar string with fixed ends. The initial value problem is given by:

$$v_{tt} = c^2 v_{xx}, \quad v(x,0) = \phi(x), \quad v_t(x,0) = \psi(x) \quad \text{for} \quad 0 < x < l$$

(34)

and

$$v(0,t) = v(l,t) = 0$$

(35)

We can extend the data for each of $\phi(x)$ and $\psi(x)$ by first doing an odd extension to get a function over $(-l,l)$ and then define periodical extensions $\phi_{\text{ext}}(x)$ and $\psi_{\text{ext}}(x)$ over \mathbb{R}. Thus

$$\phi_{\text{ext}}(x) = \phi(x) \quad \text{for} \quad x \in (0,l) \quad , \quad \phi_{\text{ext}}(x) = -\phi(-x) \quad \text{for} \quad x \in (-l,0) \quad \text{and} \quad \phi_{\text{ext}}(x+2l) = \phi_{\text{ext}}(x)$$

(36)

and a similar formula is valid for $\psi_{\text{ext}}(x)$. It is then possible to write solution as

$$v(x,t) = \frac{1}{2} [\phi_{\text{ext}}(x+ct) + \phi_{\text{ext}}(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{\text{ext}}(s) ds$$

(37)

It can be checked directly that this satisfies $v(0,t) = 0$. To check $v(l,t) = 0$, we note that $\phi_{\text{ext}}(l - ct) = \phi_{\text{ext}}(-l - ct) = -\phi_{\text{ext}}(l + ct)$. Again, using periodicity and oddness of ψ_{ext}, we can prove that $\int_{l-ct}^{l+ct} \psi(y) dy = 0$.

While the expression (37) for the solution is relatively simple in terms of ϕ_{ext} and ψ_{ext}, it is much more complicated if we want to write it in terms of ϕ and ψ. There are different regimes of expression, depending on how many times reflection was possible at the end points $x = 0$ and $x = l$. I will refer you to Fig. 4 of the text on page 62 for a graphical illustration.

We will find later in this course alternate expressions of solution in terms of a Fourier Series.
5 Diffusion with a source

In this section, we solve the inhomogeneous diffusion equation in \mathbb{R}^n, for any dimension $n \geq 1$. So, the initial value problem of interest is

$$u_t - \kappa \Delta u = f(x, t)$$ (38)
$$u(x, 0) = \phi(x)$$ (39)

where $\phi, f \in C^0$. We will prove that the solution of the problem (38)-(39) is given by

$$u(x, t) = \int_{\mathbb{R}^n} S(x - y, t) \phi(y) dy + \int_0^t \int_{\mathbb{R}^n} S(x - y, t - \tau) f(y, \tau) dy d\tau$$ (40)

This is an example of application of so-called Duhammel’s principle where solution to inhomogeneous linear autonomous differential equation is expressed in terms of appropriate solution to the homogeneous solution, which in this case is S. See text page 65 for analogy to ODEs.

It is convenient to define

$$v(x, t) = \int_0^t \int_{\mathbb{R}^n} S(x - y, t - \tau) f(y, \tau) dy d\tau$$ (41)

Then noting

$$\lim_{\tau \to t^-} \int_{\mathbb{R}^n} S(x - y, t - \tau) f(y, \tau) dy = f(x, t)$$

we obtain

$$v_t - \kappa \Delta v = \lim_{\tau \to t^-} \int_{\mathbb{R}^n} S(x - y, t - \tau) f(y, \tau) dy + \int_0^t \int_{\mathbb{R}^n} [S_t(x - y, t - \tau) - \kappa \Delta x S(x - y, t - \tau)] = f(x, t)$$ (42)

Further, since

$$\left| \int_{\mathbb{R}^n} S(x - y, t - \tau) f(y, \tau) dy \right| \leq \sup_{y \in \mathbb{R}^n} |f(y, \tau)| \int_{\mathbb{R}^n} S(x - y, t - \tau) dy = \|f(., \tau)\| \text{ for } \tau < t$$

it follows $\lim_{t \to 0^+} v(x, t) = 0$. Since, we know from before that

$$w(x, t) = \int_{\mathbb{R}^n} S(x - y, t) \phi(y) dy$$

solves the heat equation without any source $w_t - \kappa \Delta w = 0$ and initial condition $w(x, 0) = \phi(x)$, it follows that $u(x, t) = v(x, t) + w(x, t)$ given by (40) solves the inhomogeneous heat equation (38) and satisfies the initial condition (39).

6 Inhomogenous Heat Equation in a half space \mathbb{H}

Note that the text on page 67 talks about solving inhomogenous diffusion equation on a half-line. There is no problem extending this idea to n-dimensions. We define half space

$$\mathbb{H} \equiv \{x \in \mathbb{R}^n : x_1 > 0\}$$ (43)
Our problem is to solve
\[v_t - \kappa \Delta v = f(x, t) \quad \text{for} \ x \in \mathbb{H} \quad (44) \]
\[v(x, 0) = \phi(x) \quad \text{for} \ x \in \mathbb{H} \quad (45) \]
\[v(x, t) = 0 \quad \text{for} \ x \in \partial \mathbb{H} \quad (46) \]

First, we note using odd-extension of \(\phi(x) \) in the component \(x_1 \), as in 1-D, we can obtain a source type solution that satisfies the boundary condition on \(x_1 = 0 \) (which is the same as \(\partial \mathbb{H} \)). It is convenient to define
\[y_- = (-y_1, y_2, y_3, \ldots, y_n)_+ \quad \text{where} \ y = (y_1, y_2, \ldots, y_n) \]
Then, it is easy to verify that
\[T(x, y, t) \equiv S(x - y, t) - S(x - y_-, t) \quad (47) \]
is a solution of the heat equation in the half-place \(\mathbb{H} \) corresponding to a unit source at \(y \) that satisfies the homogenous Dirichlet condition (36). Therefore, using the same ideas as in the last section, we can verify that the solution to the problem posed in (44)-(46) is given by
\[v(x, t) = \int_{\mathbb{R}^n} T(x, y, t) \phi(y) \, dy + \int_0^t \int_{\mathbb{R}^n} T(x, y, t - \tau) f(y, \tau) \, dy \, d\tau \quad (48) \]

7 Note on Inhomogenous Dirichlet or Neumann conditions

So far, our boundary conditions, either for the heat or wave equation involved homogeneous \textit{Dirichlet} or \textit{Neumann} boundary conditions. However, solution for an inhomogenous condition is not a serious problem. For the sake of being definite, consider for instance
\[u_t - \kappa u_{xx} = f(x, t); \quad \text{for} \ x > 0 \ , \ u(0, t) = h(t) \ , \ u(x, 0) = \phi(x) \quad (49) \]
We assume \(h \in C^1 \). Noting that the function \(w(x, t) \equiv e^{-x} h(t) \) satisfies the boundary condition at \(x = 0 \) and well-behaved in \(x \) as \(x \to +\infty \), it follows that by decomposing \(u(x, t) = w(x, t) + v(x, t) \), \(v(x, t) \) satisfies
\[v_t - \kappa v_{xx} = f(x, t) - w_t + \kappa w_{xx} \equiv \tilde{f}(x, t) \quad (50) \]
\[v(0, t) = 0 \ ; \ v(x, 0) = \phi(x) - h(0) e^{-x} \equiv \tilde{\phi}(x) \quad (51) \]
Equations (38)-(39) defines an inhomogeneous heat equation with homogeneous Dirichlet condition and is of the type for which we have a general representation of solution, as seen in the last section.