Week 4 Lectures, Math 6451, Tanveer

1 Diffusion in \mathbb{R}^n

Recall that for scalar x,

$$S(x,t) = \frac{1}{\sqrt{4\pi\kappa t}} \exp\left[-\frac{x^2}{4\kappa t}\right]$$
(1)

is a special solution to 1-D heat equation with properties

$$\int_{\mathbb{R}} S(x,t)dx = 1 \quad \text{for} \quad t > 0, \quad \text{and yet} \quad \lim_{t \to 0^+} S(x,t) = 0 \quad \text{for fixed } x \neq 0 \tag{2}$$

This was called a source solution of heat equation with source at the origin.

We now claim that the product $S(\mathbf{x},t) \equiv S(x_1,t)S(x_2,t)S(x_3,t)...S(x_n,t)$ is a solution to the heat equation in \mathbb{R}^n :

$$u_t = \kappa \Delta \quad \text{for } \mathbf{x} \in \mathbb{R}^n \tag{3}$$

and satisfies property

$$\int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x}, t) d\mathbf{x} = 1 \text{ for } t > 0, \text{ and yet } \lim_{t \to 0^+} \mathbf{S}(\mathbf{x}, t) = 0 \text{ for fixed } \mathbf{x} \neq \mathbf{0}$$
(4)

We note that by using product rule

$$\frac{\partial S}{\partial t} = \sum_{j=1}^{n} \frac{\partial}{\partial t} S(x_j, t) \prod_{i \neq j} S(x_i, t) = \kappa \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} S(x_i, t) \prod_{i \neq j} S(x_i, t) = \kappa \Delta S$$
(5)

Further,

$$\int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x}, t) d\mathbf{x} = \int_{\mathbb{R}} \int_{\mathbb{R}} \dots \int_{\mathbb{R}} S(x_1, t) S(x_2, t) \dots S(x_n, t) dx_1 dx_2 \dots dx_n = 1$$
(6)

Further if $\mathbf{x} \neq 0$, then direct examination of

$$\mathbf{S}(\mathbf{x},t) = \frac{1}{(4\kappa\pi t)^{n/2}} \exp\left[-\frac{x_1^2 + x_2^2 + \dots x_n^2}{4\kappa t}\right] = \frac{1}{(4\kappa\pi t)^{n/2}} \exp\left[-\frac{\mathbf{x}^2}{4\kappa t}\right]$$
(7)

shows that $\lim_{t\to 0^+} \mathcal{S}(\mathbf{x},t) = 0$ for fixed $\mathbf{x} \neq 0$. The solution \mathcal{S} is the source solution in \mathbb{R}^n . Analogous to 1-D, we have the following theorem:

Theorem 1 The solution to the heat equation in \mathbb{R}^n that satisfies initial condition

$$u(\mathbf{x},0) = \phi(\mathbf{x}) \quad \text{for } \phi \in \mathbf{C}^0(\mathbb{R}^n)$$
(8)

is given by

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t)\phi(\mathbf{y})d\mathbf{y}$$
(9)

2 Diffusion in the half-line

2.1 Dirichlet Boundary condition

We consider solution to heat equation in 1-D, with $x \in \mathbf{R}^+$ and take the *Dirichlet* boundary condition at x = 0. So the problem is

$$v_t - \kappa v_{xx} = 0 \quad \text{for} \quad x > 0, \quad t > 0 \tag{10}$$

$$v(x,0) = \phi(x) \tag{11}$$

$$v(0,t) = 0$$
 (12)

We seek to find a solution to this problem explicitly. If it exists, the classical solution for which $v(x,t) \to 0$ as $x \to \infty$ is unique by applying maximum principle or energy method.

Now the initial data $\phi(x)$ is only specified for x > 0.

Figure 1: Odd Extension of $\phi(x)$ to $x \in \mathbb{R}$

We do an *odd extension*, *i.e.* define an extended function $\phi_{odd}(x)$ in \mathbb{R} (see Fig. 1) so that

$$\phi_{odd}(x) = \phi(x) \text{ for } x > 0 ; \phi_{odd}(x) = -\phi(-x) \text{ for } x < 0$$
 (13)

Let u(x,t) be a solution to heat equation so as to satisfy

$$u(x,0) = \phi_{odd}(x) \quad \text{for} \quad x \in \mathbb{R} \tag{14}$$

Then, applying equation (15) of week 3 notes,

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t)\phi_{odd}(y)dy$$
(15)

Breaking up the integral into two parts $\int_{-\infty}^{0}$ and \int_{0}^{∞} and changing variables $y \to -y$ in the first and using (14), we note that (15) implies that

$$u(x,t) = \int_0^\infty \left[S(x-y,t) - S(x+y,t) \right] \phi(y) dy$$
(16)

We note that this solution automatically satisfies *Dirichlet* boundary condition u(0,t) = 0, and therefore from uniqueness, is the desired solution v(x,t) Therefore, using expressions for S(x,t)from last week notes, we obtain

$$v(x,t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_0^\infty \left\{ \exp\left[-\frac{(x-y)^2}{4\kappa t}\right] - \exp\left[-\frac{(x+y)^2}{4\kappa t}\right] \right\} \phi(y) dy \tag{17}$$

We have just illustrated the method of obtaining solution through *odd-extension* or reflection about the origin; this is applicable to many other half-line problems involving *Dirichlet* boundary conditions.

2.2 Neumann Boundary Condition and even extension

We now consider the diffusion problem on a half-line but with *Neumann* condition. The problem becomes

$$w_t - \kappa w_{xx} = 0 \quad \text{for} \quad x > 0, \quad t > 0 \tag{18}$$

$$w(x,0) = \phi(x) \tag{19}$$

$$w_x(0,t) = 0 \tag{20}$$

In this case, it is more convenient to find solution through an even extension. We define $\phi_{even}(x)$

$$\phi_{even}(x) = \phi(x) \quad \text{for} \quad x > 0 \quad ; \quad \phi_{even}(x) = \phi(-x) \quad \text{for} \quad x < 0, \tag{21}$$

and solve the initial value problem

$$u_t = \kappa u_{xx} \quad ; \quad u(x,0) = \phi_{even}(x) \tag{22}$$

The solution to this is

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t)\phi_{even}(y)dy$$
(23)

Once again breaking up the above integral into $\int_{-\infty}^{0} + \int_{0}^{\infty}$ and using change of variable $y \to -y$ in the first integral, and using relation (21), one finds

$$u(x,t) = \int_0^\infty \left[S(x-y,t) + S(x+y,t) \right] \phi(y) dy$$
(24)

On differentiating (24) with respect to x and noting that $S_x(-y,t) = -S_x(y,t)$, it follows that $u_x(0,t) = 0$ for all t > 0. Thus the solution (24) indeed solves the Neumann problem for w. Using energy method again, we can prove that the classical solution to the initial value problem (18)-(20) is unique. Hence, using expressions for S(x,t), we obtain from (24) solution to (18)-(20) in the form:

$$w(x,t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_0^\infty \left\{ \exp\left[-\frac{(x-y)^2}{4\kappa t}\right] + \exp\left[-\frac{(x+y)^2}{4\kappa t}\right] \right\} \phi(y) dy \tag{25}$$

3 Half-line problem for linear wave equation

Now, we try the same type of reflection approach for second order wave equation. Consider first *Dirichlet* boundary condition. Thus the problem (IVP) is

$$v_{tt} - c^2 v_{xx} = 0 \text{ for } x > 0 , -\infty < t < \infty$$
 (26)

$$v(x,0) = \phi(x), \quad v_t(x,0) = \psi(x) \quad \text{for} \quad x > 0$$
(27)

$$v(0,t) = 0$$
 (28)

where $\phi \in \mathbf{C}^2$, $\psi \in \mathbf{C}^1$.

As for the diffusion equation on a line, we carry out an odd extension over \mathbb{R} , in this case both for $\phi(x)$ and $\psi(x)$. We define the oddly extended functions to be $\phi_{odd}(x)$ and $\psi_{odd}(x)$. We seek solution u(x, t) to wave equation for $x \in \mathbb{R}$ so that it satisfies

$$u(x,0) = \phi_{odd}(x) \quad , \quad u_t(x,0) = \psi_{odd}(x) \quad \text{for } x \in \mathbb{R}$$

$$\tag{29}$$

From d'Alembert formula, the solution is

$$u(x,t) = \frac{1}{2} \left[\phi_{odd}(x+ct) + \phi_{odd}(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{odd}(y) dy$$
(30)

We verify that u(0,t) = 0 is indeed satisfied by this expression. Also, using energy arguments, we can prove uniqueness of solution satisfying (26)-(28). Hence, desired v(x,t) is given by (30).

Now the formula (30) can be re-expressed in terms of $\phi(x)$ and $\psi(x)$, but the expression is different in different regimes of (x, t).

First, for x > c|t|, we notice that each of the arguments x - ct and x + ct are positive. Hence, (30) reduces to

$$v(x,t) = \frac{1}{2} \left[\phi(x+ct) + \phi(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y) dy$$
(31)

The second regime is 0 < x < ct. We have for $\phi_{odd}(x - ct) = -\phi(ct - x)$, and $\psi_{odd}(y) = -\psi(-y)$ for y < 0. Hence

$$v(x,t) = \frac{1}{2} \left[\phi(x+ct) - \phi(ct-x) \right] + \frac{1}{2c} \left[\int_0^{x+ct} \psi(y) dy + \int_{x-ct}^0 \left[-\psi(-y) \right] \right] dy$$
$$= \frac{1}{2} \left[\phi(x+ct) - \phi(ct-x) \right] + \frac{1}{2c} \left[\int_{ct-x}^{x+ct} \psi(y) dy \right] \quad (32)$$

Graphically, the result (32) can be interpreted as follows. Draw the backward characteristics from the point (x,t) (see Fig.2). In the regime 0 < x < ct, such a backward characteristic intersects the *t*-axis, before crossing the *x*-axis at (x - ct, 0). The formula (32) shows that the reflection induces a change of sign. The value of v(x,t) now depends on the values of ϕ at the pair of points $ct \pm x$ and on ψ over the interval (ct - x, ct + x), which is shorter than (x - ct, x + ct). This is because the integral of $\psi_{odd}(y)$ over the symmetric interval (x - ct, ct - x) is zero.

If 0 < x < -ct, using similar arguments, we can check that (30) reduces to

$$v(x,t) = \frac{1}{2} \left[-\phi(-ct-x) + \phi(-ct+x) \right] - \frac{1}{2c} \left[\int_{-ct-x}^{-ct+x} \psi(y) dy \right]$$
(33)

The case of *Neumann problem* on a half-line for the wave equation is very similar, with an even extension of each of ϕ and ψ .

Figure 2: Backward characteristics from (x, t) for 0 < x < ct

4 Wave Equation in a finite line

Consider the 1-D wave equation on a finite interval in x with homogeneous *Dirichlet* boundary conditions, that would correspond to say a guitar string with fixed ends. The initial value problem is given by:

$$v_{tt} = c^2 v_{xx}, \quad v(x,0) = \phi(x), \quad v_t(x,0) = \psi(x) \quad \text{for} \quad 0 < x < l$$
(34)

and

$$v(0,t) = v(l,t) = 0 \tag{35}$$

We can extend the data for each of $\phi(x)$ and $\psi(x)$ by first doing an *odd* extension to get a function over (-l, l) and then define periodical extensios $\phi_{ext}(x)$ and $\psi_{ext}(x)$ over \mathbb{R} . Thus

$$\phi_{ext}(x) = \phi(x) \text{ for } x \in (0,l) \ , \ \phi_{ext}(x) = -\phi(-x) \text{ for } x \in (-l,0) \text{ and } \phi_{ext}(x+2l) = \phi_{ext}(x)$$
(36)

and a similar formula is valid for $\psi_{ext}(x)$. It is then possible to write solution as

$$v(x,t) = \frac{1}{2} \left[\phi_{ext}(x+ct) + \phi_{ext}(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{ext}(s) ds$$
(37)

It can be checked directly that this satisfies v(0,t) = 0. To check v(l,t) = 0, we note that $\phi_{ext}(l-ct) = \phi_{ext}(-l-ct) = -\phi_{ext}(l+ct)$. Again, using periodicity and oddness of ψ_{ext} , we can prove that $\int_{l-ct}^{l+ct} \psi(y) dy = 0$.

While the expression (37) for the solution is relatively simple in terms of ϕ_{ext} and ψ_{ext} , it is much more complicated if we want to write it in terms of ϕ and ψ . There are different regimes of expression, depending on how many times reflection was possible at the end points x = 0 and x = l. I will refer you to Fig. 4 of the text on page 62 for a graphical illustration.

We will find later in this course alternate expressions of solution in terms of a Fourier Series.

5 Diffusion with a source

In this section, we solve the *inhomogeneous* diffusion equation in \mathbb{R}^n , for any dimension $n \ge 1$. So, the initial value problem of interest is

$$u_t - \kappa \Delta u = f(\mathbf{x}, t) \tag{38}$$

$$u(\mathbf{x},0) = \phi(\mathbf{x}) \tag{39}$$

where $\phi, f \in \mathbb{C}^0$. We will prove that the solution of the problem (38)-(39) is given by

$$u(\mathbf{x},t) = \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x}-\mathbf{y},t)\phi(\mathbf{y})d\mathbf{y} + \int_0^t \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x}-\mathbf{y},t-\tau)f(\mathbf{y},\tau)d\mathbf{y}d\tau$$
(40)

This is an example of application of so-called *Duhammel's* principle where solution to inhomogeneous linear autonomous differential equation is expressed in terms of appropriate solution to the *homogeneous* solution, which in this case is S. See text page 65 for analogy to ODEs.

It is convenient to define

$$v(\mathbf{x},t) = \int_0^t \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) f(\mathbf{y}, \tau) d\mathbf{y} d\tau$$
(41)

Then noting

$$\lim_{\tau \to t^{-}} \int_{\mathbb{R}^{n}} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) f(\mathbf{y}, \tau) d\mathbf{y} = f(\mathbf{x}, t)$$

we obtain

$$v_t - \kappa \Delta v = \lim_{\tau \to t^-} \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) f(\mathbf{y}, \tau) d\mathbf{y} + \int_0^t \int_{\mathbb{R}^n} \left[\mathcal{S}_t(\mathbf{x} - \mathbf{y}, t - \tau) - \kappa \Delta_{\mathbf{x}} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) \right] = f(\mathbf{x}, t)$$
(42)

Further, since

$$\left|\int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) f(\mathbf{y}, \tau) d\mathbf{y}\right| \le \sup_{\mathbf{y} \in \mathbb{R}^n} \left| f(\mathbf{y}, \tau) \right| \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t - \tau) d\mathbf{y} = \left\| f(., \tau) \right\| \text{ for } \tau < t$$

it follows $\lim_{t\to 0^+} v(\mathbf{x},t) = 0$. Since, we know from before that

$$w(\mathbf{x},t) = \int_{\mathbb{R}^n} \mathcal{S}(\mathbf{x} - \mathbf{y}, t) \phi(\mathbf{y} d\mathbf{y})$$

solves the heat equation without any source $w_t - \kappa \Delta w = 0$ and initial condition $w(\mathbf{x}, 0) = \phi(\mathbf{x})$, it follows that $u(\mathbf{x}, t) = v(\mathbf{x}, t) + w(\mathbf{x}, t)$ given by (40) solves the *inhomogeneous* heat equation (38) and satisfies the initial condition (39).

6 Inhomogenous Heat Equation in a half space \mathbb{H}

Note that the text on page 67 talks about solving inhomogenous diffusion equation on a half-line. There is no problem extending this idea to n-dimensions. We define half space

$$\mathbb{H} \equiv \{ \mathbf{x} \in \mathbb{R}^n : x_1 > 0 \}$$

$$\tag{43}$$

Our problem is to solve

$$v_t - \kappa \Delta v = f(\mathbf{x}, t) \text{ for } \mathbf{x} \in \mathbb{H}$$
 (44)

$$v(\mathbf{x},0) = \phi(\mathbf{x}) \quad \text{for} \quad \mathbf{x} \in \mathbb{H}$$

$$\tag{45}$$

$$v(\mathbf{x},t) = 0 \quad \text{for} \quad \mathbf{x} \in \partial \mathbb{H} \tag{46}$$

First, we note using odd-extension of $\phi(\mathbf{x})$ in the component x_1 , as in 1-D, we can obtain a *source* type solution that satisfies the boundary condition on $x_1 = 0$ (which is the same as $\partial \mathbb{H}$. It is convenient to define

$$\mathbf{y}_{-} = (-y_1, y_2, y_3, ..., y_n)$$
, where $\mathbf{y} = (y_1, y_2, ..., y_n)$

Then, it is easy to verify that

$$\mathcal{T}(\mathbf{x}, y, t) \equiv \mathcal{S}(\mathbf{x} - \mathbf{y}, t) - \mathcal{S}(\mathbf{x} - \mathbf{y}_{-}, t)$$
(47)

is a solution of the heat equation in the half-place \mathbb{H} corresponding to a unit source at **y** that satisfies the homogenous *Dirichlet* condition (36). Therefore, using the same ideas as in the last section, we can verify that the solution to the problem posed in (44)-(46) is given by

$$v(\mathbf{x},t) = \int_{\mathbb{R}^n} \mathcal{T}(\mathbf{x},\mathbf{y},t)\phi(\mathbf{y})d\mathbf{y} + \int_0^t \int_{\mathbb{R}^n} \mathcal{T}(\mathbf{x},\mathbf{y},t-\tau)f(\mathbf{y},\tau)d\mathbf{y}d\tau$$
(48)

7 Note on Inhomogenous Dirichlet or Neumann conditions

So far, our boundary conditions, either for the heat or wave equation involved homogeneous *Dirichlet* or *Neumann* boundary conditions. However, solution for an inhomogenous condition is not a serious problem. For the sake of being definite, consider for instance

$$u_t - \kappa u_{xx} = f(x,t); \text{ for } x > 0 , u(0,t) = h(t) , u(x,0) = \phi(x)$$
 (49)

We assume $h \in \mathbb{C}^1$. Noting that the function $w(x,t) \equiv e^{-x}h(t)$ satisfies the boundary condition at x = 0 and well-behaved in x as $x \to +\infty$, it follows that by decomposing u(x,t) = w(x,t) + v(x,t), v(x,t) satisfies

$$v_t - \kappa v_{xx} = f(x, t) - w_t + \kappa w_{xx} \equiv \hat{f}(x, t)$$
(50)

$$v(0,t) = 0$$
; $v(x,0) = \phi(x) - h(0)e^{-x} \equiv \phi(x)$ (51)

Equations (38)-(39) defines an inhomogeneous heat equation with homogeneous *Dirichlet* condition and is of the type for which we have a general representation of solution, as seen in the last section.