
Week 5 Lectures, Math 6451, Tanveer

1 Separation of variable method

The method of separation of variable is a suitable technique for determining solutions to linear
PDEs, usually with constant coefficients, when the domain is bounded in at least one of the
independent variables. We illustrate this procedure for 1-D wave equation and 2-D heat equation
for Dirichlet, Neumann and Robin boundary conditions, though the idea is equally applicable
for diffusion equation and Laplace’s equation, and other constant coefficient equations.

The idea of separation of variable is first to seek simple solution to the PDE in the form of
a product, each term in the product depending on only one independent variable. Solutions are
then constrained by boundary conditions. This results in a countably infinite set of solutions. A
linear superposition of such solution is also a solution, because of the linearity of the problem.
As we shall find later, such linear superposition is capable of describing all reasonable initial
conditions.

1.1 Dirichlet Problem

Consider
utt − c2uxx = 0 for 0 < x < l (1)

u(0, t) = 0 = u(l, t) (2)

with initial condition
u(x, 0) = φ(x) ; ut(x, 0) = ψ(x) (3)

Recall, there is a representation of this solution by doing odd extension about x = 0 to the
interval (−l, 0), and then periodically extending this problem (with period 2l), and then using
D’Alembert representation of solution, as you will see in last week notes. Uniqueness follows
from application of energy method, as we saw earlier. Here, we are seeking a different form of
the same solution.

We seek simple solution to (1), ignoring initial conditions (3) for now, in a product form
u(x, t) = X(x)T (t) Plugging it into (1) and dividing it the resulting equation by c2X(x)T (t), we
obtain

− T ′′(t)

c2T (t)
= −X

′′(x)

X(x)
(4)

If we set t = 1, for instance, then the left side of (4) is a number independent of x. Hence the
right side of (4) cannot depend on x at all. Similarly, if we set x to some specific value, the right
side of (4) is a constant; hence the left side (4) must be independent of t. Therefore, we conclude
both left and right side of each side of (4) is some constant λ. Therefore,

T ′′(t) + λc2λT (t) = 0 (5)

and
X ′′(x) + λX(x) = 0 (6)

The boundary conditions (2) imply that X(0) = 0 and X(l) = 0.
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If λ < 0, then the solution to (6) that satisfies X(0) = 0 is given by

X(x) = C sinh
(√
−λx

)
(7)

Since the function sinh does not vanish anywhere except the origin, any nontrivial solution in
the form (7) is incapable of satisfying X(l) = 0. Therefore, we must discard the possibility of
λ < 0.

If λ = 0, then the solution to (6) that satisfies X(0) = 0 is

X(x) = Cx, (8)

But, this is not capable of satisfying X(l) = 0, unless C = 0, which corresponds to the trivial
solution. Therefore, we conclude that λ 6= 0.

We are only left with the possibility λ = β2 > 0. Then, solution to (6) satisfying X(0) = 0
is given by

X(x) = C sinβx (9)

In order for the solution to be nontrivial, i.e. C 6= 0, and yet X(l) = 0, we must have sinβl = 0.
Therefore βl = nπ, for integer n 6= 0. We note that sin

(−nπx
l

)
= − sin

(
nπx
l

)
. This implies that

n < 0 does not generate an independent set of functions from what we obtain for n > 0. Thus,
we can restrict to integer n ≥ 1, and obtain

X(x) = C sin
(nπx

l

)
≡ CXn(x) (10)

Corresponding to β = nπ
l ≡ βn, with n > 1, we may solve (5), with λ = β2

n, to obtain

T (t) = An cosβnct+Bn sinβnct ≡ Tn(t) (11)

where An and Bn are arbitary constants. Therefore, we obtain a countably infinite set of
separable solutions to to (1) satisfying boundary conditions (2), indexed by integer n, and in
the form u(x, t) = Xn(x)Tn(t). A more general solution to (1), satisfying Dirichlet boundary
condition (2) is of the form

u(x, t) =
∑
n≥1

Xn(x)Tn(t) =
∑
n≥1

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
, (12)

assuming that this sum converges. We note that this solution (12) satisfies initial condition

u(x, 0) =
∑
n≥1

An sin
nπx

l
(13)

ut(x, 0) =
∑
n≥1

nπc

l
Bn sin

nπx

l
(14)

Therefore, if φ(x) and ψ(x) in (3) is in the form of (13) and (14), the separation of variable
method will have provided solution to IVP (1)-(3). We will later discover from the theory of
Fourier Series, that this restriction on φ and ψ is rather mild–that all initial conditions of physical
interest can be accomodated with solution (12) by suitably choosing An and Bn, depending on
φ and ψ.
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1.2 Neumann Condition

The same method works for Neumann problem as well. The text illustrates this for 1-D wave
equation in section 4.2. We illustrate here for 2-D heat equation in a rectangular domain in
x = (x, y). So, our problem of interest is

ut − κ(uxx + uyy) = 0 for 0 < x < l, 0 < y < l , t > 0 (15)

satisfying Neumann Boundary condition

ux(0, y, t) = 0 = ux(l, y, t) , uy(x, 0, t) = 0 = uy(x, l, t) (16)

and initial condition
u(x, y, 0) = φ(x, y) (17)

Using energy method (see Homework 3 problem), we can prove that any solution satisfying
(1)-(3) is unique. Here, we are showing existence.

As in the last subsection, first, we seek simple solution to (15) satisfying only (16) in the prod-
uct form u(x, y, t) = X(x)Y (y)T (t). Plugging into (15) and dividing the result by X(x)Y (y)T (t),
we obtain

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+
T ′(t)

κT (t)
(18)

The left side depends only on x, while the right depends on (y, t). It follows that each side of
the equation has to be some constant λ. Therefore,

−X
′′(x)

X(x)
= λ , implying X ′′(x) + λX(x) = 0 (19)

The first set of boundary conditions in (16) imply that X ′(0) = 0 and X ′(l) = 0. However, if
λ < 0, the solution satisfying X ′(0) = 0 is given by X(x) = C cosh

√
−λx which cannot satisfy

X ′(l) = 0 for nonzero C, since sinh is nonzero for nonzero argument. Therefore, we are left with
only possibility of λ = β2 ≥ 0. In that case, a nontrivial solution to (19) satisfying X ′(0) = 0 is

X(x) = cosβx (20)

In order to satisfy X ′(l) = 0, we must have sinβl = 0, therefore

√
λ = β =

nπ

l
≡
√
λn (21)

and non-trivial solution for X(x) is restricted to

X(x) = cos
nπx

l
≡ Xn(x) for n ≥ 0 (22)

Note that n < 0 is excluded from the above set, since cos is an even function and replacing n
by −n does not generate any new set of solutions. However, unlike the Dirichlet problem, (21)
allows the possibility of n = 0.

Having determined X(x), we now determine Y (y). For that purpose, it is convenient to
rewrite (18) as

−Y
′′(y)

Y (y)
=
X ′′(x)

X(x)
+
T ′(t)

κT (t)
(23)
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and conclude that a function of y cannot be equal to a function of x and t unless each is some
constant γ. Therefore,

−Y
′′(y)

Y (y)
= γ , implying Y ′′(y) + γY (y) = 0 (24)

The second set of boundary conditions in (16) implies that

Y ′(0) = 0 = Y ′(l) (25)

The determination of a nontrivial Y (y) mirrors the procedure to determine X(x). It is clear
therefore, that γ ≥ 0 and is restricted by the requirement

√
γ =

mπ

l
≡ √γm (26)

for integer m ≥ 0, and Y is restricted to

Y (y) = cos
mπx

l
≡ Ym(y) (27)

Using (23), and relations (22) and (27), we obtain

T ′(t) + κ

(
n2π2

l2
+
m2π2

l2

)
T (t) = 0 (28)

Therefore, we must have T (t) of the form

T (t) = Am,n exp

[
−
(
n2π2

l2
+
m2π2

l2

)
κt

]
≡ Tm,n(t) (29)

for some constants Am,n, which can depend on integers m,n. Therefore, using linear superpo-
sition of solutions of the form Xn(x)Ym(y)Tmn(t), we obtain a more general solution satisfying
(15) and (16)

u(x, y, t) =
∑

m≥0,n≥0

Am,n exp

[
−
(
n2π2

l2
+
m2π2

l2

)
κt

]
cos

nπx

l
cos

mπy

l
(30)

This satisfies initial condition

u(x, y, 0) =
∑

m≥0,n≥0

Am,n cos
nπx

l
cos

mπy

l
(31)

Therefore, if φ(x, y) in (17) is expressible in the form (31), we will have a representation of
the solution to the Neumann problem, which is known to be unique from using energy method..
From Fourier series theory, which we will soon review, this is not much of a restriction on φ(x, y).
Very general functions φ in the domain (0, l) × (0, l) have the representation (31) for suitably
chosen Am,n, which of course depends on φ.
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2 Separation of variable in Circular Geometry

Separation of variable is not restricted to rectangular geometry. The method of solution provides
solution to either Laplace, heat or wave equation and other related equations in circular (in 2-
D) and spherical geometries (in 3-D). We illustrate this for Laplace’s equation in a circle with
Dirichlet boundary condition.

2.1 Laplace’s equation in a circle

Consider the following 2-D problem:

∆u = 0 ; for |x| < 1 (32)

with Dirichlet boundary condition on |x| = 1. It is convenient in this case to introduce polar
coordinates (r, θ). Using expression for Laplacian in polar coordinates, u = u(r, θ) satisfies

∆u = urr +
1

r
ur +

1

r2
uθθ = 0 for r < 1 (33)

The Dirichlet boundary condition is
u(1, θ) = f(θ) (34)

We seek a separation of variable solution to (33) in the form

u(r, θ) = R(r)Θ(θ) (35)

Plugging into (33) and dividing the result by R(r)Θ(θ)/r2, we obtain

−Θ′′(θ)

Θ(θ)
= r2

(
R′′(r)

R(r)
+

1

r

R′(r)

R(r)

)
(36)

Now, since left and right sides of (36) are functions of θ and r respectively, it follows that each
side is some constant λ. Therefore, Θ(θ), R(r) satisfy:

Θ′′(θ) + λΘ(θ) = 0 (37)

R′′(r) +
1

r
R′(r) =

λ

r2
R(r) (38)

Now, since the solution u(r, θ) sought is univalued in the disk of radius 1, it follows that u(r, θ+
2π) = u(r, θ). Hence, we must have

Θ(θ + 2π) = Θ(θ) (39)

Now, consider the case λ < 0. Then the solution to (37) is of the form

Θ(θ) = A exp
(
−
√
−λθ

)
+B exp

(√
−λθ

)
(40)

But this does not satisfy (39) regardless of the value of A and B, except for the trivial case
(A,B) = (0, 0). Therefore, we rule this out.
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For λ = 0, we have
Θ(θ) = Aθ + a0 (41)

This does not satisfy (39), unless A = 0. However, note that it does not rule out a nonzero a0.
Now, comes the case of λ = µ2 > 0. Then, the solution to (37) is

Θ(θ) = a cosµθ + b sinµθ (42)

Then condition (39) for any θ implies

µ = m > 0 an integer implying λ = λm ≡ m2 (43)

Therefore,
Θ(θ) = Θm(θ) ≡ am cosmθ + bm sinmθ (44)

Since m = 0 in this formula includes the case of λ = 0, (44) provides all the eigen functions Θm

for λ = λm = m2 for integer m ≥ 0. Having determined λ, we go back to (38) to obtain

R′′(r) +
1

r
R′(r)− m2

r2
R(r) = 0 (45)

Noting that the equation is homogeneous in r, we look for solutions of the form R(r) = rα and
plug into (45), to discover that nontrival solutions are possible when α = ±m, i.e R(r) is a linear
combination of r−m or rm for m > 0. In the special case m = 0, we find R(r) = c0 + d0 log r
for constants c0 and d0. However, since the solution u(r, θ) we are seeking is a classical solution
without any singularities for r < 1, R(r) must be well-behaved in particular at r = 0. This rules
out r−m term for m > 0 and log r for m = 0. Thus,

R(r) = Rm(r) ≡ rm for integer m ≥ 0 (46)

Taking a linear combination, we obtain for r < 1

u(r, θ) = a0 +

∞∑
m=1

(amr
m cosmθ + bmr

m sin θ) (47)

Assuming that this series converges, the solution is capable of satisfying Dirichlet boundary
condition u(1, θ) = f(θ) if

f(θ) = a0 +

∞∑
m=1

(am cosmθ + bm sinmθ) (48)

As we shall see from the theory of Fourier Series, under mild restrictions, quite general functions
f(θ) possess such an expansion, which is called its Fourier Series.

Note also, an alternate representation of the solution (65) in the form

u(r, θ) = a0 +

∞∑
m=1

cm cos(mθ − δm) (49)
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where am = cm cos δm and bm = cm sin δm. and this can be written as

u(r, θ) = <

{ ∞∑
m=0

Cmz
m

}
, (50)

where z = reiθ, <C0 = a0 and Cm = cme
−iδm . The quanitity on the right of (50) is the real

part of an analytic function of z = x + iy = reiθ and this representation is not surpising since
any solution to Laplace’s equation in 2-D, with (x, y) chosen as independent variables, is always
either the real or imaginary part of an analytic function of x+ iy.
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