
Week 6 Lectures, Math 6451, Tanveer

1 Fourier Series

In the context of separation of variable to find solutions of PDEs, we encountered

f(x) =

∞
∑

n=1

bn sin
nπx

l
for x ∈ (0, l) (1)

or

f(x) =
a0

2
+

∞
∑

n=1

an cos
nπx

l
for x ∈ (0, l) (2)

and in other cases

f(x) =
a0

2
+

∞
∑

n=1

{

an cos
nπx

l
+ bn sin

nπx

l

}

for x ∈ (−l, l) (3)

The general representation (3) is called the Fourier representation of f(x) in the (−l, l) interval,
while (1) and (2) are the Fourier sine and cosine representations of f(x) in the interval (0, l).

Our discussions revolve around some basic questions

1. When are represenations (1)-(3) valid and in what sense?

2. How do we determine coefficients an, bn in terms of f(x).

3. What conditions allow term by term differentiation of the Fourier-Series.

2 General L2 theory

We need enough generality to be able to lay the framework for discussion of more general series
representations of L2, i.e. square integrable functions than (1)-(3), since they arise in other PDE
problems.

In the space L2(a, b) of generally complex valued functions in the interval (a, b), we introduce
the L2 inner-product:

(f, g) =

∫ b

a

f(x)ḡ(x)dx (4)

We note that the L2 norm is related through

‖f‖ = (f, f)1/2 =

[

∫ b

a

|f |2(x)dx

]1/2

(5)

This may be generalized to any number of dimension, with x replaced by x and integration over
the interval (a, b), replaced by integration over appropriate n-dimensional rectangle.
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Definition 1 A sequence {Xn}
∞
n=1 ∈ L2(a, b) is orthogonal if

(Xn, Xm) = 0 iff m 6= n (6)

This sequence is said to be orthonormal, if in addition (Xn, Xn) = ‖Xn‖
2 = 1.

Theorem 2 Let {Xn}
∞
n=1 ∈ L2(a, b) be a orthogonal set of functions. Let ‖f‖ < ∞. Let N

be a fixed positive integer. The choice of An that minimizes mean square error EN = ‖f −
∑N

n=1 AnXn‖
2 is given by

An =
(f, Xn)

‖Xn‖2
(7)

Further, we have

‖f‖2 ≥
∞
∑

n=1

|(f, Xn)|2

‖Xn‖2
Bessel inequality

Proof. Define the square of the

EN = ‖f −
N
∑

n=1

AnXn‖
2 =

(

f −
N
∑

n=1

AnXn, f −
N
∑

n=1

AnXn

)

Expanding the above using properties of inner product and the orthogonality of Xn, we get

EN = (f, f) −

N
∑

n=1

An(Xn, f) −

n
∑

n=1

A∗
n(f, Xn) +

N
∑

n=1

AnA∗
n(Xn, Xn) (8)

We minimize En as a function of 2N real variables, {(cn, dn)}
N
n=1, where An = cn + idn. On

taking partial derivatives, we get

∂EN

∂cn
= −(Xn, f) − (f, Xn) + 2cn(Xn, Xn) = 0 implying cn =

ℜ{(Xn, f)}

‖Xn‖2

Also,

∂EN

∂dn
= −i(Xn, f) + i(f, Xn) + 2dn(Xn, Xn) = 0 implying dn =

ℑ{(Xn, f)}

‖Xn‖2

Therefore An = cn + idn is given by (7). Again with An given by (7), the corresponding EN

becomes
EN = ‖f‖2 −

∑

n≤N

|An|
2‖Xn‖

2 ≥ 0

Taking the limit of N → ∞, we obtain Bessel inequality.

Theorem 3 (Parseval’s equality) The mean square error EN , defined in Theorem 2, → 0 as
N → ∞, if and only if

∞
∑

1

|(f, Xn)|2

‖Xn‖2
= ‖f‖2 ; Parseval equality (9)

When condition (9) holds for any function f ∈ L2(a, b), the orthogonal sequence {Xn} is complete
and forms a basis in L2(a, b).
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Proof. From Theorem 2,

lim
N→∞

EN = ‖f‖2 −

∞
∑

1

|(f, Xn)|2

‖Xn‖2

Therefore, it is zero iff and only if Parseval’s equality holds.

Lemma 4 The sequence

{1, cosx, sin x, cos 2x, sin 2x, ....} ≡ {Xn}
∞
n=1

is an orthogonal sequence in L2(−π, π)

Proof. This involves a simple calculation. First we note that for any n, (1, sinnx) =
∫ π

−π
sinnxdx =

0 and also (1, cosnx) = 0. Further, for m 6= n,

(sin mx, cosnx) =

∫ π

−π

1

2
[sin(m + n)x + sin(m − n)x] dx = 0

while for m 6= n,

(cosmx, cos nx) =

∫ π

−π

1

2
[cos(m − n)x + cos(m + n)x] dx = 0

On the other hand for m = n,

(sin mx, cosnx) = (sinnx, cosnx) =

∫ π

−π

1

2
sin 2nxdx = 0

and

(sin nx, sin nx) =

∫ π

−π

sin2 nxdx =

∫ π

−π

1

2
(1 − cos 2nx) dx = π

While

(cosnx, cos nx) =

∫ π

−π

cos2 nxdx =

∫ 2π

−π

1

2
(1 + cos 2nx) dx = π

Corollary 5 The sequence

{

1, cos
πx

l
, sin

πx

l
, cos

2πx

l
, sin

2πx

l
, ..

}

is an orthogonal sequence in L2(−l, l).

Proof. This follows simply by introducing rescaled independent variable xπ
l , which maps (−l, l)

to (−π, π). We can then use the previous Lemma.

Remark 1 By using a shift and a scaling, one can get a similar Fourier representations for
square integrable functions in (a, b).
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Lemma 6 For a L2 function f in (−l, l) interval, the choice of am and bm that minimizes the
mean-square error

∫ l

−l

(

f(x) −
a0

2
−

M
∑

m=1

am cos
mπx

l
−

M
∑

m=1

bm sin
mπx

l

)2

dx

for any positive integer M is given by

am =
1

l

∫ l

−l

f(x) cos
mπx

l
dx for 0 ≤ m ≤ M

bm =
1

l

∫ l

−l

f(x) sin
mπx

l
dx for 0 ≤ m ≤ M

These are referred to as the Fourier-Coefficients of f(x). Further,

l

(

|a0|
2 +

∞
∑

m=1

|am|2 +

∞
∑

m=1

|bm|2

)

≤

∫ l

−l

|f(x)|2dx (10)

Proof. This follows simply by using the formula in Theorem 2 by identifying (a, b) = (−l, l),
X1 = 1, X2 = cosx, X3 = sin x, X4 = cos 2x, X5 = sin 2x, etc and using values of integrals
(Xn, Xn). The inequality (10) is simply a restatement of Bessel inequality for this case.

Corollary 7 For odd functions f ∈ L2(−l, l), the cosine coefficients am = 0, while for even
square integrable functions, the sine coefficients bm = 0.

Proof. Proof follows simply by noting that if f is odd, then the formula that am involves
integral of an odd function over (−l, l), which is 0. When f is even, the same happens to the
formula for bm.

Remark 2 The above corollary implies that we do not need a theory for Fourier Sine and Fourier
Cosine Series in (1) and (2), separate from the full Fourier Series (3), because we can do an
odd or even extension of the function f(x) to the interval (−l, l). Then (3) will reduce to either
(1) or (2) depending on whether the extension was odd or even.

3 Pointwise convergence of Fourier Series

The primary purpose of this section is to prove the following Theorem:

Theorem 8 (Pointwise Convergence of Fourier Series)
Assume f ′(x±) exists at each point x ∈ (−l, l) and that f(x) is bounded in [−l, l]. Then,

1. The Fourier Series (1) for f converges pointwise on (−l, l) provided f ∈ C0[−l, l].

2. More generally, is f ∈ PC0[−l, l], i.e. continuous in the interval [−l, l] except for a finite
set of points, then the Fourier series converges at every point x ∈ (−∞,∞). The sum
is 1

2 [f(x+) + f(x−)] for x ∈ (−l, l) and 1
2 [fext(x

+) + fext(x
−)] for x ∈ (−∞,∞), where

fext(x) is the 2l-periodic extension of f(x).
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Remark 3 The hypothesis for f ′ can be weakened even further, though it will not be necessary
for the applications we have in mind.

The proof of Theorem 8 will have to await some preliminary Lemmas. We will only prove it
for the special case l = π, since the general case would follow merely by rescaling variable x, as
seen before.

Definition 9 For f ∈ L2[−π, π] we define

SN (x) =
a0

2
+

N
∑

m=1

(am cosmx + bm sin mx) (11)

where am and bm are determined from

am =
1

l

∫ l

−l

f(x) cos
mπx

l
dx for 0 ≤ m ≤ M (12)

bm =
1

l

∫ l

−l

f(x) sin
mπx

l
dx for 0 ≤ m ≤ M (13)

Lemma 10

SN (x) =
1

2π

∫ π

−π

KN(x − y)f(y)dy where KN(θ) =
sin
[(

N + 1
2

)

θ
]

sin θ
2

(14)

Further,
1

2π

∫ π

0

KN (θ)dθ =
1

2π

∫ 0

−π

KN (θ)dθ =
1

2
(15)

Proof. Using the formula for Fourier Coefficients, we get

SN (x) =
1

2π

∫ π

−π

[

1 + 2

N
∑

m=1

(cosmy cosmx + sin my sin mx)

]

f(y)dy =
1

2π

∫ π

−π

K(x − y)f(y)dy

Therefore,

KN (θ) = 1 + 2

N
∑

n=1

cosnθ =

N
∑

n=−N

einθ =
e−iNθ − ei(N+1)θ

1 − eiθ
=

sin
[(

N + 1
2

)

θ
]

sin θ
2

(16)

Equation (15) follows simply by using the cosine series expansion of KN (θ) in (16) and integrating
term by term. All terms are zero except the first one, which gives a half.

Lemma 11 Assume the same conditions on f as stated in Theorem 8. For x ∈ (−l, l), define

g±(θ) =
f(x + θ) − f(x±)

sin θ
2

(17)

Then,
∫ π

0
|g+(θ)|2 < ∞ and

∫ 0

−π
|g−(θ)|2 < ∞.
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Proof. A sufficient condition for each of these integrals to exist is for limθ→0+ g+(θ) and
limθ→0− g−(θ) to exist, since for other values of θ conditions on f(x) make g± square integrable
over the intervals (0, π), (−π, 0) respectively. However, it is easy to see

lim
θ→0+

g+(θ) = lim
θ→0+

f(x + θ) − f(x+)

θ

θ

sin θ
2

= 2f ′(x+)

and

lim
θ→0−

g−(θ) = lim
θ→0−

f(x + θ) − f(x−)

θ

θ

sin θ
2

= 2f ′(x−)

each of which exists.

Proof of Theorem 8

We will assume l = π since otherwise, we can rescale x. Note we only need to prove the
second part, as the first part is a special case.

SN (x)−
1

2

[

f(x+) + f(x−)
]

=

∫ π

0

KN (θ)

2π

[

f(x + θ) − f(x+)
]

dθ+

∫ 0

−π

KN(θ)

2π

[

f(x + θ) − f(x−)
]

dθ

=

∫ π

0

g+(θ) sin

{(

N +
1

2

)

θ

}

dθ +

∫ 0

−π

g+(θ) sin

{(

N +
1

2

)

θ

}

dθ (18)

It is easy to check that
{

sin
(

N + 1
2

)

θ
}∞

N=1
is an is an orthogonal set of functions either in the

interval (−π, 0) or (0, π). Therefore, from applying Bessel’s inequality, it follows that each of the
integrals on the right of (18) tend to zero N → ∞, since Lemma 11 shows that g+ and g− are
square integrable in (0, π) and (−π, 0) respectively.

Further, for x outside the interval (−π, π), it is clear that the Fourier Series is periodic and
therefore converges to the periodically extended function 1

2 [fext(x
+) + fext(x

−)].

Lemma 12 If f ∈ C0(−∞,∞) and is 2l periodic, and f ′(x±) exists at every point x ∈ (−∞,∞),
then SN (x) converges to f(x) pointwise.

Proof. We note that outside the (−l, l), the extended function fext(x) = f(x) itself. Since
the function is continuous every where, 1

2 [fext(x
+) + fext(x

−)] = f(x). From Theorem (8), the
corollary follows.

Corollary 13 If conditions of Theorem (8) hold, then the Fourier series (1) converges at the
end points ±l to f(±l) if and only if f(−l) = f(l).

Proof. We simply note that when the condition f(−l) = f(l), then the extended function
fext ∈ C0(−∞,∞) and its derivatives exists at every point in (−∞,∞). Applying previous
lemma, the concluson follows.

4 Uniform Convergence

We will now seek stronger conditions on f ′ so that SN (x) is uniformly convergent to f for
f ∈ C0(−l, l).
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Lemma 14 Assume f ′ exists at each point in [−l, l] and that f ′ ∈ L2(−l, l), and f(l) = f(−l).
Then, SN(x) converges to f(x) uniformly in [−l, l], i.e.

lim
N→∞

‖f − SN‖∞ → 0

Proof. We will assume l = π since otherwise we can introduce appropriate rescaled variable.
The conditions on f ′ guarantees that

a′
m ≡

1

π

∫ π

−π

f ′(x) cos mx dx

and

b′m ≡
1

π

∫ π

−π

f ′(x) sin mx dx

exists, and from Bessel’s inequality

π

[

(a′
0)

2 +
∞
∑

m=1

{

(a′
m)2 + (b′m)2

}

]

≤

∫ π

−π

|f ′(x)|2 < ∞

which implies that

lim
N→∞

∞
∑

m=N+1

{

(a′
m)2 + (b′m)2

}

→ 0

On integration by parts, the Fourier coefficients of f itself becomes:

am =
1

π

∫ π

−π

f(x) cos mxdx = −
1

πm

∫ π

−π

f ′(x) sin mxdx = −
b′m
m

bm =
1

π

∫ π

−π

f(x) sin mxdx =
1

πm

∫ π

−π

f ′(x) cos mxdx =
a′

m

m

|f(x) − SN (x)| ≤

∞
∑

N+1

|am cosmx + bm sin mx| ≤

∞
∑

N+1

(|am| + |bm|) ≤

∞
∑

N+1

1

m
(|a′

m| + |b′m|)

≤

( ∞
∑

N+1

1

m2

)1/2{ ∞
∑

N+1

(a′
m)2 + (b′m)2

}1/2

→ 0 as N → ∞ (19)

Therefore limN→∞ ‖f − SN‖∞ = 0.

Remark 4 If f ∈ C0(−∞,∞) and 2l periodic (even without any condition on derivatives) it can
be uniformly approximated in the maximum norm sense by a trigonometric polynomial, which is
defined to be

T (x) =
c0

2
+

N
∑

m=1

(

cn cos
nπx

l
+ dn sin

nπx

l

)

In order to show this, we first prove that such an f can be approximated well by a function
2l-periodic g ∈ C1(−∞,∞), which will allow us to use Lemma 14.
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Lemma 15 If f ∈ C0(−∞,∞) and 2l periodic. For any ǫ > 0, there exists a function g ∈
C1(−∞,∞) and 2l periodic such that ‖f − g‖∞ < ǫ.

Proof. For each δ > 0. Let

Fδ(x) ≡
1

2δ

∫ x+δ

x−δ

f(y)dy =
1

2δ

∫ δ

−δ

f(x + t)dt

It is easily verified that Fδ is 2l-periodic and Fδ ∈ C1(−∞,∞). Since f(x) ∈ C0(−∞,∞) and
2l periodic, it is uniformly continuous. Given ǫ > 0, there exists δ > 0 independent of x, so that
|f(x + t) − f(x)| < ǫ for |t| < δ. Hence, if we choose such a δ and define g(x) = Fδ(x),

|g(x) − f(x)| ≤
1

2δ
|

∫ δ

−δ

(f(x + t) − f(x))dt| ≤
1

2δ

∫ δ

−δ

|f(x + t) − f(x)|dt ≤ ǫ

This is true for all x, hence Lemma follows.

Theorem 16 (Weirstrass Approximation Theorem) If f ∈ C0(−∞,∞) and 2l periodic. For
any ǫ > 0, there exists a trigonometric polynomial T (x) so that ‖f − T ‖∞ < ǫ.

Proof. According to previous Lemma, for given ǫ, there exists 2l-periodic g ∈ C1(−∞,∞)
so that ‖f − g‖∞ < ǫ

2 . Further, for such a g, Lemma 14 implies there exists T (x), namely its
Fourier series truncated to N terms for a sufficiently large N , so that ‖g − T ‖∞ < ǫ

2 . Hence

‖f − T ‖∞ ≤ ‖f − g‖∞ + ‖g − T ‖∞ < ǫ

Theorem 17 (Completeness of Fourier Series) The Fourier Series of any function f ∈ L2[−l, l]
converges to f in the L2 norm, i.e. in the mean-square sense and the Parseval’s equality holds.

Proof. It is known that L2 space is the completion of the set of C0[−l, l] with the L2 norm.
This means that that any ǫ > 0, there exists fc ∈ C0[−l, l] so that ‖f − fc‖2 < ǫ, where ‖.‖2

denotes the L2 norm. We can also arrange fc(−l) = fc(l). Now we apply periodic extension
to fc, so that fc ∈ C0(−∞,∞). Apply the Weirstrass approximation theorem, there exists
trigonometric polynomial T so that ‖T − fc‖∞ < ǫ√

2l
. Therefore, over the finite interval [−l, l],

‖T − fc‖2 =

[

∫ l

−l

|T (x) − Fc(x)|2dx

]1/2

≤ ǫ

Therefore,
‖T − f‖2 ≤ ‖T − fc‖2 + ‖f − fc‖2 ≤ 2ǫ

Now, we know that for any trignometric polynomial with N terms the best approximation in the
‖.‖2 sense is through Fourier Series trucated to N term. If we denote this Fourier Polynomial
by Tf , we get the result that

‖Tf − f‖2 ≤ ‖T − f‖2 ≤ 2ǫ

This is true for any ǫ. Hence Fourier Series converges to f in the mean-square sense.
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5 Non-Uniform Convergence near a point of discontinuity

Remark 5 For piecewise continuous functions, near points of discontinuity, SN (x) does not
approach f(x) uniformly, even though it does so pointwise, except at the discontinuity itself.
This is called the Gibbs phenomena.

Theorem 18 (Gibb’s pheneomena) Assume f ∈ PC0[−l, l] and f ′(x±) exists at each x ∈ [−l, l].
If there is a point of point of discontinuity xd ∈ (−l, l), then

lim
N→∞

sup
x∈(xd,l)

|SN (x) − f(x)| 6= 0

lim
N→∞

sup
x∈(−l,xd)

|SN(x) − f(x)| 6= 0

Proof. We will only show the first part, since the proof of the second part proof is very similar.
Also, for simplicity of notation, we take l = π, xd = 0. We first consider the piecewise continuous
function h(x) defined as

h(x) =
1

2
for π > x > 0 and h(x) = −

1

2
for − π < x < 0

We can calculate its Fourier Coefficient and find its Fourier Series to be

∑

n=1,3,5..

2

nπ
sin nx

We calculate

SN (x) =

(
∫ π

0

−

∫ 0

−π

)

KN (x − y)
dy

4π
=

(
∫ π

0

−

∫ 0

−π

)

sin [(N + 1/2)(x − y)]

sin [(x − y)/2]

dy

4π

Define M = N + 1
2 . In the first integral we take θ = M(x − y), and in the second integral, take

θ = M(y − x). Then

SN (x) =

(

∫ Mx

M(x−π)

−

∫ −Mx

−M(x+π)

)

sin θ

2M sin [θ/(2M)]

dθ

2π
(

∫ Mx

−Mx

−

∫ −Mπ−Mx

−Mπ+Mx

)

sin θ

2M sin [θ/(2M)]

dθ

2π
=

(

∫ Mx

−Mx

−

∫ Mπ+Mx

Mπ−Mx

)

sin θ

2M sin [θ/(2M)]

dθ

2π

Using calculus, we find that the first integral is maximized at x = π
M .

SN

( π

M

)

=

(

∫ π

−π

−

∫ Mπ+π

Mπ−π

)

sin θ

2M sin (θ/(2M))

dθ

2π

The second integral tends to 0 as M → ∞, since the denominator in the integrand is bounded
below by M . Therefore, as M → ∞,

SN

( π

M

)

→

∫ π

−π

sin θ

θ

dθ

2π
= 0.59 6=

1

2
(20)
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There is an overshoot.
We leave the details for a more general piecewise continuous function as an exercise, except

to note that if f(x) has a jump at 0, then if we decompose

f(x) = [f(0+) − f(0−)]h(x) +
(

f(x) − [f(0+) − f(0−)]h(x)
)

then the term within (.) is continuous at x = 0, allowing use of previous theorems.

Remark 6 In the following theorem, we consider a useful condition that allows a Fourier series
to be differentiated term by term.

Theorem 19 (Differentiability of Fourier Series)
If the Fourier series

f(x) =
a0

2
+

∞
∑

m=1

(am cosmx + bm sinmx)

has the property that
∑

m

m(|am| + |bm|) < ∞

Then the Fourier Series can be differentiated term by term and the differentiated series converges
uniformly to f ′.

Proof. Leave it as an exercise.
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