
Week 7 Lectures, Math 6451, Tanveer
In the next few week’s lecture, we will consider Green’s function for different linear differential

equations. As we shall see, this is a very valuable constructive technique for determining solutions
to certain boundary value problems. In the discussions, we will assume domain Ω to be an open
bounded set, with a piecewise smooth boundary ∂Ω. With appropriate assumptions on the decay
of solutions, it is possible to take the limiting case of such domains as it becomes infinite size.

1 Green’s function for Laplace’s equation with Dirichlet
condition

Definition 1 The free space Green’s function G0(|x− x0|) is defined to be

G0(r) =
1

2π
ln r for n = 2

G0(r) = − 1

4πr
for n = 3

G0(r) = −
r2−nΓ

(
n
2

)
(n− 2)2πn/2

for n > 3

Lemma 2 G0(|x− x0)|) satisfies ∆G0 = 0 for x 6= x0, for any fixed x0. Further, for any R,∫
|x−x0|=R

∂G0

∂n
dx = 1

while for continuous function f(x) continuous at x0,

lim
δ→0+

∫
|x−x0|=δ

f(x)
∂G0

∂n
dx = f(x0)

Proof. We use radial coordinate r centered about x0. So r = |x − x0|. Using expression for
Laplacian is radial coordinates we get

∆G0 =
d2

dr2
G0(r) +

n− 1

r

d

dr
G0(r) = 0

for r 6= 0, as can be readily verified from expression for G0(r). Further, we note that∫
|x−x0|=R

∂G0

∂n
dx =

{
dG0

dr

}
r=R

Rn−1 × (Area of n− dimensional unit sphere) = 1

Given ε > 0, there exists δ so that if r < δ, then |f(x) − f(x0)| < ε. Then, using the above
result on the integral dG0

dr , we obtain |∂G0

∂n | =
dG0

dr ,∫
|x−x0|=δ

|f(x− f(x0||
∂G0

∂n
| ≤ ε
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Therefore,

|f(x0)−
∫
|x−x0|=δ

∂G0

∂n
f(x)dx| ≤

∫
|x−x0|=δ

∂G0

∂n
|f(x)− f(x0)|dx ≤ ε,

and the third statement of the Lemma follows.

Remark 1 In the context of electro-statics, G0(|x− x0|) for n = 3 corresponds to the Coulomb
potential due to a point charge in free-space located at a point x0. For n = 2, G0(|x − x0|)
corresponds to the potential created by a line charge at x0 in free-space.

x
0

δΩ
n

Ω
ε

|x−x0 |

n
=ε

Figure 1: Domain Ωε with ε ball around x0 excluded

Lemma 3 (Green’s identity) For any u ∈ C2(Ω) ∩C1(Ω̄), we have for any x0 ∈ Ω,

u(x0) = −
∫
∂Ω

{
G0(|x− x0|)

∂u

∂n
(x)− u(x)

∂G0(|x− x0|)
∂n

}
dx +

∫
Ω

G0(|x− x0|)∆u(x)dx

Proof. Define Ωε to the domain Ω with a sphere of radius ε around x0 excluded (See Fig. 1).
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Then, since G0 is a solution to Laplace’s equation in the domain Ωε, we obtain∫
Ωε

∆u(x)G0(|x− x0|)dx =

∫
Ωε

{∆u(x) G0(|x− x0|)− u(x) ∆G0(|x− x0|)} dx

=

∫
Ωε

∇ · (∇u G0(|x− x0|)− u ∇G0(|x− x0|)) dx

= −
∫
∂Ω

{
u
∂G0(|x− x0|

∂n
−G0(|x− x0|)

∂u

∂n

}
dx−

∫
|x−x0|=ε

{
∂u

∂n
G0(|x− x0|)− u

∂G0(|x− x0|)
∂n

}
dx

(1)

Now, consider first the last term on the right

−
∫
|x−x0|=ε

{
∂u(x)

∂n
G0(|x− x0|)− u(x)

∂G0(|x− x0)|
∂n

}
As ε → 0+ since u(x) is continuous at x0, we know from last Lemma that the second term is
simply u(x0). On the otherhand, the first term above tends to zero as ε→ 0+ since rn−1G0(r)→
0 as r → 0, while ∂u

∂n is continuous at x0. We also notice that

lim
ε→0+

∫
|x−x0|<ε

G0(|x− x0)|)∇udx = 0

since limr→0 r
n−1G0(r) = 0 and local volume element dx near x = x0 scales as rn−1. Therefore,

combing all these results in (1), the Lemma follows.

Corollary 4 If φ ∈ C∞(Ω) with compact support K contained in Ω, then

φ(x0) =

∫
Ω

G0(|x− x0|)∆φ(xdx

Proof. This follows immediately from last theorem, once we realize that for such functions φ,
both φ and its derivatives are all 0 on ∂Ω.

Definition 5 The Green’s function G(x,x0) of the operator −∆ in a domain Ω ⊂ Rn is defined
as a function that satisfies the following conditions:

1. G(x,x0) satisfies ∆G(x,x0) = 0 for any x 6= x0 in Ω.

2. G(x,x0) = 0 for x ∈ ∂Ω.

3. The function G(x,x0)−G0(|x− x0|) as a function of x is in C2(Ω)∩C1(Ω̄) including at
x = x0.

Remark 2 In the context of electro-statics, for n = 3, G(x,x0) is the electro-static potential
created by a point charge x0 in a domain Ω where the boundary ∂Ω is maintained at zero potential
(by earthing for instance).
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Lemma 6 (Symmetry of Green’s function) For any domain Ω, the Green’s function is symmet-
ric, i.e.

G(x,x0) = G(x0,x)

Proof. Consider the domain Ωε shown in Figure 2 that has two small holes, each of radius ε
and centered at a and b cut out from Ω. Let u(x) = G(x,a) and v(x) = G(x,b). It is clear that
each of u, v are harmonic in Ωε and hence

0 =

∫
Ωε

{u∆v − v∆u} dx =

∫
∂Ω

(
u
∂v

∂n
− v ∂u

∂n

)
dx +Aε +Bε (2)

where

Aε = −
∫
|x−a|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dx

Bε = −
∫
|x−b|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dx

We know

lim
ε→0)

Aε = lim
ε→0+

∫
|x−a|=ε

(
[G0(|x− a|) +H(x)]

∂v

∂n
− v ∂[H(x) +G0(|x− a|]

∂n

)
dx = v(a)

from using Lemma 2 and the fact that contribution from the Harmonic part H is zero, in the
limit of surface measure shrinks to zero. Similarly,

lim
ε→0+

Bε = −u(b),

the minus sign results from the fact that (2) is anti-symmetric on interchange of u and v.
Therefore, using (2), and using the fact that both u and v are zero on ∂Ω, it follows that

0 = lim
ε→0+

{Aε +Bε} = v(a)− u(b) = G(a,b)−G(b,a)

Remark 3 In electrostatics, the above Theorem is referred to as the principle of reciprocity. It
asserts that a charge located at point a produces at point b the same potential as at point a due
to a point charge located at b.

Theorem 7 The solution of the problem

∆u = f for x ∈ Ω ,with u = h on ∂Ω

for bounded f ∈ C(Ω), h ∈ C0(∂Ω) is given by

u(x0) =

∫
∂Ω

h(x)
∂G

∂n
(x,x0)dx +

∫
Ω

f(x)G(x,x0)dx
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Figure 2: Domain Ωε in showing symmetry of Green’s function

Proof. We note that if we define H(x,x0) = G(x,x0)−G0(|x− x0|), then H is harmonic in x
in Ω and we therefore obtain

0 = −
∫
∂Ω

{
H(x,x0)

∂u

∂n
(x)− u(x)

∂H(x,x0)

∂n

}
dx +

∫
Ω

H(x,x0)∆u(x)dx

Adding this to the expression in Lemma 3, we obtain

u(x0) =

∫
Ω

G(x,x0)∆u(x)dx +

∫
∂Ω

{
u(x

∂G(x,x0)

∂n
−G(x,x0)

∂u(x)

∂n

}
dx (3)

Using the boundary condition on G, u on ∂Ω and the fact that ∆u = f , we obtain the statement
in the Lemma.

Corollary 8 A harmonic function u in Ω is completely determined in terms of its boundary
data through an integral over ∂Ω, as given in the last Theorem for f = 0.

Remark 4 We already know from the uniqueness theory of Laplace’s equation with Dirichlet
data that the expression given in the last theorem is the only solution to the given boundary value
problem. The problem here is to find expression for Green’s function G(x,x0). This cannot
be done explicitly, except for some simple domains illustrated in the next subsection. In 2-D
(n = 2), G(x,x0) is the real part of the log of a conformal mapping function that maps the
domain Ω into a unit disk with x0 corresponding to the origin.

1.1 Half-Space and Sphere

We solve for the harmonic functions in a half-space or on a sphere by determining Green’s
function through the method of reflection.
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Half-Space
Consider the Green’s function in a half-space domain

H+ = {(x1, x2, x3, ..xn) : xn > 0}

The construction of Green’s function can be done with the method of images as shown below.
We can think of G(x,y) as the Coulomb potential due to a point positive charge at at x = y =
(y1, y2, ..yn) when the plane boundary xn = 0 is maintained at zero potential. We imagine a
negative point charge outside the domain H+ located at ỹ = (y1, y2, ...yn−1,−yn). Note that the
actual positive charge and its image are at the same distance from the boundary xn = 0. Hence,

G(x,y) = G0(|x− y|)−G0(|x− ỹ|)

We can check that at xn = 0,

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + .. + (0− yn)2 = |x− ỹ|

and hence G = 0 as required. Further, for x 6= y,

∆xG(x,y) = ∆xG0(|x− y|)−∆xG0(|x− ỹ|) = 0

and G(x,y)−G0(|x− y|) = −G0(|x− ỹ|) is obviously regular for any point x ∈ H+.
In 3-D, the explicit expression for half-space Green’s function is given by

G(x,x0) = − 1

4π|x− x0|
+

1

4π|x− x̂0|

In 2-D, it is

G(x,x0) =
1

2π
log
|x− x0|
|x− x̂0|

Green’s function for Sphere in any dimension:

Given a fixed point x0, we define the reflected point x∗0 = a2x0

|x0|2 . This point is outside the

sphere and in the same line connecting the origin to x0. For a point |x| = a, we note that

|x− x∗0|2 = (x− x∗0) · (x− x∗0) = a2 − 2x · x∗0 + x∗0 · x∗0

= a2 − 2
a2x · x0

|x0|2
+

a4

|x0|2
=

a2

|x0|2
|x− x0|2

Therefore, since the above calculation shows the ratio of distances to the sphere is |x| = a of
points x∗0 and x0 is a constant a

|x0| , it follows that

G(x,x0) = G0(|x− x0|)−G0

(
|x0|
a
|x− x∗0|

)
since the two terms exactly cancel out.

When n = 2, we obtain

G(x,x0) =
1

2π
log

(
|x− x0|
|x− x∗0|

)
For n = 3,

G(x,x0) = − 1

4π|x− x0|
+

a

4π|x0||x− x∗0|
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Figure 3: Ratio of distances from sphere of charge at x0 and image at x∗0 is a constant a
|x0|

Lemma 9 The solution to ∆u = 0 for |x| < a in 3-D with u = φ on |x| = a is given

u(x) =
a2 − |x|2

4πa

∫
|y|=a

h(y)

|y − x|3
dy

If we express x = (r, θ, φ) and y = (a, θ′, φ′) in spherical coordinates, then the above implies,

u(r, θ, φ) =
a(a2 − r2)

4π

∫ 2π

0

∫ π

0

φ(θ′, φ′)

(a2 + r2 − 2ar cos Ψ)3/2
sin θ′dθ′dφ′

where Ψ is the angle between vectors x and y. In 2-D, the solution is given by

u(x) =
a2 − |x|2

2πa

∫
|y|=a

h(y)

|y − x|2
dy

In polar coordinates, this becomes

u(r, θ) =
a2 − r2

2π

∫ 2π

0

h(θ′)

a2 − 2ar cos(θ − θ′) + r2
dθ′

Proof. The lemma follows from expressions for Green’s function G(x,y) for n = 3 and n = 2,
once we use Theorem 7 with f = 0. The details are left as an exercise.

2 Distribution

We have already introduced Green’s function in the context of Laplace’s equation. With a view
to generalizing this to other PDEs, we introduce the concept of a distribution.

Definition 10 A function φ ∈ C∞(Ω) with compact support, i.e. φ = 0 outside a bounded
subset of Ω will be called a test function. The set of all such test functions will be denoted by
D(Ω). Note that Ω can be unbounded in this definition.
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Example: Consider

φy,ε(x) = exp

(
− ε2

ε2 − |x− y|2

)
for |x− y| < ε and φy,ε(x) = 0 otherwise

Definition 11 Let {φn}∞n=1 be elements of D(Ω). We say φn converges to φ in D(Ω), if there
is a compact set K ⊂ Ω such that the supports of all φn lie in K and moreover, φn and all the
derivatives of φn or arbitrary order converge uniformly to those of φ

Lemma 12 Let K be a compact set of Ω and let f ∈ C(Ω) and have support contained in K.
For ε > 0, let

fε(x) =
1

C(ε)

∫
K
φy,ε(x)f(y)dy

where

C(ε) =

∫
Rm

φy,ε(x)dx

If ε < dist(K, ∂Ω), then fε ∈ D(Ω); more over fε → f uniformly in x as ε→ 0.

Proof. Exercise.

Definition 13 A distribution f is a linear mapping from D to R, whose action on a test function
φ denoted by (f, φ), has the property that if φn → φ in D, then

lim
n→∞

(f, φn) = (f, φ)

The space of distribution in a domain Ω ⊂ Rn will be denoted by D′(Ω).

Remark 5 With the definition of distribution, we can uniquely associate a distribution fg to
every integrable function g, by defining (fg, φ) =

∫
Ω
g(x)φ(x). In such cases, for convenience of

notation, we will blur the distinction between g and fg and just use the notation g.

Example 1: Suppose we consider a functional that assigns to a test function φ its value φ(0).
This is clearly a bounded linear functional. This functional is denoted by δ and is called Dirac
distribution or Dirac delta“function”, though it is actually a functional. In the notation above,

(δ, φ) = φ(0)

A generalization of this is δx, where
(δx, φ) = φ(x)

Example 2: In 1-D, the functional that assigns to φ the value φ′′(5) is also a distribution. It is
a linear functional since (aφ+ bψ)′′(5) = aφ′′(5) + bψ′′(5); further it is continuous and therefore
bounded since φn → φ in the sense of test function immediately implies φ′′n(5) → φ′′(5). This
functional will be denoted by δ′′5 , as it will turn out to be the second derivative of δ5 in the sense
of distribution.
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Lemma 14 Let f ∈ D′(Ω) and let K be a compact subset of Ω ⊂ Rn. There exists some n ∈ N
and constant C so that for every φ ∈ D with support in K,∣∣∣(f, φ)‖ ≤ C

∑
|α|≤n

max
x∈K

∣∣∣Dαφ
∣∣∣ ,

where multi-index α = (α1, α2, · · · , αn),
∣∣∣α∣∣∣ = α1 + α2 + · · ·+ αn and

Dαφ = ∂
|α|
∂
α1
x1
∂
α2
x2
···∂αnxn

φ

Proof. Assume on the contrary, there are are no such bounds. This means that for any choice
C = m ∈ N, there exists corresponding integer n and test function ηn so that∣∣∣(f, ηn)

∣∣∣ > m
∑
|α|≤n

max
x∈K

∣∣∣Dαηn

Clearly, we can choose n to be an increasing function of m, and we can thereby define its inverse

m = Cn. We have the property that limn→∞ Cn = ∞. Now, for φn = ηn/
∣∣∣(f, ηn)

∣∣∣, we note

φn → 0 as n → ∞. On the otherhand, from construction, (f, φn) = 1. But from continuity of
linear functional f , we must have limn→∞(f, φn) = 0, which is a contradiction.

Definition 15 If {fn}∞n=1 is a sequence of distribution, it is said to converge weakly to f , if

(fn, φ)→ (f, φ) as n→∞

Example The source function for diffusion equation:

S(x, t) =

(
1√

4κπt

)n
exp

[
−|x|

2

4κt

]
for t > 0

converges to δ0 as t→ 0+, since recall we showed earlier in the context of discussion of diffusion
problem that

lim
t→0+

∫
Ω

S(x, t)φ(x)dx = φ(0)

So
S(x, t)→ δ(x) weakly as t→ 0+

Example: Recall in the context of Fourier Series discussion the function

KN (θ) = 1 + 2

N∑
n=1

cosnθ =
sin[(N + 1

2 )θ]

sin θ
2

We had proved before that ∫ π

−π
KN (θ)φ(θ)dθ = 2πφ(0)

for any C1 function φ in (−π, π). Therefore, as N →∞,

KN → 2πδ weakly in (−π, π)
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Definition 16 In 1-D, for any distribution f , we define its derivative f ′ by the formula

(f ′, φ) = −(f, φ′) for all φ ∈ D(R)

We can extend this definition to any number of variables. For instance fxj is defined as:

(fxj , φ) = −(f, φxj ) for all φ ∈ D(Rn)

Example: In 1-D,
(δ′, φ) = −(δ, φ′) = −φ′(0)

(δ′′5 , φ) = −(δ′5, φ
′) = (δ5, φ

′′) = φ′′(5)

Example: Consider the Heaviside function H(x):

H(x) = 1, for x > 0, and H(x) = 0 for x < 0

Then, clearly for any test function

(H ′(x), φ) = −(H(x), φ′(x)) = −
∫ ∞

0

φ′(x)dx = φ(0)

So, H ′ = δ.
Example Consider the complex series

∑∞
n=−∞ einx. Recall, in the discussion of Fourier Series,

we had

KN (x) =

N∑
n=−N

einx

and we showed earlier that KN → 2πδ in (−π, π) as N →∞. Thus, we get in the weak sense

∞∑
n=−∞

einx = 2πδ(x) for x ∈ (−π, π)

Example Recall Corollary for compactly supported test function φ in Ω:

φ(x0) =

∫
Ω

G0(|x− x0|)∆φ(x)dx

Therefore,
φ(x0) = (G0,∆φ) = (∆G0, φ)

It follows that in the sense of distribution,

∆G0(|x− x0|) = δx0
(x)

Thus, Green’s function has an interpretation in terms of distribution.
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