
Week 8 Lectures, Math 6451, Tanveer

1 Green’s function as a distribution

1.1 Laplace Operator

For the Poisson-Problem with homogeneous boundary condition:

∆u = f for x ∈ Ω , u = 0 on ∂Ω (1)

we know that

u(x0) =

∫
Ω

G(x,x0)f(x)dx (2)

On the otherhand, if u is a test function with support inside Ω, we have from using corollary 4
of week 7 notes that

u(x0) =

∫
Ω

G(x,x0)∆u(x)dx = (u,∆G(.,x0)) (3)

Therefore, in the sense of distribution,

∆G(x,x0) = δ(x− x0) (4)

Therefore, we view solution (24) as a principle of linear superposition. In the physical context
(n = 3), it means that the potential caused by charge density f in a domain Ω with boundary
at zero potential is given by a linear superposition of point charge potentials satisfying the same
boundary conditions, with a weighting proportional to the infinitesimal charge f(x)dx present
in a volume element dx at x.

Further, note that G(x,x0) = G0(|x− x0|) +H(x,x0), where H is harmonic in x. It follows
that

∆G0(|x− x0|) = δ(x− x0) (5)

More generally if we have a linear constant coefficient PDE in the form

Lu = f , for x ∈ Ω ⊂ Rn ,with u = 0 on ∂Ω (6)

then if we can find Greens function satisfying

LG = δ(x− x0) , with G = 0 on ∂Ω (7)

then, we can show that

u(x0) =

∫
Ω

G(x,x0)f(x)dx (8)

1.2 Heat Equation

Recall from last class that the source function:

S =

(
1

4πκt

)n/2
exp

[
−|x|

2

4κt

]
(9)
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satisfies
St = κ∆S for x ∈ Rn , t > 0 ,with S(x, 0+) = δ(x) (10)

It can be shown (exercise) that

R(x, t) = S(x− x0, t− t0) for t > t0 and R(x, t) = 0 for t < t0 (11)

satisfies
Rt − κ∆R = δ(x− x0)δ(t− t0) (12)

2 Eigen Function Expansion for Green’s Function

2.1 Heat Equation

Consider Source solution to heat equation bounded domain Ω ⊂ Rn with homogeneous Dirichlet
Boundary conditions:

St = κ∆S for x ∈ Ω and S = 0 on ∂Ω, with S(x, 0) = δ(x− x0) (13)

In terms of the S(x,x0, t) the solution to the initial value problem

ut = κ∆u for x ∈ Ω and u = 0 on ∂Ω, with u(x, 0) = φ(x) (14)

is given by

u(x, t) =

∫
Ω

S(x,y, t)φ(y)dy (15)

On the otherhand, if we denote the orthonormalized eigenfunctions {Xn}∞n=1 and corresponding
eigenvalues {λn}∞n=1 of the operator −∆ with homogenous boundary conditions on ∂Ω, we know
that solution to heat equation has the form

u(x, t) =

∞∑
n=1

exp [−λnκt]Xn(x) (16)

where

cn = (φ,Xn) =

∫
Ω

φ(x)Xn(x)dx (17)

Then,

u(x, t) =

∞∑
n=1

(∫
Ω

φ(y)Xn(y)dy

)
exp [−λnκt]Xn(x) =

(∫
Ω

φ(y)

{ ∞∑
n=1

Xn(y)Xn(x)e−λnκt

}
dy

)
(18)

Therefore, it follows that under the assumption that the summation converges absolutely and
uniformly,

S(x,y, t) =

∞∑
n=1

Xn(y)Xn(x)e−λnκt (19)

Note, that this implies that in the sense of distribution, we must have

δ(x− y) =

∞∑
n=1

Xn(y)Xn(x)

This is true for any complete ortho-normal basis.
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3 Fourier Transform

Notation: For multi-index α = (α1, α2, ..., αn), with each αj ∈ N, it is convenient to introduce
operator

Dα ≡ ∂α1
x1
∂α2
x2
....∂αn

xn

The order of this operator is denoted by |α| ≡ α1 + α2 + ..+ αn.

Definition 1 S(Rn) be the space of all functions φ on Rn which are of the class C∞ and such
that for any integer j ≥ 0, |x|j |Dαφ| < ∞, for |α| = j. This is referred to usually as the
Schwartz class of functions.

Definition 2 A tempered distribution in Rn is a continuous linear functional on the class of
φ ∈ S(Rn).

Remark 1 Note that every tempered-distribution is a distribution, but the converse is not true.

The Fourier transform of a continuous absolutely integrable function f on Rn is defined by

f̂(k) = F [f ](k) = (2π)−n/2
∫
Rn

exp [−ik · x] f(x)dx

In particular, this defines Fourier-Transform for every f ∈ S(Rn).

Theorem 3 If f ∈ S(Rn), then f̂ ∈ S(Rn). Moreover, the mapping is continuous from S(Rn)
to itself.

Proof. We leave the proof to the reader.

Theorem 4 Let g ∈ S(Rn). Then there is a unique f ∈ S(Rn) such that g = F [f ]. Futhermore,
the inverse Fourier transform of g is given by

f(x) = (2π)−n/2
∫
Rn

eik·xg(k)dk (20)

Proof. Let QM = [−M,M ]n, and let f be given by the above formula. Then, we find

f̃(k) = (2π)−n/2
∫
Rn

e−ik·xf(x)dx = (2π)−n/2
∫
Rn

e−ik·x
∫
Rn

eiη·xg(η)dηdx

= lim
M→∞

∫
Rn

∫
QM

ei(η−k)·xg(η)dxdη = π−n lim
M→∞

∫
Rn

n∏
i=1

sinM(ηi − ki)
ηi − ki

g(η)dη

However, it is easily seen that as M →∞, sinM(ηi−ki)
ηi−ki → πδ(ηi−ki) in the sense of distribution.

Therefore, it follows that
f̂(k) = g(k)

An analogous caclulation shows that if g = ĥ for some h ∈ S(Rn), then h = f as given by
equation (20).
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Theorem 5 Let f, g ∈ S(Rn), then (f̂ , ĝ) = (f, g).

Proof. We have

(f, g) =

∫
Rn

f(x)g(x)dx = (2π)−n/2
∫
Rn

g(x)

∫
Rn

f̂(k)eik·xdkdx

= (2π)−n/2
∫
Rn

f̂(k)

∫
Rn

g(x)e−ik·xdxdk =

∫
Rn

ĝ(k)f̂(k)dk = (f̂ , ĝ)

We now seek to give meaning to Fourier-Transform of tempered distribution.

Definition 6 Let f ∈ S ′(Rn). Then the Fourier transform of f is defined by the functional

(F [f ], φ) = (f,F−1[φ]) for φ ∈ S(Rn)

Remark 2 It is not difficult to see that F is a continuous mapping from S ′(Rn) onto itself. The
formulas for Fourier transform and its inverse still hold for tempered distribution.

Example We want Fourier-transform of δ distribution. From definition

(F [δ], φ) = (δ,F−1[φ]) = F−1[φ](0) = (2π)−n/2
∫
Rn

φ(x)dx

Therefore F [δ] = (2π)−n/2, a constant.
Example The above relation is symmetric. since the Fourier-transform of 1 equal to (2π)n/2δ
since

(F [1], φ) = (1,F−1[φ]) =

∫
Rn

F−1[φ](x)dx = (2π)n/2FF−1[φ](0) = (2π)n/2φ(0)

Therefore, F [1] = (2π)n/2δ
Example: Let δ(|x| − a) represent a uniform mass distribution on a sphere of radius a, i.e.

(δ(|x| − a), φ) =

∫
|x|=a

φ(x)dS

Then,

F [δ(|x| − a)](k) = (2π)−n/2
∫
|x|=a

e−ik·xdS

For n = 3, using spherical polar coordinates, we get

F [δ(|x| − a)](k) = (2π)−n/2
∫ π

0

∫ 2π

0

e−iaρ cos θ sin θdφdθ =

√
2

π
a

sin a|k|
|k|
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4 Examples of Fourier-Transform of Distributions

Example: Using the same argument, as for F [1], except with k replaced by k− η, we find:

F [exp[iη · x]] (k) = (2π)m/2δ(k− η)

If f is a 2π-periodic distribution represented by a Fourier-series:

f(x) =

∞∑
n=1

cne
inx,

we find that

F [f ](k) =
√

2π

∞∑
n=−∞

cnδ(k − n)

Definition 7 A distribution f is said to have a compact support, if there exists a compact K so
that for all test function φ with support in Rn\K, (f, φ) = 0. An example of this is δ(x), whose
support is only {0}.

Example Let f be a distribution with compact support. Then for any φ ∈ C∞(Rn), we set
(f, φ) = (f, φ0), where φ0 ∈ D(Rn) and φ0 agrees with φ is a neighborhood of the support of
f . If φ1 also has similar property as φ0, it is clear from definition of f that (f, φ0 − φ1) = 0
since from construction, the support of φ0 − φ1 is outside the support of f . Thus, (f, φ) can be
defined unambigously (not depending on which φ0 is used).

We claim that F [f ] is the function

F [f ](k) = (2π)−m/2
(
f(x), e−ik·x

)
Here (f̄ , φ) is defined as the complex conjugate of (f, φ̄). This follows since for any φ ∈ S(Rn),
we have

(2π)−n/2
∫
Rn

(
f(x), eik·x

)
φ(k)dk = (f,F−1[φ])) = (2π)−n/2

(
f,

∫
Rn

eik·xφ(k)dk

)
Example: Let δ(|x| − a) represent a uniform mass distribution on a sphere of radius a, i.e.

(δ(|x| − a), φ) =

∫
|x|=a

φ(x)dS

Then,

F [δ(|x| − a)](k) = (2π)−n/2
∫
|x|=a

e−ik·xdS

For n = 3, using spherical polar coordinates, we get

F [δ(|x| − a)](k) = (2π)−n/2
∫ π

0

∫ 2π

0

e−iaρ cos θ sin θdφdθ =

√
2

π
a

sin a|k|
|k|
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5 The Source Solution (fundamental solution) for the wave
equation:

Consider solution to

Stt = ∆S , for x ∈ Rn, t ∈ R, with S(x, 0) = 0, St(x, 0) = δ(x) (21)

Fourier-transforming, we obtain

Ŝtt = −k2Ŝ with Ŝ(k, 0) = 0 Ŝt(k, 0) = (2π)−n/2 (22)

Therefore,

S(k, t) = (2π)−n/2
sin |k|t
|k|

(23)

For n = 3, from one of the previous examples, it follows that

S(x, t) =
δ(|x| − t)

4πt
(24)

This method of finding Green’s function is generally valid for any constant coefficient system
in free-space. For example, if we have have a PDE of the form

P(∂x)G = δ(x)

where P is a polynomial, then application of Fourier-Transform leads to an algebraic relation:

Ĝ(k) =
1

(2π)n/2P(ik)

We can then recover G by Fourier-transform. Note that since the above is true for any dimension,
it can accomodate PDEs involving both t and x, but just considering a higher dimensional
variable x = (x, t).

6 Laplace Transform:

If f ∈ S ′(R) have support contained in {x ≥ 0}. Then obviously e−µxf(x) is also in S ′(R) for
every µ > 0. Formally, we have

F
[
e−µxf

]
(k) =

1√
2π

∫ ∞
0

f(x)e−ikxe−µxdx = F [f ](k − iµ)

Hence, it is sensible to define F [f ](k− iµ) = F [fe−µx]. This defines F [f ] in the lower half of the
complex k-plane–as a generalized function of <k, depending of =k as a paraemeter. Actually,
however, this function is analytic k in the lower-half plane (=k < 0). The Laplace-transform is
defined as

L[f ](s) =
√

2πF [f ](−is);
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for f ∈ S ′ with support in {x ≥ 0}, it is defined in the right half-plane complex plane (<s ≥ 0).
Formally, we have

L[f ](s) =

∫ ∞
0

e−sxf(x)dx

If f /∈ S ′(R), but e−µxf ∈ S ′(R) for some µ > 0, then we can define L[f ] in the right-half plane
< s ≥ µ. We note that by inverting the Fourier-transform we obtain

e−µxf(x) =
1√
2π
F−1[f ](µ+ ik),

or equivalently,

f(x) =
1

2πi

∫ µ+i∞

µ−i∞
esxL[f ](s)ds

In using the above formula, we must ensure that the resulting expression vanishes for x < 0, since
this was our basic assumption. Typically, one shows this by closing the contour of integration by
a half-circle to the right; esx decays rapidly in the right half plane. For this argument to work,
it is necessary to choose µ to the right of the singularities of f .
Example: Consider

ut = uxx for x ∈ (0, 1), t > 0 with u(x, 0) = 0, u(0, t) = 1 = u(1, t) for t > 0

Laplace transform in time leads to

sL[u](x, s) = L[u]xx(x, s) ; L[u](0, s) =
1

s
= L[u](1, s)

The equation for the solution is

L[u](x, s) =
cosh

(√
s
(
x− 1

2

))
s cosh (

√
s/2)

Using the inverse transform, we obtain

u(x, t) =
1

2πi

∫ µ+i∞

µ−i∞
est

cosh
(√
s(x− 1

2

)
s cosh (

√
s/2)

ds

The integral cannot be evaluated in closed form, however, through contour deformation, and
change of variables

√
s− > s1, it is possible to use calculus of residues (complex variable tech-

nique) and obtain a series form of solution.

7 Wave equation

7.1 Solution in higher dimension through Spherical Means

Assume u is a classical solution to the initial value problem for n-dimensional wave equation for
n ≥ 2:

utt −∆u = 0 for x ∈ Rn for t > 0 with u(x, 0) = φ(x) , ut(x, 0) = ψ(x) (25)
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where φ ∈ C2 and ψ ∈ C1. For t > 0, r > 0, we define U(x; r, t) to be the spherical average over
the surface of an n-dimensional ball B(x, r) of radius r, centered at x, and denoted by

U(x; r, t) =
1

Ar

∫
∂B(x;r)

u(y, t)dy ≡ −
∫
∂B(x;r)

u(y, t)dy (26)

where Ar is the surface area of an n dimensional ball of radius r. Note Ar = nα(n)rn−1, where
volume of the n-dimensional sphere is α(n)rn. It is to be noted that

lim
r→0+

U(x; r, t) = u(x, t)

from continuity of u. We can similarly define

G(x; r) = −
∫
∂B(x;r)

φ(y, t)dy (27)

H(x; r) = −
∫
∂B(x;r)

ψ(y, t)dy (28)

For fixed x, we regard U as a function of r and t. We claim

Lemma 8 For fixed x, U(x; r, t) is a solution of the initial value problem:

Utt−Urr−
n− 1

r
Ur = 0 for r > 0, t > 0 and U(x; r, 0) = G(x, r), Ut(x; r, 0) = H(x, r) (29)

Proof. For convenience, we depart from our usual convention and denote ‘surface area’ element
on the n-dimensional ball as dS. Symbol dSy will denote surface area element in the variable y.
We note that

U(x; r, t) = −
∫
∂B(x,r)

u(y, t))dSy = −
∫
∂B(0,1)

u(x + rz, t))dSz (30)

Therefore,

Ur(x; r, t) = −
∫
∂B(0,1)

z · ∇u(x + rz, t)dSz = −
∫
∂B(x,r)

∂u

∂n
dSy =

1

Ar

∫
∂B(x,r)

∂u

∂n
dSy

=
1

Ar

∫
B(x,r)

∆u(y, t)dy ==
1

nα(n)rn−1

∫
B(x,r)

∆u(y, t)dy, (31)

Thus, using (25), it follows that

Ur(x; r, t) =
1

nα(n)rn−1

∫
B(x,r)

uttdy (32)

and therefore,

∂

∂r

{
rn−1Ur(x; r, t)

}
=

1

nα(n)

∫
∂B(x;r)

utt(y, t)dSy = rn−1Utt (33)

This gives the PDE for U given in the Lemma. Further, it is clear from definition of G and H
that U satisfies the given initial conditions.
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Theorem 9 (Kirchoff Formula for n = 3)
The solution to the initial value problem for the three-dimensional dimensional wave equation

in free-space:

utt −∆u = 0 for x ∈ R3 for t > 0 with u(x, 0) = φ(x) , ut(x, 0) = ψ(x) (34)

is given by

u(x, t) = −
∫
∂B(x,t)

{tψ(y + φ(y) + (y − x) · ∇φ(y)} dSy (35)

Proof.
If note that if we introduce transformation

Ũ(x; r, t) = rU(x; r, t), G̃ = rG, H̃ = rH

Then, simple calculation shows

Ũtt − Ũrr = 0 for r > 0 , t > 0, with Ũ(r, 0) = G̃(r), Ũt(r, 0) = H̃(r) , Ũ(0, t) = 0

This is the Wave equation on a half-line with a homogeneous Dirichlet condition. As discussed
in Week 4 lectures (see equation (32) on page 4, with c = 1) for 0 ≤ r ≤ t, we obtain

Ũ(x; r, t) =
1

2

[
G̃(r + t)− G̃(t− r)

]
+

1

2

∫ r+t

t−r
H̃(y)dy

Since u(x, t) = limr→0+
Ũ(x;r,t)

r ,

u(x, t) = lim
r→0+

{
1

2r

[
G̃(r + t)− G̃(t− r)

]
+

1

2r

∫ r+t

t−r
H̃(y)dy

}

= G̃′(t)+H̃(t) = ∂t

(
t−
∫
∂B(x,t)

φdS

)
+t−
∫
∂B(x,t)

ψdS = ∂t

(
t−
∫
∂B(0,1)

φ(x + tz)dSz

)
+t−
∫
∂B(0,1)

ψdSz

= −
∫
∂B(0,1)

{tψ(x + tz) + φ(x + tz) + tz · ∇φ(x + tz)} dSz = −
∫
∂B(x,t)

{tψ(y) + φ(y) +∇φ(y) · (y − x)} dSy

Theorem 10 (Poisson Formula for n = 2)
The solution to the initial value problem for the two-dimensional dimensional wave equation

in free-space:

utt −∆u = 0 for x ∈ R2 for t > 0 with u(x, 0) = φ(x) , ut(x, 0) = ψ(x) (36)

is given by

u(x, t) =
1

2
−
∫
B(x,t)

{
tψ(y) + t2ψ(y + t(y − x) · ∇φ(y)

}
(t2 − |y − x|2)1/2

dy (37)
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Proof. We imbed the 2-D problem as part of 3-D problem. With x̄ = (x1, x2, x3), x = (x1, x2),
ū(x̄, t) = u(x, t). Then ū satisfies the 3-D wave equation with initial condition

φ̄(x̄) = φ(x) and ψ̄(x̄) = ψ(x)

Then, we have from the 3-D calculation,

ū(x̄, t) = ∂t

(
t−
∫
∂B̄(x̄,t)

φ̄dS̄

)
+ t−
∫
∂B̄(x̄,t)

ψ̄dS̄

where B̄(x̄, t) denotes the ball in R3 with center x̄ of radius t > 0, and dS̄ denotes the two
dimensional surface measure. Now we observe that

−
∫
∂B̄(x̄,t)

ḡdS̄ =
1

4πt2

∫
∂B̄(x̄,t)

ḡdS̄ =
2

4πt2

∫
B(x,t)

g(y)(1 + (∇γ)2)1/2dy

where γ(y) =
√
t2 − |y − x|2 for y ∈ B(x, t). The factor 2 enters since ∂B̄(x̄, t) consists of two

hemispheres. Computation shows that [1 + (∇γ)2]1/2 = t[t2 − |y − x|2]−1/2. Therefore,

−
∫
∂B̄(x̄,t)

ḡdS̄ =
t

2
−
∫
B(x,t)

g(y)√
t2 − |y − x|2

dy = −
∫
B(0,1)

g(x + tz)√
1− |z|2

dz

The rest of the theorem is straight-forward computation.

7.2 Source solution for Wave Equation

We consider source solution S(x, t) that satisfies:

Stt = c2∆S for x ∈ Rn , t ∈ R with S(x, 0) = 0 ;St(x, 0) = δ(x) (38)

This is referred to as the Riemann problem. To find formula for S, let ψ(x) be any test function
and we define

u(x, t) =

∫
Rn

S(x− y, t)ψ(y)dy (39)

Then, assuming integration with respect to x and t commutes with the integration with respect
to y, it follows that u satisfies wave equation as well, and satisfies initial conditions

u(x, 0) = 0, and ut(x, 0) = ψ(x) (40)

From D’Alembert formula, the solution to this for n = 1 is given by

u(x, t) =

∫ ∞
−∞

S(x− y, t)ψ(y)dy =
1

2c

∫ x+ct

x−ct
ψ(y)dy

Therefore, S(x− y, t) = 1
2c for y − x ∈ (−ct, ct) and 0 otherwise. Therefore,

S(x, t) =
1

2c
for |x| < ct and 0 for |x| > ct for t > 0 (41)
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Similar formula can be found for t < 0. Notice that if we replace t by −t in the initial value
problem, it only reverses the sign of ψ. Using Heaviside function H1, we obtain

S(x, t) =
1

2c
H(c2t2 − x2)sgn(t) (42)

For 1-D, the Riemann function is actually a function in the usual sense. This is not the case in
higher dimension, where it is a distribution.

Note from Kirchoff-formula that solution for t > 0 for n = 3 is given by

1

4πc2t

∫
∂B(x,t)

ψ(y)dSy = u(x, t) =

∫
R3

S(x− y, t)ψ(y)dy =

∫ ∞
0

dr

∫
∂B(x,r)

S(y − x, t)ψ(y)dSy

(43)
Therefore for t > 0, S(x, t) = 1

4πc2tδ(|x| − ct). We can similarly analyze the solution for t < 0,
noticing that that replacing t by −t in the problem posed for S has the effect of switching its
sign. Therefore, for t < 0, we must have S(x, t) = − 1

4πc2(−t)δ(|x|+ ct). A uniform expression is

given by

S(x, t) =
1

2πc
δ(|x|2 − c2t2)sgn(t)

In 2-D similar calculation using Poisson formula shows

S(x, t) =
1

2πc

(
c2t2 − |x|2

)−1/2
for |x| < ct and = 0 otherwise

1Recall H(x) = 1 for x > 0 and H(x) = 0 for x < 0)
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