Week 8 Lectures, Math 6451, Tanveer

1 Green’s function as a distribution

1.1 Laplace Operator

For the Poisson-Problem with homogeneous boundary condition:
Au=f for x€Q , u=0 on 90 (1)

we know that

u(xg) = 5 G(x,x0)f(x)dx (2)

On the otherhand, if u is a test function with support inside €2, we have from using corollary 4
of week 7 notes that

u(xg) = / G(x,x0)Au(x)dx = (u, AG(.,x0)) (3)
Q
Therefore, in the sense of distribution,
AG(x,%x9) = 0(x — xq) (4)

Therefore, we view solution (24) as a principle of linear superposition. In the physical context
(n = 3), it means that the potential caused by charge density f in a domain  with boundary
at zero potential is given by a linear superposition of point charge potentials satisfying the same
boundary conditions, with a weighting proportional to the infinitesimal charge f(x)dx present
in a volume element dx at x.
Further, note that G(x,x¢) = Go(|x — xq|) + H(xX,Xg), where H is harmonic in x. It follows
that
AGo(lx — xol) = 3(x — x0) (5)

More generally if we have a linear constant coefficient PDE in the form
Lu=f ,forx € Q CR"  with u =0 on 99 (6)
then if we can find Greens function satisfying
LG =6(x—x%¢) , with G=0 on 90 (7)

then, we can show that

u(xg) = A G(x,x0)f(x)dx (8)

1.2 Heat Equation

Recall from last class that the source function:

n/2 2
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satisfies

S = kAS for x € R™ ;>0 ,with S(x,0") =d(x) (10)
It can be shown (exercise) that
R(x,t) = S(x —x0,t —tg) for t >ty and R(x,t) =0 fort <tg (11)
satisfies
R; — KAR = 0(x — x0)d(t — to) (12)

2 Eigen Function Expansion for Green’s Function

2.1 Heat Equation

Consider Source solution to heat equation bounded domain 2 C R™ with homogeneous Dirichlet
Boundary conditions:

Sy =krAS for x€Q and S=0 on 09, with S(x,0) =0d(x —xq) (13)
In terms of the S(x,xq,t) the solution to the initial value problem
us = kAu for x€Q and w=0 on 01, with u(x,0) = ¢(x) (14)
is given by
utx.t) = [ S0xy.00(v)dy (15)

On the otherhand, if we denote the orthonormalized eigenfunctions {X,,}, -, and corresponding
eigenvalues {\,, }—, of the operator —A with homogenous boundary conditions on 92, we know
that solution to heat equation has the form

u(x,t) = Z exp [—Apkt] X, (%) (16)
where
en = (¢, Xp) = ; o (x) X, (x)dx (17)
Then,
X :OO xXp [—Ankt] X (x) = 3 n L (x)e At
u(x. 1) ;(/Sﬂy)xn(y)dy)e [ Aurt] X () (/Qaw{;x (¥)Xa () }(dy?
18

Therefore, it follows that under the assumption that the summation converges absolutely and
uniformly,

Sy, 1) =D Xn(y)Xp(x)e  rt (19)
n=1
Note, that this implies that in the sense of distribution, we must have

S(x—y) = Xn(y)Xn(x)
n=1

This is true for any complete ortho-normal basis.



3 Fourier Transform

Notation: For multi-index o = (o, ag, ..., o, ), with each a; € N, it is convenient to introduce
operator
D =031 032...05"

The order of this operator is denoted by |a| = a1 + s + .. + a,.

Definition 1 S(R"™) be the space of all functions ¢ on R™ which are of the class C™ and such
that for any integer j > 0, |x[7|D%¢| < oo, for |a| = j. This is referred to usually as the
Schwartz class of functions.

Definition 2 A tempered distribution in R™ is a continuous linear functional on the class of

¢ € S(R™).
Remark 1 Note that every tempered-distribution is a distribution, but the converse is not true.

The Fourier transform of a continuous absolutely integrable function f on R" is defined by

fk) = FIA(k) = (2m) 2 / exp [~k - x] f (x)dx

n

In particular, this defines Fourier-Transform for every f € S(R™).

Theorem 3 If f € S(R™), then f € S(R™). Moreover, the mapping is continuous from S(R™)
to itself.

PROOF. We leave the proof to the reader. O

Theorem 4 Let g € S(R™). Then there is a unique f € S(R™) such that g = F[f]. Futhermore,
the inverse Fourier transform of g is given by

f(x) = (2m) /2 / % (k) dk (20)

n

PROOF. Let Qp = [-M, M]™, and let f be given by the above formula. Then, we find

F(k) = (2m) /> /

i e~ X f(x)dx = (2m) "/ / ek / e g(n)dndx

: “rosin M (n; — k;
= lim /R/ MR X g (nYdxdny = 77" lim Sln(#)g(n)dn
" M
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M — 70 (n; — k;) in the sense of distribution.

However, it is easily seen that as M — oo, P

Therefore, it follows that

fk) = g(k)

An analogous caclulation shows that if g = h for some h € S (R™), then h = f as given by
equation (20). O



Theorem 5 Let f,g € S(R™), then (f,§) = (f,9).

Proor. We have

= x)g(x)dx = (2m)""/? g(x) F(k)e™ *dkdx
(r9) = [ 1ty = (2m) = [ 5060 [ flgetaed

—n 2 [ ) [ gee Raxdk— [ Gk~ (7.4)
n n R'n
(|
We now seek to give meaning to Fourier-Transform of tempered distribution.
Definition 6 Let f € §'(R™). Then the Fourier transform of f is defined by the functional

(FLf1,¢) = (£, F'[g]) for ¢ € SR")

Remark 2 It is not difficult to see that F is a continuous mapping from S'(R™) onto itself. The
formulas for Fourier transform and its inverse still hold for tempered distribution.

Example We want Fourier-transform of § distribution. From definition
(F[8),¢) = (6, F'[¢]) = F'[g](0) = (2m)"/* A p(x)dx

Therefore F[§] = (2m)~"/2, a constant.
Example The above relation is symmetric. since the Fourier-transform of 1 equal to (27)"/26
since

(F[1],6) = (1, F'[g]) = - FH@l(x)dx = (2m)" 2 FF1[9)(0) = (2m)"/*¢(0)

Therefore, F[1] = (27)"/2§
Example: Let §(|x| — a) represent a uniform mass distribution on a sphere of radius a, i.e.

o(|x| —a), ) = x)dS
oix~@.0)= [ o
Then,

FIo(%| — a)] (k) = (2m)~"/2 / e—ikxgg

|x|=a

For n = 3, using spherical polar coordinates, we get

™ 2m ) 5 Kk
./T"[(S(|X| — a)](k) = (271-)—7L/2/ / e—zapcosG sin 9d¢d9 _ \/>abln a| ‘
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4 Examples of Fourier-Transform of Distributions
Example: Using the same argument, as for F[1], except with k replaced by k — 1, we find:
F [explin - x]] (k) = (2m)™/?6(k — n)

If f is a 2w-periodic distribution represented by a Fourier-series:
o0
f(m) — Z cnezna:,
n=1

we find that

Flf(k) = V2r > cnd(k —n)

n=—oo

Definition 7 A distribution f is said to have a compact support, if there exists a compact KC so
that for all test function ¢ with support in R™"\K, (f,¢) = 0. An example of this is §(x), whose
support is only {0}.

Example Let f be a distribution with compact support. Then for any ¢ € C>*(R"), we set
(f,®) = (f,d0), where ¢g € D(R™) and ¢y agrees with ¢ is a neighborhood of the support of
f. If ¢1 also has similar property as ¢o, it is clear from definition of f that (f, ¢ — ¢1) = 0
since from construction, the support of ¢y — ¢; is outside the support of f. Thus, (f,¢) can be
defined unambigously (not depending on which ¢q is used).

We claim that F[f] is the function

FIAIO) = (2m)7/2 (70, )

Here (f,¢) is defined as the complex conjugate of (f,$). This follows since for any ¢ € S(R™),
we have

(2m)7"2 / (f(0), ") p(k)dk = (£, F o)) = (2m) 7"/ (f, /R ) eik'w(k)dk)

Example: Let §(|x| — a) represent a uniform mass distribution on a sphere of radius a, i.e.

(6(x| — a), ¢) = / 6(x)ds

[x|=a

Then

7

Flo(|x| — a)](k) = (27r)’”/2/ e kxqs

[x|=a

For n = 3, using spherical polar coordinates, we get

T 27 .
.7:[5(|x|—a)](k):(27r)fn/2/ / empcosesmodme_\ﬁasmam
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5 The Source Solution (fundamental solution) for the wave
equation:

Consider solution to
Su=AS , for xeR",te€R, with S(x,0) =0, Si(x,0)=43(x) (21)

Fourier-transforming, we obtain

Stt = k%S with S(k’ O) =0 S’t(k7 0) — (27T)—n/2 (22)
Therefore,
—n/2 sin |k|t
Sk 1) = @m) =50 (23)
For n = 3, from one of the previous examples, it follows that
o(|x[ — 1)
== 24
S(x.1) 4t (24)

This method of finding Green’s function is generally valid for any constant coefficient system
in free-space. For example, if we have have a PDE of the form

where P is a polynomial, then application of Fourier-Transform leads to an algebraic relation:

A 1
¢ = Grprpin

We can then recover G by Fourier-transform. Note that since the above is true for any dimension,
it can accomodate PDEs involving both ¢t and x, but just considering a higher dimensional
variable X = (x,t).

6 Laplace Transform:

If f € §'(R) have support contained in {x > 0}. Then obviously e #* f(z) is also in S'(R) for
every u > 0. Formally, we have

Flerf00 = 0= [ ftae e s = FUpih~ i)

Hence, it is sensible to define F[f](k —ip) = F[fe **]. This defines F[f] in the lower half of the
complex k-plane-as a generalized function of Rk, depending of Ik as a paraemeter. Actually,
however, this function is analytic &k in the lower-half plane (Sk < 0). The Laplace-transform is
defined as

LIf1(s) = V2RFIf)(~is);



for f € 8’ with support in {x > 0}, it is defined in the right half-plane complex plane (Rs > 0).
Formally, we have

LIf)(s) = / T e ()de

If f¢S'(R), but e f € §’'(R) for some p > 0, then we can define £[f] in the right-half plane
R s > p. We note that by inverting the Fourier-transform we obtain

L

mf’l[f](uﬂk),

e f(x) =
or equivalently,

p+ioco
f(x) 1/ e L[f](s)ds

21t S oo

In using the above formula, we must ensure that the resulting expression vanishes for z < 0, since
this was our basic assumption. Typically, one shows this by closing the contour of integration by
a half-circle to the right; e** decays rapidly in the right half plane. For this argument to work,
it is necessary to choose p to the right of the singularities of f.

Example: Consider

Ut = Uz for x € (0,1), t>0 with u(z,0)=0, u(0,t)=1=wu(l,t) fort>0
Laplace transform in time leads to
1
sLlu)(z, s) = Llu]ze(z,s) 5 Lu](0,s) = — = L[u](1,s)

The equation for the solution is

_ cosh (/s (z — 1))
scosh (v/s/2)

Using the inverse transform, we obtain

u(o,t) = —— / e Vil )
’ 210 J oo scosh (1/5/2)

The integral cannot be evaluated in closed form, however, through contour deformation, and
change of variables \/s— > sy, it is possible to use calculus of residues (complex variable tech-
nique) and obtain a series form of solution.

7 Wave equation

7.1 Solution in higher dimension through Spherical Means

Assume u is a classical solution to the initial value problem for n-dimensional wave equation for
n > 2:

ugp — Au =0 for x e R" for t >0 with u(x,0) = ¢(x) , us(x,0) =(x) (25)



where ¢ € C? and ¢ € C!. For t > 0, r > 0, we define U(x;r,t) to be the spherical average over
the surface of an n-dimensional ball B(x,r) of radius r, centered at x, and denoted by

1
voir =4 [ utvady={  ulyody (26)
Ay OB(x;r) OB (x;r)
where A, is the surface area of an n dimensional ball of radius 7. Note A, = na(n)r"~!, where
volume of the n-dimensional sphere is «(n)r™. It is to be noted that
lim U(x;r,t) = u(x,1)
r—0+
from continuity of u. We can similarly define
Goar) = oly.t)dy 27)
OB (x;r)
Hr) = uly.0dy (28)
OB(x;r)

For fixed x, we regard U as a function of r and ¢. We claim

Lemma 8 For fized x, U(x;7,t) is a solution of the initial value problem:

n—1

Uy—Upr— U.=0 for r>0, t>0 and U(x;7,0) = G(x,7), Ux;r,0) = H(x,r) (29)
PROOF. For convenience, we depart from our usual convention and denote ‘surface area’ element
on the n-dimensional ball as dS. Symbol dS,, will denote surface area element in the variable y.
We note that

Ulxir,t) = ][ u(y, £))dS, = ][ w(x + 12,1))dS, (30)
OB (x,r) 0B(0,1)
Therefore,
ou 1 ou
Ur(x;r,t :][ z - Vu(x + rz,t)dS, ][ —dSy = — —dS.
( ) 8B(0,1) ( dB(x,7) 571 YA, dB(x,r) on Y
1 1
= Au(y,t)dy == 7/ Au(y,t)dy, (31)
Ay B(x,r) ( ) na(”)rn_l B(x,r)

Thus, using (25), it follows that

1
r\ X)) = ——~—"""7 d 32
U-(x;r,t) o (n) T /B(x Y Ugtdy (32)
and therefore,
9 61t 1)) = L/ une(y, t)dSy = " U (33)
or e na(n) Jopoery

This gives the PDE for U given in the Lemma. Further, it is clear from definition of G and H
that U satisfies the given initial conditions. O



Theorem 9 (Kirchoff Formula for n =3)
The solution to the initial value problem for the three-dimensional dimensional wave equation
in free-space:

ugy —Au=0 for x €R® for t >0 with wu(x,0) = ¢(x) , us(x,0) = (x) (34)
s given by

wazf {t(y + 6(y) + (y — %) - Vo(y)} dSy (35)
OB(x,t)

PRrROOF.
If note that if we introduce transformation

U(x;nt) =rU(x;r,t), G=rG, H=rH
Then, simple calculation shows

Up—Upp =0 forr>0 ,t>0, with U(r,0)=G(r), Uy(r,0)=H(r) ,U(0,t)=0

This is the Wave equation on a half-line with a homogeneous Dirichlet condition. As discussed
in Week 4 lectures (see equation (32) on page 4, with ¢ = 1) for 0 < r < ¢, we obtain

7 11~ ~ 1 r+t
U(x;r,t) = = [G(r ) - Gt — r)} 42 1 (y)dy
2 2 t—r
Since u(x,t) = lim,_,o+ M’
. 1 ~ ~ 1 r+t

=G'(t)+H(t) = 8, (t][ ¢dS> +t][ »dS = 9, (t][ H(x + tz)dSz> +t][ »dS,
dB(x,t) OB(x,t) 8B(0,1) 8B(0,1)

_ ][ [(H(x +12) + D(x + 12) + t2- Vo(x + 12)} dSy — ][ (t0(y) + 0(y) + Vo) - (v — x)} S,
8B(0,1)

9B(x,t)
O

Theorem 10 (Poisson Formula for n = 2)
The solution to the initial value problem for the two-dimensional dimensional wave equation
in free-space:

g — Au=0 for x € R? for t >0 with u(x,0) = ¢(x) , us(x,0) = p(x) (36)

s given by

dy (37)

u(x,t) = 1][ {tv(y) + *¢(y +ty —x) - Vé(y)}
’ 2) Bx.t)

2 @ Ty —xP)/2



PrOOF. We imbed the 2-D problem as part of 3-D problem. With X = (z1,z2,23), X = (21, z2),
(X, t) = u(x,t). Then u satisfies the 3-D wave equation with initial condition

P(%) = ¢(x) and (%) = ¥(x)

Then, we have from the 3-D calculation,

(X, t) = 0 t][ $dS —i—t][ pdS
OB(R,t) OB (,t)

where B(%,t) denotes the ball in R?® with center X of radius ¢ > 0, and dS denotes the two
dimensional surface measure. Now we observe that

_ 1 _ 2
][aB(i,t) A7t? 0B(%.1) At Bx.t) ( )( ( ) )

where v(y) = \/t2 — |y — x|? for y € B(x,t). The factor 2 enters since dB(X,t) consists of two
hemispheres. Computation shows that [1+ (V7)?]'/2 = t[t? — |y — x|?>]~/2. Therefore,

et g(y) g(x +tz)
gds = 7[ — P gy = AETE) g,
]laB(i,w 2) By V12— ly —x/[? B(0,1) /1 — |z[?

The rest of the theorem is straight-forward computation. O

7.2 Source solution for Wave Equation
We consider source solution S(x,t) that satisfies:
Syt = c*AS for x €R" | t€ R with S(x,0) =0 ;5:(x,0) = d(x) (38)

This is referred to as the Riemann problem. To find formula for S, let ¥ (x) be any test function
and we define

u(x,t) = . S(x—y,t)(y)dy (39)

Then, assuming integration with respect to x and ¢ commutes with the integration with respect
to y, it follows that u satisfies wave equation as well, and satisfies initial conditions

u(x,0) =0, and wu;(x,0) = 1(x) (40)

From D’Alembert formula, the solution to this for n = 1 is given by

o0 x+ct
ue )= [ Sttty =5 [ oty

Therefore, S(z —y,t) = 2% for y — x € (—ct, ct) and 0 otherwise. Therefore,

1
S(z,t) = — for |z| <ct and 0 for |z|>ct fort >0 (41)
2c

10



Similar formula can be found for ¢ < 0. Notice that if we replace t by —t in the initial value
problem, it only reverses the sign of ¢. Using Heaviside function H', we obtain

iH(czt2 — 2%)sgn(t) (42)

S(z,t) = 5

For 1-D, the Riemann function is actually a function in the usual sense. This is not the case in
higher dimension, where it is a distribution.
Note from Kirchoff-formula that solution for ¢ > 0 for n = 3 is given by

1 o0
g s, —uxt = [ sex-youeidy = [dr [ sy-xou(as,
Amc*t Jop(x.t) RS 0 9B(x,r)
(43)
Therefore for t > 0, S(x,t) = 1-5;6(|x| — ct). We can similarly analyze the solution for ¢ < 0,

noticing that that replacing ¢ by —¢ in the problem posed for S has the effect of switching its
sign. Therefore, for ¢t < 0, we must have S(x,t) = fﬁ(_t)éﬂﬂ + ct). A uniform expression is

given by

1
S(x,t) = %6(|x\2 — Pt%)sgn(t)

In 2-D similar calculation using Poisson formula shows

1 _
S(x,t) = — (Pt — |x?) Y2 for |x| < ct and = 0 otherwise
2me

'Recall H(z) =1 for z > 0 and H(z) = 0 for = < 0)
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