
Week 9 Lectures, Math 6451, Tanveer

1 Maximum principle for Elliptic Equations

Recall, you proved the weak maximum principle for Laplace’s equation as part of homework.
We now wish to generalize this for elliptic equations. Our treatment here is close to Rogers
and Renardy’s PDE book, with some elaboration when needed.

Lu :=
∑

i,j

ai,j∂xixj
u+

∑

i

bi∂xi
u+ cu = 0 (1)

where recall ellipticity implies
∑

i,j

ai,jξiξj > 0 (2)

for any vector ξ 6= 0 in R
n, which is equivalent to the matrix (ai,j)

1 having all positive
eigenvalues. We will assume coefficients ai,j, bi ∈ C(Ω̄) and u ∈ C2(Ω) ∩C(Ω̄). Note that
the coefficients ai,j , bi, c need not be constants but generally depends on x.

Theorem 1 Weak Maximum Principle Assume Lu ≥ 0 ( Lu ≤ 0) in a bounded domain
Ω where c(x) = 0. Then its maximum (minimum) is achieved on ∂Ω

Proof. We will only prove the maximum principle for Lu ≥ 0. The proof of the minimum
principle for Lu ≤ 0 will then follow simply by switching the sign of u. Assume a1,1 > 0.2

We introduce associated function uǫ = u+ ǫeαx1 . If Lu ≥ 0, then

Luǫ = Lu+ ǫ
(

α2a11 + αb1
)

> 0 (3)

for choice of α > |b1|/a11. On the otherhand, similar to arguments in Lemma 3, week 3
notes, ellipticity of L implies that at an interior maximum x0, we must have

Luǫ(x0) ≤ 0 , (4)

which is a contradiction. Hence

sup
Ω̄

u < sup
Ω̄

uǫ < sup
∂Ω

uǫ ≤ sup
∂Ω

u+ Cǫ , (5)

1Recall we arrange ai,j so that it is symmetric matrix and therefore has real eigenvalues
2Recall that normal coordinate transformations in section 4 of week 2 notes implies that this could

always be arranged for elliptic equations with a transformation of variables
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where C = sup
x∈Ω eαx1 . Therefore,

sup
Ω̄

u < sup
∂Ω

u+ Cǫ (6)

and taking the limit ǫ → 0, we arrive at the weak maximum principle.

Corollary 2 Let Ω be bounded and assume c ≤ 0 in Ω. Let Lu ≥ 0 ( Lu ≤ 0). Then

sup
x∈Ω̄

u ≤ sup
x∈∂Ω

u+

(

inf
x∈Ω̄

u ≥ inf
x∈∂Ω

u−

)

,

where u+ = max {u, 0}, u− = min {u, 0}.

Proof. Again we only prove the maximum principle for Lu ≥ 0, since it is clear that
the minimum principle for Lu ≤ 0 follows from it by mere switching sign of u. If u ≤ 0
in Ω, then there is nothing to prove since u+ ≥ 0 from definition. Otherwise, define
Ω+ = Ω ∩ {u > 0}. Note that u = 0 on ∂Ω+. Furthermore, for x ∈ Ω+, since −cu ≥ 0,

ai,j∂xixj
u+ bi∂xi

u ≥ 0 , (7)

and maximum principle holds for the elliptic operator ai,j∂xixj
+ bi∂xi

on Ω+ implying

sup
x∈Ω+

u ≤ sup
x∈∂Ω+

u = 0 (8)

Therefore, the maximum of u, if positive, is achieved on the boundary ∂Ω.

Remark 1 The following statement follows from the from the weak maximum principle
and the above corollary and is useful in proving uniqueness of solution to Lu = f for given
u on ∂Ω.

Corollary 3 Let Ω be bounded and c ≤ 0. If Lu = Lv in Ω and u = v on ∂Ω, then u = v
in Ω. If Lu ≤ Lv in Ω and u ≥ v on ∂Ω, then u ≥ v in Ω.

2 Strong Maximum Principle for Elliptic Equations

We will first prove the following preliminary Lemma that will be used to establish the
strong maximum principle.
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Figure 1: Balls BR(y) ⊂ Ω and Bρ(x0), with x0 ∈ ∂BR(y)

Lemma 4 Suppose that Ω is on one side of ∂Ω. Assume Lu ≥ 0 and let x0 ∈ ∂Ω be a point
such that u(x0) > u(x) for every point x ∈ Ω. Also, assume that ∂Ω is C2, at least locally
near x0 and that u is differentiable at x0. Furthermore assume that either assumptions i

or ii below hold:
i. c = 0
ii. {c ≤ 0 , and u(x0) ≥ 0} or u(x0) = 0
Then ∂nu(x0) > 0, where ∂n is the outwards normal derivative.

Proof. We will prove it for the simpler case Lu := ∆u+ bi∂xi
u and ask you to complete

the proof in the general case by using similar arguments. We construct a ball (see Fig. 1)
BR(y) ⊂ Ω of radius R centered around some point y ∈ ∂Ω, with x0 ∈ ∂BR(y). Also,
choose a ball Bρ(x0) of sufficiently small radius ρ centered at x0. Let A = Bρ(x0)∩BR(y).
Define r = |x − y| and introduce v(x) = e−αr2 − e−αR2

. Note v = 0 on ∂BR(y) and that
1 > v > 0 in BR(y). Calculations for the simplified L above shows that

Lv = e−αr2
(

4α2r2 − 2nα− 2αb · (x− y)
)

It is clear that for we may choose α sufficiently large so that Lv ≥ 0 for x ∈ A. We can then
choose sufficiently small ǫ > 0 so that L [u− u(x0) + ǫv] ≥ 0 in A, while u(x) − u(x0) +
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ǫv(x) ≤ 0 on ∂A. From weak maximum principle, u(x)− u(x0) + ǫv(x) ≤ 0 for any x ∈ A.
Now choose x = x0 − hn, where n is th unit outwards normal to ∂Ω at x0. Then noting
that v(x0) = 0, we get for any h > 0,

1

h
(u(x0 − hn)− u(x0) + ǫv(x0 − hn)− ǫv(x0)) ≤ 0 (9)

which in the limit h → 0 gives

−∂nu(x0)− ǫ∂nv(x0) ≤ 0 (10)

Since −∂nv(x0) = 2αRe−αR2

> 0, the lemma follows.

Theorem 5 (Strong Maximum Principle for Elliptic Equations) Assume Lu ≥ 0 (Lu ≤ 0
in Ω, which need not be bounded and assume u is not a constant. If c = 0, then u does
not achieve its maximum (minimum) in the interior of Ω. If c ≤ 0, u cannot achieve a
non-negative maximum (non-positive minimum) in the interior. For either sign of c, u
cannot be zero at an interior maximum (minimum).

Proof. We will prove the case for Lu ≥ 0 since change of sign of u will similarly lead
to the case Lu ≤ 0. Suppose u attains a maximum value M at an interior point. Define
Ω− = Ω ∩ {x : |u(x)| < M}. Note Ω− is non-empty (by non-constant assumption on u)
aand ∂Ω− ∩ Ω is non-empty because it must contain an interior maximum. Let B be the
largest centered at some point y ∈ Ω− entirely contained in Ω−. Take x0 ∈ ∂B ∩∂Ω− \∂Ω.
Applying previous lemma to B, it follows that ∇u(x0) 6= 0, which is impossible for an
interior maximum.

2.1 Application of Maximum Principle: Bounds on solution to

elliptic problem Lu = f

Definition 6 Define

λ(x) = inf
|ξ|=1

ai,j(x)ξiξj , β = sup
x∈Ω̄

|b(x)

λ(x)
(11)

Theorem 7 Assume Ω is bounded and contained in the strip between two parallel planes
of distance d. Assume that c ≤ 0. If Lu = f , then

sup
Ω̄

|u| ≤ sup
∂Ω

|u|+ C sup
Ω̄

|f |

λ
,where C = exp [(β + 1)d]− 1 (12)
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Proof. We shall assume Lu ≥ f and prove that

sup
Ω̄

u ≤ sup
∂Ω

u+ + C sup
Ω̄

|f−|

λ
(13)

The theorem follows once (13) is established by switching u → −u in the above argument
and using (−u)+ = −u−, L[−u] = −f , (−f)− = −f+, |f−|+ |f+| = |f | and |u| = u+−u−.
Also, without loss of generality, we assume 0 < x1 < d since with appropriate translation
and rotation of axis, we can arrange any such domain Ω to be bounded by planes x1 = 0
and x1 = d. Note rotation and translation does not affect λ and β. We define operator
L0 = L− cI. Then, for α ≥ β + 1,

L0e
αx1 =

(

α2a11 + αb1
)

≥ λ
(

α2 − αβ
)

eαx1 ≥ λ (14)

Define

v = sup
∂Ω

u+ + [exp(αd)− exp(αx1)] sup
Ω̄

|f−|

λ
(15)

Then, v ≥ u on ∂Ω and v ≥ 0 in Ω. Furthermore

L(v − u) = L0v + cv − Lu ≤ −λ
|f−|

λ
− f ≤ 0 (16)

From the maximum principle, v ≤ u in Ω from which (13) follows when we choose α = β+1.

Remark 2 The following Corollary shows that the assumption c ≤ 0 in Theorem 7 may
be relaxed.

Corollary 8 Let Lu = f in a bounded domain Ω. Let C be as in previous Theorem and
assume that

C∗ = 1− C sup
Ω̄

c+

λ
> 0 (17)

Then

sup
Ω̄

|u| ≤
1

C∗

(

sup
∂Ω

|u|+ C sup
Ω̄

|f |

λ

)

(18)

Proof. follows from applying previous theorem to the equation (L0 + c−)u = f − c+u.
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