1 Derivatives of a function of a complex variable

Definition 0.1 f has a derivative at z if

$$
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h} \equiv f'(z)
$$

exists, independent of $\arg h$. Alternatively, $f(z + h) - f(z) = h [f'(z) + \epsilon(z, h)],$ with $\epsilon \to 0$ as $h \to 0.$

Remark: Note continuity of f follows when f is differentiable.

Definition 0.2 f is analytic at z_0, if f' exists for $z \in B_\delta(z_0)$ for some $\delta > 0$.

Lemma 0.3 A necessary condition for $f(x + iy) = u(x, y) + iv(x, y)$ to be analytic is that the following Cauchy-Riemann (C-R) conditions are satisfied:

$$
u_x = v_y \ ; \ \ u_y = -v_x$$

Proof If h is real,

$$
f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \left[\frac{u(x + h, y) - u(x, y)}{h} + i \frac{v(x + h, y) - v(x, y)}{h} \right] = u_x + iv_x
$$

Similar steps for h imaginary shows

$$
f'(z) = v_y - iu_y
$$

Hence C-R conditions are satisfied.

Note: The converse of Lemma 0.3 is not generally true. However, if $u, v \in C^1$, then the converse follows (See O. Costin notes, Thm. 5.8, page 3)

2 Integration, Cauchy’s theorem

Definition We define

$$
\int_C f(z)dz = \int_a^b f(\gamma(t))\gamma'(t)dt \ , \ \int_{-C} f(z)dz = \int_b^a f(\gamma(t))\gamma'(t)dt
$$

where

$$
C = \{ z : z = \gamma(t), a \leq t \leq b \}
$$

Definition A curve $C : \{ z : z = \gamma(t), a \leq t \leq b \}$ is a simple closed curve if $\gamma(t_1) = \gamma(t_2)$ implies $t_1 = t_2$, except when $t_1 = a$, $t_2 = b$ for which $\gamma(a) = \gamma(b)$.

Remark By writing \(f(z) = u + iv, \gamma(t) = \alpha(t) + i\beta(t) \) and separating out real and imaginary parts, we can borrow from real variable theory to find conditions that guarantee existence of \(\int_{C} f(z) \, dz \). The symbol \(f_{-C} \) implies that the integral is along the same curve \(C \), but traversed in opposite direction. From definition, it follows \(f_{-C} = -f_{C} \).

Theorem 1.1, Cauchy’s theorem

Let \(f \) be analytic in a region (open connected set) \(R \) in the complex plane \(\mathbb{C} \). Consider any simple piecewise smooth closed curve \(C \), which together with its interior is contained in \(R \) (see Fig. 1). Then

\[
\oint_{C} f(z) \, dz = 0
\]

Proof: Note \(f(z) = u(x, y) + iv(x, y) \), \(dz = dx + idy \); so

\[
\oint_{C} f(z) \, dz = \oint_{C} (udx - vdy) + i \oint_{C} (udy + vdx)
\]

Use of Green’s theorem and CR condition gives the desired result.

Remark: Theorem above holds for \(f \) is analytic in \(R \) and continuous in \(\bar{R} \).

![Figure 1: Closed contour C within R](image)

Corollary 1.2: If \(f(z) \) is analytic in a simply connected region \(R \). Then for \(z_{0}, z \in R \),

\[
F(z) = \int_{z_{0}}^{z} f(z') \, dz'
\]

is independent of the contour \(C \) in \(R \), connecting \(z_{0} \) and \(z \), (see Fig. 2). Further, \(F \) is analytic in \(R \) with \(F'(z) = f(z) \).

Proof: Consider two contours \(C_{1} \) and \(C_{2} \) (shown in bold and dashed lines respectively in Fig. 2 joining \(z_{0} \) to \(z \) that are entirely within \(R \). It is to be noted that \(C_{1} - C_{2} \) forms a
closed contour that is entirely contained in R. Thus from theorem 1.1,

$$0 = \int_{C_1-C_2} f(z) \, dz = \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz$$ \hspace{1cm} (3)

and the corollary follows.

Remark: Since $F(z)$ is independent of the contour C, it can be seen readily that $F(z)$ has a derivative at each z in R, since

$$F'(z) = \lim_{\xi \to z} \frac{1}{\xi - z} \int_{\xi}^{z} f(z') \, dz' = f(z)$$ \hspace{1cm} (4)

Hence $F(z)$ is analytic in R.

Remark: If $G(z)$ is any other function so that $G''(z) = f(z)$, then

$$\frac{d}{dz} (F(z) - G(z)) = 0$$ \hspace{1cm} (5)

This implies, from application of the CR conditions, that $F(z) - G(z) = K$, where K is some complex constant. Actually, since $F(z_0) = 0$, it is seen that $K = -G(z_0)$. Thus

$$\int_{z_0}^{z} f(z') \, dz' = G(z) - G(z_0)$$ \hspace{1cm} (6)

analogous to real functions. Because of this *Fundamental Theorem* all the usual integration formulae for elementary functions, which are analytic, get carried over to complex variables.
Lemma 1.3 Let \(R \) be a simply connected region. Let \(u(x, y) \) be a harmonic function of real variables \(x \) and \(y \), with continuous second derivatives. Then \(u(x, t) = \text{Re} \ F(x + iy) \) for some analytic function \(F(z) \).

Proof: Define \(f(x + iy) = u_x(x, y) - iu_y(x, y) \). The Cauchy Riemann conditions for this complex function \(f(z) \) correspond to \(u_{xx} = -u_{yy} \) and \(u_{xy} = u_{yx} \), each of which are satisfied. From given condition on continuity of second derivatives of \(u \), it follows that each of the real and imaginary parts of \(f(z) \) are \(C^1 \) functions of \(x \) and \(y \). Therefore \(f(z) \) is analytic. Define \(G(z) = \int_{z_0}^{z} f(z')dz' \). From previous lemma, \(G(z) \) is analytic with \(G'(z) = f(z) \). Therefore, if the real and imaginary parts of \(G(x + iy) \) are \(g_1(x, y) \) and \(g_2(x, y) \), it follows that

\[
f(x + iy) = u_x(x, y) - iu_y(x, y) \quad G'(x + iy) = g_1(x, y) - ig_2(x, y)
\]

Therefore,

\[
u(x, y) = g_1(x, y) + C
\]

for some constant \(C \) and \(u(x, y) = \text{Re} \ F(x + iy) \) where \(F(z) = G(z) + C \).

Remark: From PDE theory, harmonic functions are in \(C^\infty \); so continuity assumptions on second derivatives in Lemma 1.3 is redundant.

Lemma 1.4 Suppose \(R \) is a multiply connected region i.e. not all closed contour in \(R \) contain points exclusively in \(R \). Suppose \(C_1, C_2, C_3, C_4, \ldots, C_n \) are each simple closed curve such that the region inside \(C_1 \) and outside all the inner curves \(C_j \), \(j = 2, ... n \) is entirely within \(R \), including the curves themselves (see Fig. 3). If \(f \) is analytic and single valued in \(R \), then

\[
\sum_{j=1}^{n} \int_{C_j} f(z) \, dz = 0 \tag{7}
\]

where \(C_1 \) is traversed counter-clockwise (positive sense), while all other contours are traversed in the negative sense.

Proof: We consider a singly connected domain formed by connecting the inner contours \(C_2, \ldots, C_n \) with the outer contour \(C_1 \) by nearly coincident lines, as shown in Fig. 3 for \(n = 3 \). The contribution \(\int f(z)dz \) from nearly coincident lines vanish when they come close to each other since they are traversed in opposite directions, while \(f \) is continuous. The contour integral for this singly connected domain in the limit of coinciding lines approaches the the left of equation (7). Therefore, from Cauchy’s theorem (Thm. 2.1), (7) follows.

Remark: In the special case of \(n = 2 \), if \(C_2 \) is also traversed counter-clockwise like \(C_1 \), then (7) implies:

\[
\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz \tag{8}
\]

i.e. contours can be shrunk or expanded with no change of the contour integral, provided in the process we do not cross the region \(R \) of analyticity of \(f(z) \).
Lemma 1.5 Let z be a point inside a contour C. Then

$$\oint_C \frac{1}{\zeta - z} \, d\zeta = 2\pi i \quad \text{and} \quad \oint_C \frac{1}{(\zeta - z)^n} \, d\zeta = 0 \quad \text{for integer} \quad n \neq 1$$ \hspace{1cm} (9)

where the contour C is understood in the positive (counter-clockwise) sense.

Proof: According to (8),

$$\oint_C \frac{1}{(\zeta - z)^n} \, d\zeta = \oint_{C_\epsilon} \frac{1}{(\zeta - z)^n} \, d\zeta \hspace{1cm} (10)$$

where C_ϵ is a circle of radius ϵ in the ζ plane around $\zeta = z$, traversed in the positive sense. On C_ϵ, $\zeta - z = \epsilon e^{i\phi}$ is a parametrization of the curve. So $d\zeta = i\epsilon e^{i\phi} \, d\phi$. Thus

$$\oint_{C_\epsilon} \frac{1}{(\zeta - z)^n} \, d\zeta = \int_0^{2\pi} i \epsilon^{1-n} e^{i(1-n)\phi} \, d\phi = 0 \quad \text{for} \quad n \neq 1 \quad \text{and} \quad = 2\pi i \text{for} \quad n = 1$$

and (9) follows.

Lemma 1.6 (Cauchy’s integral formula) Let $f(z)$ be analytic in a simply connected region R, and C be any closed contour entirely within R. Let z be inside C (See Fig. 4). Then

$$\oint_C \frac{f(\zeta)}{\zeta - z} \, d\zeta = 2\pi i f(z)$$ \hspace{1cm} (11)

Proof: Using lemma 1.5, (1) is equivalent to

$$\oint_C \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta = 0$$ \hspace{1cm} (12)

We will now prove (12). For any $\epsilon > 0$, choose δ so that

$$|f(\zeta) - f(z)| \leq \epsilon$$ \hspace{1cm} (13)
when ζ is on a circular contour C_δ of radius δ around z. On C_δ, $\zeta = z + \delta e^{i\phi}$ and $d\zeta = i \delta e^{i\phi} \, d\phi$. Therefore, applying triangular inequality,

$$| \oint_{C_\delta} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta | \leq \int_0^{2\pi} d\phi \, \epsilon = 2\pi \, \epsilon$$

and this be made arbitrarily small. Thus the relation (12) is proved since integral $\oint_{C_\delta} = \oint_C$.

Remark: If z is outside the contour C, the expression on the left of (11) will be zero, because the function $f(\zeta)/(\zeta - z)$ is an analytic function of ζ on and within the contour C.

Remark: If z is on the contour C, the integral in (11) is not defined in the traditional sense. If z is a point where the contour C has a continuous tangent, then we can draw an approximately semi-circular detour of radius ϵ so that the closed contour containing this small detour (as shown in Fig. 5) does not contain z. In that case, it is clear that

$$\oint_{C_{\text{detour}}} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0$$

But C_{detour} consists of an open contour C' and a semi-circle C_{ϵ}. On the semi-circle $\zeta - z = \epsilon e^{i\phi}$. So, in the limit $\epsilon \to 0$, using arguments similar to the proof of Lemma 2.5, one can prove that

$$\frac{1}{2\pi i} \int_{C_{\epsilon}} \frac{f(\zeta)}{\zeta - z} \to -\frac{1}{2} \, f(z)$$

On using (15), $\oint_{C'} = -\oint_{C_{\epsilon}}$. Therefore, as $\epsilon \to 0$,

$$\frac{1}{2\pi i} \int_{C'} \frac{f(\zeta)}{\zeta - z} \to \frac{1}{2} \, f(z)$$

Figure 4: z within closed contour C
The integral above, in the limit $\epsilon \to 0$ is denoted by the symbol \int. From the above, we get

$$\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2} f(z) \quad (18)$$

Figure 5: Deformed contour C_{detour} consisting of C' and C_{ϵ}

Remark: If z is a point on the boundary of C, where the boundary does not have a smooth tangent, but instead makes an angle θ_0 (see Fig. 6), then it is possible to make a slight modification of the arguments above to show that

$$\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{\theta_0}{2\pi} f(z) \quad (19)$$

Exercise: Prove relation (19).
3 Higher derivatives and application of Cauchy’s theorem

Lemma 1.7 Let \(f(z) \) be analytic in a simply connected region \(R \), and \(C \) be any closed contour in the positive sense that is entirely within \(R \). Let \(z \) be inside \(C \). Then

\[
\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^2} \, d\zeta = f'(z) \tag{20}
\]

Proof: Using (11), it is clear that

\[
\frac{f(\xi) - f(z)}{\xi - z} = \frac{1}{2\pi i} \oint_C \left[\frac{f(\zeta)}{\zeta - \xi} - \frac{f(\zeta)}{\zeta - z} \right] \frac{d\zeta}{\xi - z} = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - \xi)(\zeta - z)}
\]

\[
= \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^2} \left(1 + \frac{\xi - z}{\zeta - \xi} \right) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^2} + \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^2} \left(\frac{\xi - z}{\zeta - \xi} \right) \tag{21}
\]

Now, let \(L \) be the length of the contour, \(d = dist(z, C) \) (see Fig. 4) and \(M = \text{Max} |f(\zeta)| \) on and inside \(C \). Then for any \(\epsilon > 0 \), choose \(\delta = \text{Min} \left\{ \frac{d}{2}, \frac{\pi \epsilon d^3}{3 M L} \right\} \). Then for \(|\xi - z| < \delta \) it is clear that

\[
\left| \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^2(\zeta - \xi)} \left(\frac{\xi - z}{\zeta - \xi} \right) \right| \leq \frac{M L \delta}{2 \pi d^3/2} \leq \epsilon \tag{22}
\]

Examining (21), in light of (22), we get

\[
\lim_{\xi-z \to 0} \frac{f(\xi) - f(z)}{\xi - z} = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^2} \tag{23}
\]

Hence (20) follows and the lemma is proved.
Remark: Using similar arguments, with (20), as the starting point, we can write \(f'' \) as a divided difference of the first derivative and prove (similar to above) that

\[
f''(z) = \frac{2}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^3}
\]

(24)

Through routine inductive procedure, it follows that

\[
f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)d\zeta}{(\zeta - z)^{n+1}}
\]

(25)

Remark: An function analytic at \(z \) has derivatives at that point to arbitrary order.

Remark: The Cauchy integral formula (20) and its variants are very useful in obtaining definite integrals that could be related to a closed path integral. We will see many examples of this when we do contour integration exercises.

Lemma 1.8 (Mean value theorem on a circle): If \(f(\zeta) \) is analytic on and inside a circle of radius \(r \) about \(\zeta = z \), then

\[
f(z) = \frac{1}{2\pi} \int_0^{2\pi} d\theta f(z + re^{i\theta})
\]

(26)

i.e the average value on a circle equals the functional value at the center.

Proof: Choose \(C \) to be a circle of radius \(r \) in the \(\zeta \)-plane around \(\zeta = z \). Then on substituting \(\zeta = z + re^{i\theta}, \ d\zeta = ire^{i\theta} \) back into the Cauchy integral formulae:

\[
f(z) = \frac{1}{2\pi i} \oint_C \frac{d\zeta \ f(\zeta)}{\zeta - z}
\]

the conclusion (26) follows.

Corollary 1.9: Let \(A \) denotes the interior of a circle of radius \(R \) centered around \(\zeta = z \). Let \(f(\zeta) \) be analytic on \(A \) and its closure, then

\[
f(z) = \frac{1}{\pi R^2} \int_A f(z + re^{i\theta}) \, dA
\]

(27)

This means that the mean value inside the circle is the same as at its center.

Proof: Simply multiply (26) by \(r \) and integrate in \(r \) from 0 to \(R \), and divide the resulting expression by \(R^2/2 \) to obtain (27).

Theorem 1.10 (Maximum Modulus Theorem): Let \(f(z) \) be analytic inside and on a closed contour \(C \). Then \(|f(z)|\) attains its maximum value \(M \) on \(C \). Further if \(z_0 \) is an interior point where \(|f(z_0)| = M \), then \(f(z) \) is identically a constant.

Proof: Suppose, \(z_0 \) is an interior point where \(|f(z_0)| = M \). Choose \(R \) small enough so that a circle of radius \(R \) is entirely within \(C \). Applying triangular inequality to (27), it follows that

\[
M = |f(z_0)| \leq \frac{1}{\pi R^2} \int_A |f(z_0 + r e^{i\theta})| \leq M
\]

(28)
Now, claim that the equality in (28) can only hold if $|f(z_0 + r e^{i\theta})| = M$ for any r between 0 and R. Note that equality in (28) implies

$$\frac{1}{\pi R^2} \int_A [M - |f(z_0 + r e^{i\theta})|] \, dA = 0$$

(29)

The integrand in (29) is non-negative. If it is positive for some $z_0 + r e^{i\theta}$, from continuity, it must be so in a neighborhood of that point. In that case, the integral on the left of (29) must be positive, contradicting the equation. Thus $|f(z_0 + r e^{i\theta})| = M$ for $0 \leq r \leq R$, i.e. everywhere inside a circle of radius R. We can now choose a point $z_1 \neq z_0$, where $|f(z_1)| = M$. We take a circle of radius R_1 that is entirely contained within C (see Fig. 7), and then establish $|f|$ to be constant. Continuing this procedure, at every point inside C $|f|$ will be a constant. If $M = 0$, then f equals constant 0 everywhere. If $M > 0$, then $Re \ln f = \ln M = \text{Constant}$. Applying the C-R conditions, $Im \ln f = \text{Constant}$. Hence $\ln f$ and therefore f is a constant.

Exercise: Determine maximum value of $\sin z$ in $|z| \leq 1$

Corollary 1.11: If $u(x, y)$ is harmonic on and inside a closed contour C, then $u(x, y)$ attains its maximum and minimum on its boundary, unless it is identically a constant.

Proof: We know there exists analytic function $f(z)$ on and within C, so that $Re f(x + iy) = u(x, y)$. Now, define $g(z) = e^{f(z)}$. Then from maximum modulus theorem, $g(z)$ attains its maximum on its boundary, unless it is a constant. Thus, $|e^f| = \exp(Re f) = e^u$ attains its maximum on the boundary, i.e. $u(x, y)$ attains the maximum on the boundary.
For proving the minimum, choose \(g(z) = e^{-f(z)} \) and repeat the same argument as above, noting that the maximum of \(e^{-u} \) corresponds to the minimum of \(u \).

Remark: Actually the assumption in Corollary 1.11 on \(u(x, y) \) being harmonic on the boundary \(C \) can be relaxed. We only need continuity upto the boundary.

Theorem 1.12 (Liouville’s theorem): A bounded analytic function in all of the complex plane must be a constant.

Proof: Let \(z \) be an arbitrary point of the complex plane. Take a circle of radius \(R \) around \(\zeta = z \) as the contour \(C \) in the complex \(\zeta \)-plane. Then, on \(C \), \(\zeta = z + R \, e^{i\theta} \), \(d\zeta = i \, R \, e^{i\theta} \, d\theta \).

So, if we substitute these expressions into:

\[
f'(z) = \frac{1}{2\pi i} \oint_C \frac{d\zeta \, f(\zeta)}{(\zeta - z)^2}
\]

we obtain from triangular inequality

\[
|f'(z)| \leq \frac{M}{R}
\]

where \(M \) is a finite upper-bound of \(|f| \) in the complex plane. Taking the limit of \(R \to \infty \), it follows that \(f'(z) = 0 \). This is true for any \(z \), therefore \(f(z) \) must be a constant.

Remarks: Liouville’s theorem is very useful in a number of context. For instance, it can be used to prove that a polynomial of degree \(n \) has exactly one \(n \) generally complex roots (including multiplicity). First, it is shown that the polynomial has at least one root. This is done by noting that otherwise \(1/p(z) \) is a bounded analytic function and therefore a constant. But, for a nontrivial polynomial, this is not the case. Hence \(p(z) \) must have one root.

Remarks: Liouville’s theorem is also useful in completely characterizing functions, once their singularities are specified.

Eg. Determine the most general form of the single valued \(f \), bounded at \(\infty \) and analytic everywhere except at \(z = z_0 \) where

\[
\lim_{z \to z_0} \left(f(z) - \frac{1}{z - z_0} \right) = c
\]

for some constant \(c \).

Answer: Define

\[
g(z) = \left(f(z) - \frac{1}{z - z_0} \right)
\]

From the given conditions \(g(z) \) is a bounded entire (analytic everywhere in \(\mathbb{C} \)) function. From Liouville’s theorem, \(g(z) = \) constant. However, since \(g(z_0) = c \), \(g(z) = c \). Hence \(f(z) = \frac{1}{z - z_0} + c \).