
Week 4 notes, Math 7651

1 More examples on contour integration

Exercise 8.1: Compute

H(a) =

∫ ∞

−∞

e−i a z

√
z + i +

√
z + 3i

dz (1)

where
√
z + i = |z + i|1/2 exp[i arg(z + i)/2],

√
z + 3i = |z + 3i|1/2 exp[ i arg(z + 3i)/2],

and arg (z + i), arg (z + 3i) are each in [−π/2, 3π/2).
Solution: Clearly, for a < 0, H(a) = 0 since on closing the contour from above, Jordan’s
Lemma applies. We now consider a > 0. Consider the closed contour C, as shown in Fig.
1.
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Figure 1: Closed contour C in eqn. 2

Then, since the integrand has no singularity within the contour,

∮

C

e−i a z

√
z + i +

√
z + 3i

dz = 0 (2)

Using arguments as in Jordan’s lemma, there is no contribution from the circular arc
portion of the contours, as R → ∞. We are only left with the contribution from the
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segment Γ1 of the contour. For analyzing this contribution, it is prudent to get rid of the
squareroot in the integrand in the denominator, by multiplying both the numerator and
the denominator by

√
z + 3i−

√
z + i. Then it is clear from (2) that as R → ∞

H(a) = − i

2

∫

Γ1

e−i a z
√
z + 3i dz +

i

2

∫

Γ1

e−i a z
√
z + 3i dz (3)

Consider

H1(a) =

∫

Γ1

e−i a z
√
z + 3i dz =

∫

Γ2

e−i a z
√
z + 3i dz (4)

where Γ2 is the contour shown in Fig. 1.

Cε

Γ1

Γ2

Figure 2: Contour Γ2, deformed from Γ1

The latter equality in (4) follows from contour deformation of Γ1 into Γ2, as it crosses
no singularities of the integrand. The local contribution from the circular arc Cǫ around
”weak” (i.e. with power > − 1) branch point z = − 3 i vanishes as ǫ → 0,
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following arguments from last lecture. On using z+3i = r ei3π/2 on the left leg of Γ2 and
z + 3i = r e−3iπ/2 on the right leg, we obtain in the limit ǫ → 0 and R → ∞,

H1(a) = 2 e− 3 iπ/4

∫ ∞

0

dr r1/2 e−a (3 + r) = −2 e−3a − 3 iπ/4 ∂

∂a

[
∫ ∞

0

dr r−1/2 e−a r

]

=

√
π

a3/2
e−3a − 3 iπ/4 (5)

Going through a very similar process it is clear that

H2(a) =

∫

Γ1

e−i a z
√
z + 3i dz dz = =

√
π

a3/2
e−a − 3 iπ/4 (6)

From (3), it is clear that

H(a) =
i

2
[H2(a) − H1(a)] =

√
π

2
a−3/2 e−iπ/4

(

e−a − e−3a
)

(7)

Remark: Sometimes, in computing an integral, it is suitable to take derivative with respect
to some parameter, as in (5) above, in an effort to simplify the integral. For instance, in
calculating

I(t) =

∫ i ∞

−i ∞

est

(s+ a)
√
s
ds (8)

we note that I(t) = e−at I1(t), where

I1(t) =

∫ i ∞

−i ∞

e(s+a)t

(s+ a)
√
s
ds (9)

Then, if it is permitted to take derivative with respect to t inside the integral, then we note
that

I ′1(t) =

∫ i ∞

−i ∞

e(s+a)t

√
s

ds = eat
∫ i ∞

−i ∞

est√
s
ds (10)

which is a lot easier integral to calculate. In order to find I1(t) and hence I(t), we integrate
the answer in (10). To determine the constant of integration, we note that the integral for
I1(0) in (9) can be calculated easily, through a change in variable (s1 =

√
s). However,

care must be taken to differentiate under under the integral sign and be certain that this
operation is valid.
Exercise 8.2: Evaluate

f(z) =

∫ 1

−1

dt

(t− z)
√
1− t2

(11)
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for z not in [−1, 1], and squareroot interpreted in the usual sense of a real positive number.
Solution: Consider

∮

C

1

(ζ − z) (ζ2 − 1)1/2
dζ (12)

for a contour C enclosing the cut between -1 and +1, but not enclosing ζ = z (Fig. 1).
Here we choose arg (ζ ± 1) ∈ (−π, π].

z

C Cε ε1
2

Figure 3: Closed contour C in (12)

Note that since the contribution from the small circular arc contours Cǫ1 and Cǫ2 cannot
contribute in the limit as radius ǫ → 0, since each is around a weak branch point, with
power > − 1. Note that on the straight segment of Fig. 1 above the branch cut,
arg (ζ − 1) = π, where as arg (ζ +1) = 0, where as below the cut, arg (ζ − 1) = − π,
arg (ζ + 1) = 0. Therefore, as ǫ → 0,

∮

C

1

(ζ − z) (ζ2 − 1)1/2
dζ = − 2 i

∫ −1

+1

1

(t− z) (1− t2)1/2
dt = 2 i f(z) (13)

Now it is clear from Cauchy’s integral formulae for a multiply connected (see Fig. 1) region
that

(
∮

CR

−
∮

C

)

1

(ζ − z) (ζ2 − 1)1/2
dζ = 2πi (residue at ζ = z)

=
2 π i

(z2 − 1)1/2
(14)

However, on CR, as R → ∞

|
∫

1

(ζ − z) (ζ2 − 1)1/2
dζ | ≤

∫ 2π

0

R

(R− |z|) (R2 − 1)1/2
dθ → 0 (15)

Therefore, from (13) and (14), it follows that

f(z) = − π

(z2 − 1)1/2
(16)
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C Cε ε1
2

CR

Figure 4: Cauchy integral formulae applied the region between C and CR

Remark 1 In other exercises of this type, we may find that the contribution from
∮

CR

tends to some known constant as R → ∞. Even in that case, if there is no branch point
at ∞ and no cuts going there, it is useful to expand out an initial closed contour C around
a cut to a large contour CR.

Remark 2 For integrals involving periodic function over a period (or something that can
be extended to a period), it is useful to relate to a closed complex contour through a change
in variable. Here is an example below.

Exercise 8.3: Compute

J =

∫ π

0

dθ

1 + ǫ cos θ
(17)

for −1 < ǫ < 1
Solution: Note that since the integrand is even,

J =
1

2

∫ π

−π

dθ

1 + ǫ cos θ
(18)

Substituting z = eiθ, cos θ = 1
2
(z + 1/z) and dθ = dz/(iz). So, the integral (18)
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becomes

J =
1

2

∮

|z|=1

dz

iz
(

1 + ǫ
2
(z + 1/z)

) =
1

iǫ

∮

|z|=1

dz

z2 + 2
ǫ
z + 1

(19)

Denoting the two roots of the quadratic in the denominator of the integrand in (19) by z1
and z2, it is clear

z1,2 = − 1

ǫ
±

√

1

ǫ2
− 1 (20)

The product of the roots z1 z2 = 1 and only z1 is inside a contour of radius 1. Note that
the denominator in the integrand in (19) can also be written as (z − z1)(z − z2). So,

J = 2πi
1

iǫ
lim

z → z1

(z − z1)

(z − z1) (z − z2)
=

π√
1− ǫ2

Remark 3 Contour integation can also be used to compute infinite sum and product repre-
sentation of meromorphic functions (analytic functions, whose only singularities are poles).

Example 8.4: Consider

PN(z) =
1

2πi

∮

CN

tan (π ζ) dζ

ζ(ζ − z)
(21)

where CN is a square contour with corners at N(±1 ± i), where N is a positive integer
that will eventually be made to tend to ∞ (See Fig. 1).

-N+iN

-N-iN

N+iN

N-iN

π/2
3π/2−π/2

−3π/2

Figure 5: Square contour CN in eqn. 20
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Now, using the exponential representation of sin and cos, it can be easily be shown that
tan [π (±N + i y)] and tan [π (x + ±i N)] are bounded by a constant independent of
N . Thus, it is clear from (20) that as N → ∞, PN → 0 (leave the details for the reader
to fill up). But PN encloses singularities at ζ = z and at ±ζn, where ζn = (n+ 1/2) for
N − 1 ≥ n ≥ 0 At ζ = z the residue is clearly tan πz

z
. At ζ = ±ζn, the residue is clearly

− 1
π(±ζn) (±ζn − z)

. Collecting all the residues

PN =
tan πz

z
− 1

π

N−1
∑

n=0

{

1

z − ζn

1

z + ζn

}

Taking the limit N → ∞, we get

tan πz =
2 z

π

∞
∑

n=0

1

ζ2n − z2
(22)

where ζn = (n + 1/2) π. Noting that d
dz
log cos(πz) = −π tan(πz), we can use integration

to determine infinite product representation for cos(πz).
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2 Analytic homeomorphism between domains: intro-

duction

Remark: Please check O. Costin’s Complex Variable notes, pages 34-67. The treatment
here is similar, though not as extensive.
Remark: Laplace equation is common in the physical sciences, electro-statics, potential
flow in fluid mechanics, steady-state heat diffusion problems to name a few:

∆ φ ≡ φxx + φyy = 0 (23)

for x + iy ∈ D ⊂ C, is a simply connected region with either Dirichlet or Neumann
boundary conditions on Γ ≡ ∂D:

φ = g(t) (Dirichlet), or
∂φ

∂n
= g(t) (Neumann) (24)

where a ≤ t ≤ b parametrizes Γ and ∂
∂n

≡ n · ∇ denote normal derivative on Γ, and g is a
known function

When D is not finite, additional conditions on φ have to be appended at ∞. In electro-
statics for instance, electric field E = −∇φ In a region without charges, ∇ · E = 0; so
∆φ = 0.

Remark 4 Uniqueness of solution to (23)-(24). For Dirichlet problem, we already know
from application of maximum modulus theorem, that for finite domain φ attains a maximum
or minium on Γ. The same can be derived for infinite domain D with some mild condition
at ∞ by using Phragmen-Lindeloff principle. Therefore, uniqueness of solution to (23) for
Dirichlet boundary condition in (24) assuming solution to be continuous upto the boundary
follows. Similar arguments using conjugate harmonic function show that the solution to
the Neumann problem is unique upto an additive constant iff

∫ b

a
g(t)dt = 0, when t is the

arc-length parametrization.

2.1 Existence of solution to (23)-(24)

When D = D1, the unit circle, then Poisson-integral formula explicitly provides solution
to the boundary value problem (1)-(2). In an effort to find solution to (1)-(2) for more
general domains D, we seek to find an analytic 1-1 mapping (analytic homeomorphism)
f : D1 → D since Laplace’s equation is invariant under such mapping as proved in the
following Lemma.
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Lemma 1 If φ is harmonic in (x, y) for z = x+ iy ∈ D, a simply connected domain, and
h : D → D1 is an analytic homeomorphism, then for z = f−1(ζ) = u(ξ, η)+ iv(ξ, η), where
ζ = ξ + iη ∈ D1,

Φ(ξ, η) = φ(u(ξ, η), v(ξ, η))

is harmonic in (ξ, η).

Proof. Define g(z) = g(x + iy) = φ(x, y) + iψ(x, y), where g is analytic in D. Since
x+ iy = z = f−1(ζ) = f−1(ξ + iη), it follows that

Φ(ξ, η) = ℜ
{

g
(

f−1(ζ)
)}

Since composition of analytic functions is analytic, g(f−1(ζ)) is an analytic function of ζ ,
implying Φ to be harmonic in (ξ, η).

Remark 5 We now turn to the question of existence of such analytic homeomorphism.
This is guaranteed by the Riemann mapping theorem, as stated below for simply connected
domains. We will remark on the proof of this theorem once we see get familiar on its
application.

Theorem 2 (Riemann Mapping Theorem) Assume D is a simply connected open domain
with more than one boundary point. Then there exists an analytic homeomorphism f :
D → D1. This map is unique if some z = z0 ∈ D is required to to correspond to 0 ∈ D1

with f ′(z0) real and positive.

Remark 6 There are similar theorems for mappings between multiply connected regions
with same connectivity, though with additional restrictions. Two such domains are called
conformally equivalent if there is an analytic homeomorphism between the two.

Exercise 9.1: Let Γ1 and Γ2 be the half-lines arg z = 0 and arg z = 3π
2
, respectively,

and let D be the domain 0 < arg z < 3π
2

(See Fig. 2.1. Determine a bounded solution
φ(x, y) to Laplace’s equation ∆ φ = 0, subject to the conditions φ = a on Γ1 and
φ = a + k on Γ2, where a and k are real constants.
Solution: It is to be noted that if we apply the transformation

ζ = h(z) =
2

3π
ln z with 0 < arg z <

3π

2
(25)

to the domain D, then the corresponding image in the ζ plane corresponds to the region
D′ between two parallel straight lines Im ζ = 0 and Im ζ = 1 (see Fig. 2.1). It is to be
noted that the inverse of the transformation in (25) is given by

z = f(ζ) = exp

[

3π

2
ζ

]

(26)
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Γ1

Γ2

φ=

φ=a+k

aD

Figure 6: Boundary value problem in D, bounded by Γ1 and Γ2

The given boundary conditions in D translate to

Φ = a on η = 0 , and Φ = a + k on η = 1 (27)

In the domain D′, a solution Φ(ξ, η) is sought in the form Φ(η). In that case, Laplace’s
equation reduces to

Φηη = 0 (28)

The general solution to (28) is in the form c1 + c2 η. Since it must satisfy the boundary
conditions (27), one finds

Φ = a + k η = Re (−i k (ξ + iη) + a) (29)

This means that at least one solution for the complex potential is

χ(ζ) = a − i k ζ (30)

Therefore

Ω(z) = χ(h(z)) = a − 2ik

3π
log z , (31)

implying that

φ =
2k

3π
arg z + a with 0 < arg z <

3π

2
(32)

The uniqueness can be proved by application of Phragmen-Lindeloff principle under rather
weak assumptions at ∞ (This will be an exercise).
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Γ
1

Γ2
’

’

η=1

ξ

η

Figure 7: Domain D′, bounded by Γ′
1 and Γ′

2, in the ζ = ξ + iη plane

Remark 7 Some assumption is clearly neede for uniqueness of φ, since we can add to
(31) any solution Λj(z) = i z2j/3 for any nonzero integer j and yet given satisfy boundary
conditions on φ = ℜ Ω.

Remark 8 A problem of considerable interest in potential theory to detemine Green’s func-
tion g(x, y; x0, y0) for a simply connected domain D. In 2-D, it is defined to be a single-
valued harmonic function of (x, y), except only at (x0, y0), where

g(x, y; x0, y0)−
1

2π
ln |z − z0| = O(1) (33)

where z = x + iy and z0 = x0 + i y0. For Dirichlet problem, we require g = 0
on the boundary Γ = ∂D. From Riemann mapping theorem, there exists f : D1 → D
(D1 unit disk around the origin) with f(0) = z0; this mapping is unique upto a rotational
degree inherent in choosing arg f ′(0). We denote the inverse mapping h(z; z0) = f−1(z),
the additional parameter z0 in h indicates dependence of mapping f on z0 = f(0). Since
h(z) = h′(z0)(z− z0)+ regular terms, it follows ℜ log h = log |z− z0|+harmonic . Further,
since h is 1-1 and has no other zeros in D, it follows that log h is analytic elsewhere and
so ℜ log h(x+ iy; z0) is harmnonic in D and takes 0 value on ∂D, |h(z)| = 1. Hence

g(x, y; x0, y0) =
1

2π
log |h(x+ iy; x0 + iy0)| (34)
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3 Conformal transformations:

Remark: The examples from last time illustrate the need to find an analytic function
f(ζ) that maps some standard domain D′ into the region D in a one-one manner. We
now discuss such mapping functions and their properties without reference to Laplace’s
equation.
Definition: A transformation f : D′ → D is said to be conformal at a point ζ0 ∈ D′ if the
angle of intersection between any two smooth curves at that point as well as their relative
orientation is preserved. The transformation is conformal in D′, then this property is valid
at every point in D′ (See Fig. 3).

ζ0

Re

Im 

ζ

ζ Im z

Re z

α
α

z=f( ζ)

z
0

Figure 8: Preservation of angle α and orientation, under transformation z = f(ζ)

Lemma 3 A function f analytic at ζ0 is conformal at ζ0 if f ′(ζ0) 6= 0.

Proof. Consider two differentiable curves Γ(t) and γ(s) intersecting at s = 0, t = 0,
such that ζ0 = Γ(0) = γ(0). The angle between the mapped curves f(Γ(t)), f(γ(s)) at
z0 = f(ζ0) is clearly

arg

[

d

dt
f(Γ(t)

]

t=0

−arg

[

d

ds
f(γ(s)

]

s=0

= arg [f ′(ζ0)Γ
′(0)]−arg [f ′(ζ0)γ

′(0)] = arg [Γ′(0)]−arg [γ′(0)]

Therefore the angle and orientation are both preserved

Remark 9 The converse is also true. If a map f on a domain D ∈ C is conformal and
orientation preserving, then it can be proved that f is analytic with f ′ 6= 0. (See Nehari)
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Remark 10 Consider curve Γ(t) in the last Lemma for a ≤ t ≤ b. The infinitesimal arc-
length change on the transformed curve f(Γ) is clearly |df(Γ(t))| = |f ′(Γ)||Γ′|dt. Therefore
arclength is of transformed curve f(Γ) is

∫ b

a

|f ′ ((Γ(t)) ||Γ′(t)|dt

So, small length elements at ζ0 are changed by factor of |f ′(ζ0). Using Cauchy Riemann
conditions, it is clear that if

z = x+ iy = f(ζ) = f(ξ + iη) = x(ξ, η) + iy(ξ, η),

then area element dξdη in the ζ plane is transformed to

|f ′(ζ0)|2dξdη = |∂ (x, y)

∂ (ξ, η)
|dξdη (35)

Remark 11 Note that from Taylor expansion that if f is analytic at ζ0, but f
′(ζ0) = 0,

then from Taylor expansion

δz =
f (m)(ζ0)

m!
(δζ)m (1 +O(δζ))

where f (m)(ζ0) 6= 0 is the first nonvanishing derivative. Further, as δζ → 0,

arg δz = m arg δζ + arg f (m)(ζ0) + arg (1 +O(δζ)) (36)

Thus, angle between any two infinitesimal line elements at the point ζ0 is increased by the
factor m, and therefore the transformation is not conformal at ζ0.

Remark 12 Thus, from Lemma 3 and the above remark, a transformation z = f(ζ) for
an analytic function f is conformal at ζ0 if and only if f ′(ζ0) 6= 0.

Remark 13 In an earlier lecture, we noted that for an analytic function f , f ′(ζ0) 6= 0
implies that f is locally invertible and that the inverse function is analytic at z0 = f(ζ0).
However, the condition f ′ 6= 0 at each point of D′ does not necessarily mean that f is
a one-one map i.e. f is an analytic homeomorphism between D and D′. For instance,
f(ζ) = eζ is locally invertible (since f ′ 6= 0); yet if we take D′ to be the region
{ζ | 0 ≤ Im ζ < 4π}, then there exists more than one point in D′ (actually, exactly
two) with the same image in D.
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Lemma 4 Assume f : D′ → D is an analytic homeomorphism. Then f and f−1 is
conformal at each interior point.

Proof. Assume other wise; i.e. that there exists point ζ0 ∈ D′ such that f ′(ζ0) = 0.
Denote z0 = f(ζ0). Let m be the smallest integer with f (m)(z0) 6= 0. Since the zeros of a
nontrivial f are isolated, there exists ǫ such that or 0 < |ζ − ζ0| < ǫ, f(ζ)− z0 6= 0.
Choose a contour C around ζ0 and define

δ = min
C

|f(ζ)− z0|

Now for |z − z0| < δ, it is clear from Rouche’s theorem that the functions f(ζ)− z0 and
f(ζ)−z0+(z0−z) have exactly the same number of zeros, which ism (counting multiplicity)
> 1. This is a contradiction since f is given to be an analytic homemorphism. So the
mapping is conformal at all interior points of D′. The same arguments can be made for
f−1 : D → D′ since it is also an analytic homeomorphism.

Remark: Note in the above proof that if f ′(ζ0) = 0, there are many (m > 1) branches of
an inverse in a neighborhood of z = z0; i.e. z = z0 is a branch point of an inverse function
of f .

Lemma 5 Assume C is a piecewise smooth oriented simple closed curve enclosing a simply
connected domain D and f analytic in D and continuous in D̄. If C ′ = f(C) is also a
simple closed curve, then f is an analytic homeomorphism between D and f(D). and
preserves its orientation.

Proof. We parametrize the closed path C by a real parameter t ∈ [0, 1]. and assume it
is traversed positively (counter-clockwise) as t increases. Since C is a simple closed curve,
this implies that for t1 < t2, ζ(t1) 6= ζ(t2) except when t1 = 0 and t2 = 1. From given
condition, C ′ = f(C) is is a simple closed curve as well; or otherwise at least two distinct
points on C would map to the same point on C ′. Let C ′ contain the domain D′. Take a
point w0 ∈ D′. We will show that f(ζ) attains the value w0 exactly once in D. We note

1

2πi

∮

C

f ′(ζ)dζ

f(ζ)− w0
=

1

2πi

∫ 1

0

f ′(ζ(t))ζ ′(t) dt

f(ζ(t))− w0
(37)

Now, since w(t) = f(ζ(t)) is the parametrization of the simple closed C ′, it is clear that
(37) equals

1

2πi

∮

C′

dw

w − w0
= ±1 , (38)

depending on the whether C ′ is oriented counter-clockwise or clockwise. However since ex-
pression (37) is the number of times f attains w0, which must be non-negative, and is equal
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to the expression (38), it must equal +1. This implies (i) f is an analytic homeomorphism
in D and (ii) it preserves the orientation of C.

Remark 14 An analytic homeomorphism that preserves its orientation is generally re-
ferred to as a conformal mapping, though confusion may arise on whether the mapping is
only locally conformal.

Remark 15 Because of Lemma 5, in order to determine if an analytic f is conformal and
defines a 1-1 map between D and f(D), where D is simply connected with piecewise ∂D,
it is enough to check that f is one to one between ∂D and f(∂D).

Remark 16 If the region of interest in the D plane is the exterior of some closed simple
curve C on which the analytic map f is one to one, then it is helpful to introduce an
intermediate transformation g: g(ζ) = 1

ζ−ζ0
, where ζ0 is inside C. g is seen to map the

region exterior of C into a domain interior of g(C) in a 1-1 manner. Lemma 5 can then
be applied to f · g−1 which is a mapping between finite domains g(D) and f(D).

Remark 17 If the region of interest is one side of an infinite non-self-intersection curve
C in the ζ plane, which is piecwise smooth, we can once again use the transformation
g, defined by g(ζ) = 1

ζ−ζ0
for ζ0 on the other side of C, before applying Lemma 5. On

transformation, the infinite curve C can be applied to the resulting domain in the ζ1 = g(ζ)
domain. This has the effect of transforming an infinite contour into a finite one and
mapping one side of it into the interior/exterior of that curve.

Remark 18 In the case, f has a simple pole in a finite domain D, we consider first the
mapping properties of g defined by g(ζ) = 1

f(ζ)−a
, where a 6= f(ζ) for ζ ∈ D̄. Since g

is analytic and free of singularities, we can use Lemma 5 when applicable. Once mapping
properties of g is determined, the explicit relation between f and g allows determination of
the mapping properties of f as well.

3.1 Mapping properties of simple functions:

Example 1: Consider linear mapping f(ζ) = a ζ + c; this corresponds to a dilation of |a|
and counter-clockwise rotation by arg a, followed by translation by c.
Example 2: Consider w = f(ζ) = 1

ζ
. It maps the exterior of unit circle centered at the

the origin into its interior, with ∞ mapped to the origin. More generally, it maps any
domain exterior to a curve C that contains the origin into a finite closed domain. It also
maps a finite region containing the origin into an infinite region, exterior to the curve f(C).
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Generally, it maps circles (straightlines) into circles (or straightlines). To see this, suppose
ζ = ξ + iη; then

u + iv = f(ζ) =
1

ξ + iη

Thus,

ξ =
u

u2 + v2
, η = − v

u2 + v2
(39)

Then, if
ξ2 + η2 + A ξ + B η = C

then from (39)

u2

(u2 + v2)2
+

v2

(u2 + v2)2
+

Au

u2 + v2
− Bv

u2 + v2
= C

which simplifies to
1 + Au −B v = C(u2 + v2)

If C = 0, this is a straight line in the w plane; otherwise it is a circle. Similarly, you can
easily show that the map of a straight line in the ζ plane is a circle (or straight line) in the
w plane.
Example 3: A fractional linear map (or Mobius map) is defined by

w = f(z) =
az + b

cz + d
(40)

where a/c 6= b/d (otherwise w is a constant). This can be generally viewed as a composition
of a linear mapping, an inversion, followed by a linear mapping:

w1 = cz + d ; w2 =
1

w1
; w =

(

b− ad

c

)

w2 +
a

c

If c = 0, then the fractional linear mapping simply reduces to a linear mapping. It is to be
noted that the inverse of (40) is once again a fractional linear transformation (as can be
checked):

z = h(w) =
dw − b

−cw + a

Fractional linear transformation maps a circle (and straightlines) into a circle or straight-
lines. It also has the property that if w1, w2, w3 and w4 are four points corresponding to
z1, z2, z3 and z4, then the cross ratios are equal, i.e.

(w1 − w2)(w3 − w4)

(w1 − w3)(w2 − w4)
=

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
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It is to be noted that there are only three independent parameters in (40). For instance,
for nonzero c, these independent parameters can be take to be a/c, b/c and d/c. These
three parameters are uniquely set when the images of any three distinct points z1, z2 and
z3 are specified to be the distinct values w1, w2 and w3. The image w4 of a fourth point z4
is immediately determined by the cross-ratio relation above.

Remark 19 Composition of Mobius map is also a Mobius map as is readily checked. Fur-
ther, since inversion of a Mobius map is again a Mobius map and the set of mappings
include the identity mapping, the set of Mobius maps form a group. Indeed, it is eas-
ily proved that any analytic homeomorphism between circles is necessarily a Mobius map.
This map be used to prove the uniqueness claim of the Riemann-mapping theorem in the
following manner. Consider a particular f : D → D1 (D1 is the unit disk), whose existence
is given by Riemann mapping theorem. Now, the most general map from D1 to D1 is a
Mobius map g. Therefore, the most general map F : D → D1 must have the form F = g ·f .
By demanding F (z0) = w0 and F ′(z0) > 0, the Mobius map g is uniquely determined.
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