Solution to Homework Set 2, Math 805

1. (Exercise 1, Page 33, Text). How can this method (Borel-Ritt Lemma) be modified to give a function analytic in a sector of opening angle $2\pi n$ for an arbitrary fixed n which is asymptotic to \tilde{f}.

Solution: We define y as the independent variable. We seek analytic function f in a sector S of width $2\pi n$ so that as $y \to \infty$ in S,

$$f(y) \sim \tilde{f}(y) = \sum_{j=0}^{\infty} \frac{a_j}{y^{j+1}}$$

Without loss of generality, assume S is centered about the positive real axis.

Define $x = y^{1/(2n)}$. The problem is then equivalent to finding analytic function g in \mathbb{H} with the property that $x \to \infty$ along a ray in \mathbb{H},

$$g(x) \sim \tilde{f}(x^{2n}) = \sum_{j=0}^{\infty} \frac{a_j}{x^{2(j+1)n}}$$

We define

$$c_k = a_j \text{ for } k = 2n(j + 1) - 1 \text{ and } c_k = 0 \text{ otherwise}$$

It follows

$$\tilde{g}(x) \equiv \tilde{f}(x^{2n}) = \sum_{k=0}^{\infty} \frac{c_k}{x^{k+1}}$$

We may now use

$$\tilde{G}(p) = \sum_{k=0}^{\infty} \frac{c_k}{k!} p^k$$

and construct an L^1 function $G(p)$ on $(0, p_0)$ in accordance to Proposition 3.40 in the text so that

$$G(p) \to \tilde{G}(p) \text{ as } p \to 0^+$$

Then, g defined by

$$g(x) = \int_{0}^{p_0} G(p) e^{-px} dp$$

will be the entire function in x with the desired asymptotic property as $x \to \infty$ in \mathbb{H}. Hence $f(y) = g(y^{1/(2n)})$ has the desired property that $f(y) \to \tilde{f}(y)$ as $y \to \infty$ in S.

2. (Exercise 3.68, page 39 Text) Show that if f is analytic in a neighborhood of $[a, b]$ but not entire, both series

$$\frac{e^{ixb}}{ix} \sum_{n=0}^{\infty} \frac{(-1)^n f^{(n)}(b)}{(ix)^n}, \quad \frac{e^{ixa}}{ix} \sum_{n=0}^{\infty} \frac{(-1)^n f^{(n)}(a)}{(ix)^n}$$

have zero radius of convergence.
Solution: Suppose the series in equation (0) involving \(a \) had a nonzero radius of convergence. Then there exists finite \(\rho \) such that
\[
|f^{(n)}(a)\rho^{-n}| \leq 1
\]
for \(n \geq N \) large enough. Then, the series for \(f \): \(\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^n \) has infinite radius of convergence since
\[
\sum_{n=0}^{\infty} \frac{|f^{(n)}(a)|}{n!}|z-a|^n \leq \sum_{n=0}^{\infty} \frac{\rho^n}{n!}|z-a|^n
\]
the latter being convergent for any \(z \in \mathbb{C} \) and \(f \) has to be entire contradicting our assumption. Clearly the same argument is valid when \(a \) is replaced by \(b \).

3. Determine the full asymptotic expansion as \(x \to \pm \infty \) of \(I(x) = \int_0^1 e^{xt^3} dt \)
Solution First, consider \(x \to +\infty \). Since \(t^3 \) is monotonically increasing, the full asymptotic series is determined from the a neighborhood of \(t = 1 \). We use a change of variable
\[
\tau = 1 - t^3 \quad \text{and note} \quad t = (1 - \tau)^{1/3}
\]
Therefore,
\[
I(x) = e^x \int_0^1 e^{-xt^3} dt = -\frac{e^x}{3} \int_0^1 e^{-x\tau(1-\tau)^{-2/3}} d\tau
\]
Using Watson’s Lemma
\[
I(x) \sim e^x \sum_{k=0}^{\infty} \frac{c_k}{x^{k+1}}
\]
where
\[
c_k = -\frac{k!}{3} \left(-\frac{2}{3} \right)^k
\]
Now consider \(x = -y \to -\infty \). We have with \(\tau = t^3 \) and Watson’s Lemma:
\[
I = \int_0^1 e^{-yt^3} dt = \int_0^1 e^{-yt^3} dt d\tau = \frac{1}{3} \int_0^1 e^{-y\tau\tau^{-2/3}} d\tau \approx \frac{1}{3} \frac{\Gamma(1/3)}{y^{1/3}}
\]
Note that the entire asymptotic series is just one term in this case.

4. Employ Stationary phase method to determine first three terms of the asymptotic expansion of
\[
I(x) = \int_0^1 e^{ix(t-t^2/2)} dt \equiv \int_0^1 e^{ixh(t)} dt
\]
Solution:
We note \(\frac{dh}{dt} = 1 - t = 0 \) at the end point \(t = 1 \). Hence \(t = 1 \) is a stationary phase point. Hence, we decompose the integral \(I(x) \):
\[
I(x) = \int_0^1 e^{ixh(t)} dt + \int_1^1 e^{ixh(t)} dt \equiv I_1(x) + I_2(x), \tag{3}
\]
with the understanding that the eventual result cannot depend on artificial parameter \(\delta \), which is chosen independent of \(x \).

With choice of variable \(v = (1 - t) \), we note that

\[
I_2(x) = e^{ix/2} I_3(x),
\]

where

\[
I_3 = \int_0^{1-\delta} e^{-i x v^2} dv = \frac{1}{2\sqrt{x}} \int_0^{(1-\delta)x} e^{-iu} du \sim \frac{1}{2\sqrt{x}} \int_0^{\infty} e^{-iu} du + \text{terms depending on } \delta
\]

Using contour integration (closing the contour through a \(\pi/2 \) clockwise rotation and using Jordan’s Lemma), it follows that

\[
I_3 \sim \frac{e^{-i\pi/4} \Gamma(1/2)}{2\sqrt{x}} + \text{terms depending on } \delta
\]

The contribution from \(I_1 \) on integration by parts twice gives:

\[
I_1(x) \sim \int_0^{\delta} e^{ixh(t)} dt = \left(\frac{e^{ixh(t)}}{ixh'(t)} + \frac{e^{ixh(t)}}{x^2(h'(t))} \frac{d}{dt} h'(t) \right) \bigg|_0^\delta = -\frac{1}{ix} \frac{1}{x^2} + O(x^{-3}) + \text{terms depending on } \delta
\]

Therefore, since \(\delta \) dependent terms must cancel out, it follows that the first three terms of the asymptotic expansion is:

\[
I(x) = \frac{e^{ix/2-i\pi/4} \Gamma(1/2)}{2\sqrt{x}} - \frac{1}{ix} \frac{1}{x^2} + O(x^{-3})
\]

5. (Exercise 2, Page 33, Txt). Assume \(F \) is bounded on \([0, 1]\) and has an asymptotic expansion

\[
F(t) \sim \sum_{k=0}^{\infty} c_k t^k
\]

as \(t \to 0^+ \). Let \(f(x) = \int_0^1 e^{-xp} F(p) dp \).

(a.) Find necessary and sufficient conditions on \(F \) such that \(\tilde{f} \), the asymptotic power series of \(f \) for large positive \(x \), is a convergent series for \(|x| > R > 0 \).

(b.) Assume that \(\tilde{f} \) converges to \(f \). Show that \(f = 0 \).

(c.) Show that in case (a.), if \(F \) is analytic in a neighborhood of \([0, 1]\), then \(f = \tilde{f} + e^{-x} \tilde{f}_1 \), where \(\tilde{f}_1 \) is convergent for \(|x| > R > 0 \).

Solution:

Claim that a necessary and sufficient condition for \(\tilde{f} \) to be convergent for \(|x| > R \) is that for any \(\rho > R \),

\[
\sum_{k=0}^{\infty} k! |c_k| \rho^{-k-1} < \infty \tag{1}
\]

Note from Watson’s lemma that

\[
f(x) \sim \tilde{f}(x) = \sum_{k=0}^{\infty} k! c_k x^{-k-1} \tag{2}
\]
Thus if $|x| > R$, we may choose ρ such that $|x| > \rho > R$ and use (1) to conclude (2) is absolutely convergent. Now assume (2) is convergent for any $|x| > R$. Take any $\rho > R$. Choose x so that $\rho > x > R$. From convergence of (2) at x, it follows that there exists M so that $|c_k| \leq M x^{k+1}/k!$. Using this, convergence of (1) follows. Thus, part a. is proved.

For part b., if \tilde{f} converges to f for any $x > R$, it follows from analyticity that $\tilde{f} = f$ and so $f \to 0$ as $|x| \to \infty$. From the the integral representation, f is entire and so Liouville Theorem implies that $f = 0$.

For part c., since \tilde{f} is assumed convergent we assume (1) to hold. It follows that $F(p) = \sum_{k=0}^{\infty} c_k p^k$ is entire. Therefore, for $x > R$,

$$
 f(x) = \int_0^1 e^{-px} F(p) dp = \sum_{k=0}^{\infty} \frac{k! c_k}{x^{k+1}} \int_0^x \frac{s^k e^{-s}}{k!} ds
$$

$$
 = \sum_{k=0}^{\infty} \frac{k! c_k}{x^{k+1}} - \sum_{k=0}^{\infty} \frac{k! c_k}{x^{k+1}} \int_1^x \frac{s^k e^{-s}}{k!} ds = \tilde{f}(x) + e^{-x} \tilde{f}_1(x)
$$

where

$$
 \tilde{f}_1(x) = -\sum_{k=0}^{\infty} \frac{k! c_k}{x^{k+1}} \int_0^\infty \frac{(s+x)^k}{k!} e^{-s} ds = -\sum_{k=0}^{\infty} \frac{k! c_k}{x^{k+1}} \left(\sum_{l=0}^{k} \frac{x^l}{l!} \right) = -\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=l}^{\infty} \frac{c_k k!}{x^{k+1-l}}
$$

which is convergent for $|x| \geq \rho > R$ since from (1),

$$
 |\tilde{f}_1(x)| \leq \sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{\infty} \frac{|c_k| k!}{x^{k+1-l}} \leq \sum_{l=0}^{\infty} \frac{\rho^l}{l!} \left(\sum_{k=0}^{\infty} \frac{|c_k| k!}{\rho^{k+1}} \right) \leq M e^\rho
$$
