
Steepest descent method

Remark: This method is suitable for analyzing

I(x) =
∫

C
e−xp(t) q(t) dt (1)

where the path C is in the complex t plane. It could either be open or closed, of finite length

or otherwise (the integral has to exist, however). p(t) and q(t) are both analytic functions of

t, except perhaps at some singular points. x will be taken to be real and positive, at least for

now. The interest is in determining the asymptotic behavior of I(x) for large x. Since p(t)

is complex, Laplace’s method or integration by parts cannot be applied directly. However,

if it is possible to deform contour C into a single contour C1, defined by

Im p = constant (2)

then we note that (1) becomes an integral of the form

I(x) = e−i x Im p
∫ b

a
e−x Re p(t(τ)) q(t(τ)) t′(τ) dτ (3)

where t(τ) is a chosen parametrization of the path C1, where τ is real and ranges from (a, b)

(we will assume t′(τ) is well defined and nonzero on C1). Such a path is called a steepest

descent path. In the form (3), one can use Laplace’s method or integration by parts to

determine the asymptotic behavior of I(x) for large x. It is to be noted that if such a path

includes no point where p(t) is singular or p′(t) zero, then Re p(t(τ)) must be monontonically

increasing or decreasing function of τ . To prove this claim, we note that if it were otherwise

then there would be a point τ = τ0, where

d

dτ
Re p(t(τ)) = 0 = Re [p′(t(τ0)) t′(τ0) ] (4)

On the otherhand, from differentiating (2) with respect to τ , it follows that Im [p′(t(τ0)) t′(τ0)] = 0

Together, with (4), this implies that p′(t(τ0)) = 0, since t′(τ0) 6= 0. This proves that,

except for critical points on the contour C1 (where p′ is either singular or zero), Re p is

indeed monotonic (Hence the name steepest descent path).

Comment: Generally, it is not possible to have just one steepest descent path C1 equivalent

to the original path C. This will be so if Im p takes differing values at the end points of

C. Even when they take the same value, there may be no direct steepest descent path

connecting the two end points. Two or more steepest descent path are usually equivalent to

the original C. We refrain from discussing the most general situation, as this can be quite

complicated. We will only illustrate the situation through examples.
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Figure 1: Steepest descent paths for Eq. (5)

Example 1:

I(x) =
∫ 1

0

1√
t

exp
[

ix(t + t2
]

dt (5)

Want to determine the asymptotics of I(x) as x → + ∞.

Solution: In this case

p(t) = − i (t + t2) (6)

We note that

Im p(0) = 0 6= Im p(1) = − 2 (7)

So, there isn’t a single steepest descent path connecting t = 0 to t = 1. To determine how

to get from one end point to the other, using steepest descent paths, we need to consider set

of curves defined by the relation

Im p(t) = − Re (t + t2) = c , a constant (8)

If we write t = ξ + iη, the above implies

ξ + ξ2 − η2 = (ξ + 1/2)2 − η2 = − c + 1/4 (9)

This is a set of hyperbola. We note that for c = 0 and c = −2, the two hyperbola pass

through t = 0 and t = 1 respectively (See Fig. 1). However, on inspection it is clear on

each of these parabola, Re p increases monotonically to +∞, only if we go towards ∞ eiπ/4,

since Re p ∼ Re (−it2) for large t. The monotonicity follows from the fact that p′ is only

zero at t = − 1
2

that is not on either of the hyperbola of interest. Thus, we deform the
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original real line path in the t-plane to steepest descent paths C1 and C2, shown in Fig. 1. We

note that while paths C1 and C2 never join up, at ∞ eiπ/4, the integrand |e−xp(t)| = e−x Re p

tends to zero exponentially and there is no contribution on a connecting path from C1 to C2

at a distance R from the origin, in the limit R → ∞. Thus, one single original integral

becomes equivalent to sum of two different steepest descent paths C1 and C2. Now to obtain

the contribution from C1, we note that if we define

τ = − i (t + t2) (10)

then τ is real along C1 (because of (8)) and varies from 0 to ∞ on C1. Further,

t = − 1

2
+

1

2

√
1 + 4i τ (11)

and

t′(τ) =
i√

1 + 4i τ
= i

(

1 − 2 i τ + b2 τ 2 + ...
)

(12)

for some constants b2, b3..., etc. that can be readily calculated. Also,

1√
t

= e−iπ/4 τ−1/2
[

1 + c1 τ + c2 τ 2 + ..
]

(13)

Thus,
1

√

t(τ)
t′(τ) ∼ eiπ/4 τ−1/2

[

1 + d1 τ + d2 τ 2 + ....
]

(14)

where d1, d2, etc. can be readily calculated. Thus, from Watson’s Lemma:

∫

C1

1√
t

exp
[

ix(t + t2)
]

∼ eiπ/4
∞
∑

j=0

dj Γ(j + 1/2)

xj+1/2
(15)

where d0 is defined to be 1.

Now, on C2, it is convenient to define

τ = p(t) − p(1) = − i(t2 + t − 2) (16)

This is real and varies from 0 to ∞, as we away from t = 1 on steepest descent path C2. In

this case, it is possible to explicitly invert (16) to get

t(τ) = − 1

2
+

3

2

√

1 +
4iτ

9
(17)

and so

t′(τ) =
i√

9 + 4iτ
=

i

3

[

1 + a1 τ + a2 τ 2 +
]

(18)
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and

t−1/2(τ) = 1 + b1τ + ... (19)

The product

t′(τ) t−1/2(τ) ∼ i

3

[

1 + c1 τ + c2 τ 2 + ..
]

(20)

where the coefficients c1, c2, etc. are possible to calculate readily from aj ’s and bj ’s in (18)

and (19). Thus,

∫

C2

1√
t

exp [ix (t2 + t)] dt = − e2 i x
∫ ∞

0
dτ

t′τ
√

t(τ)
e−xτ (21)

Applying Watson’s Lemma and the known asymptotic expansion (20) , we get

∫

C2

1√
t

exp [ix (t2 + t)] dt ∼ i

3
e2ix

∞
∑

j=0

cj j!

xj + 1
(22)

where c0 is defined as 1. By adding (22) to (15), we obtain the complete asymptotic expansion

for I(x). The contributions come from the end points; this is not unexpected since the

integrand decrease exponentially away from the end points 0 and 1. Interestingly, the leading

order O(x−1/2) contribution comes only from the end point t = 0. This is because, even

though the exponential is of the same order, q(t) = t−1/2 is singular at t = 0, while it

is not at t = 1. The result (22) itself could have been alternately be obtained merely by

integration by parts, since q(t) is analytic at t = 1; the same is not true for the contribution

(15).

eject

Steepest descent with saddle points:

Remark: In studying the asymptotics of

I(x) =
∫

C
e−x p(t) q(t) dt (1)

for large x, sometimes in following a steepest descent path, one is forced to pass through

a critical point, where p′(t) is either singular or zero. If the latter is the case, we call such

a point a saddle point. The name comes from the fact that if p′(t0) = 0, then in a

neighborhood of t0, Re p is a harmonic function with a saddle at t = t0 (t0 cannot be a

maximum or minimum because of maximum principle). The simplest kind of saddles are

those for which p′(t0) = 0, but p′′(t0) 6= 0. An m-th order saddle is one for which all

derivatives upto m-th order are zero, but the (m + 1)-th derivate is nonzero at t0. When a

steepest descent path goes through a saddle t0, if Re p is smaller at t0 than at the end points,

the asymptotic expansion of the integral is completely determined by the contribution from
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a small neighborhood of t0. When multiple saddles are involved, the contribution from each

has to be generally considered unless Re p at one saddle is smaller than Re p from any other

saddles or end points. In the following, we illustrate saddle point contribution in a steepest

descent analysis:

Example 1: Determine the asymptotic behavior of I(x) as x → ∞, where

I(x) =
∫ ∞

−∞
exp

[

ix
(

t3/3 + t
)]

(2)

Comment: The above function is related to the Airy function, which is a solution to the

differential equation

y′′ − x y = 0 (3)

called Airy’s equation. The particular form of solution (2) can be arrived at more systemat-

ically in the following manner. We look for solution with a Fourier-representation

y(x) =
1

2π

∫ ∞

−∞
ei x k Y (k) dk (4)

We note that

y′′(x) = − 1

2π

∫ ∞

−∞
k2 ei x k Y (k) dk (5)

x y = =
i

2π

∫ ∞

−∞
ei x t Y ′(k) dk

assuming that these integrals exist. Therefore, on Fourier transforming (3), we obtain

−i Y ′(k) − k2 Y (k) = 0 (6)

Thus,

Y (k) = Constant ei k3/3 (7)

On taking the constant in (7) to be unity, and substituting into (4), we obtain

y(x) =
1

2π

∫ ∞

−∞
ei x [k + k3/3] dk (8)

This is the Airy function, usually denoted by Ai(x). If we now substitute k = x1/2 t into

(8), we obtain:

Ai(x) =
x1/2

2π

∫ ∞

−∞
ei x3/2 [t + t3/3] dt =

x1/2

2π
I(x3/2) (9)

Solution to example 1:

We note that

p(t) = − i (t + t3/3) (10)
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Now, we seek to connect t = −∞ to t = + ∞ on one or more steepest descent paths.

We notice that

p′(t) = − i (1 + t2) = 0 at t0 = ± i

However, clearly p′′ is nonzero at ±i. We note that at both saddles,

Im p = 0 (11)

Also, we note that Im p = 0 on the entire imaginary axis. Also,

Re p(i) =
2

3
while Re p(−i) = − 2

3
(12)

Now, in a neighborhood of t = i, from the Taylor expansion of p, we get

p(t) =
2

3
+ (t − i)2 − i

3
(t − i)3 (13)

If we write t − i = r1 eiθ1 , then (11) implies that for small r1,

Im p = r2
1 sin 2θ1 + O(r3

1) = 0 for θ1 = n π/2 (14)

for integral n. Also, it is clear that Re p increases outwards as r1 increases, when n is even.

Thus, the local descent directions (i.e. directions in which the integrand in (1) decreases in

size) is given by θ1 = 0 and θ1 = π. Now, the steepest descent direction from t = i, that

for small r1 is directed towards θ1 = 0 must approach one of the descent directions at ∞.

Now consider large |t|. Putting t = r eiθ, we get for large r,

p(t) ∼ − i t3/3 = − i

3
r3 ei 3 θ meaning Im p = 0 for θ = π/6 + n π/3 (15)

for integral n. Among these, only the even n values correspond to descent, since Re p

increases to ∞ as r → ∞ along those directions. Thus θ = π/6, 5π/6, −π/2 are the local

descent directions.

Thus, the descent curve emanating from t = i, towards the first quadrant, can either

approach r → ∞ with θ = π/6, θ = 5π/6 or θ = − π/2 since on the descent

path, Re p(t) monotonically increases to ∞. We will now argue that it must be θ = π/6:

First, this steepest descent path cannot cross the imaginary t-axis segment [0, i∞), since

on this segment, Re p(t) < Rep(i), while Re p on the steepest descent path increases

monotonically. Second, this steepest descent path cannot cross positive Re t-axis, since on

the positive real axis Im P (t) = − (t + t3/3) < 0. Thus, the descent path must approach

r → ∞, θ = π/6.

Similar analysis near t = − i, shows

p(t) = − 2

3
− (t + i)2 − i

3
(t + i)3 (16)
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Figure 2: Steepest descent path C1 for Eq. (2)

and so the descent directions towards arg (t + i) = ± π/2, while the ascent directions are

locally towards arg (t + i) = 0, π. The local ascent direction from t = − i in the fourth

quadrant must approach r = ∞, θ = − π/6, since it cannot cross the positive real axis

(where Im p 6= 0) and negative imaginary axis (where Rep(t) > Rep(−i)).

From symmetry, about the imaginary real axis, it follows that the set of all curves given

by Im p = 0 is given by Fig. 1. It is now to be noted from contour integration that

I(x) =
∫

C1

eix(t + t3/3) dt (17)

where C1 is the steepest descent path connecting ∞ ei5π/6 to ∞ eiπ/6 Thus, the asymptotics

of I(x) is dominated by the contribution from the saddle t = i. It is to be noted that even

though Re p is smaller at the other saddle t = − i, there is no contribution from this since

the steepest descent path equivalent to the original contour integral does not pass through

t = − i.

We now want to evaluate use (17) to find the asymptotics for large |x|. We break up the

contour C1 into C1,1 and C1,2, corresponding to left and right of t = i. On C1,2, define

τ = p(t) − 2

3
= (t − i)2 − i

3
(t − i)3 (18)

Then,

t − i =
√

τ + a1 τ + a2 τ 3/2 + .... (19)

where a1, a2 and other such coefficients can be found readily by substituting (19) into (18)

and equating powers of τ on both sides of the equation. From (19),

t′(τ) =
1

2
√

τ
+ a1 +

3

2
τ 1/2 + ... (20)
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Thus,

∫

C1,2

dt eix(t+t3/3) =
∫ ∞

0
dτ t′(τ) e−xτ ∼

∞
∑

j=0

(j + 1)aj

2x(j+1)/2
Γ [(j + 1)/2] (23)

For the contour segment C1,1, the sign of
√

τ occurring in (19) has to be reversed. Further,

the limit of integration in (23) in the τ variable has to be ∞ to 0. Thus,

∫

C1,1

dt eix(t+t3/3) =
∫ 0

∞
dτ t′(τ) e−xτ ∼

∞
∑

j=0

(−1)j (j + 1)aj

2x(j+1)/2
Γ [(j + 1)/2] (24)

where a0 = 1. Combining (23) and (24), we get

I(x) =
∫

C1

dt eix(t+t3/3) ∼
∞
∑

j=0

(2 j + 1)a2 j

xj+1/2
Γ [j + 1/2] (25)

Large |x| asymptotics for complex x: Stokes phenomena

Problem: We determined the asymptotic behavior of I(x), defined as:

I(x) =
∫ ∞

−∞
dt exp

[

ix
(

t3/3 + t
)]

(26)

for x large and positive. We now want to consider x complex. First, the integral as defined

in (26) does not make sense for complex x. However, through contour deformation, it is

clear that the analytic continuation of I(x) off the real axis is determined by

I(x) =
∫ ∞ eiπ/6−iφ/3

∞ ei5π/6−iφ/3

dt exp
[

ix
(

t3/3 + t
)]

(27)

where

x = |x| eiφ (28)

We now want to consider the asymptotics for |x| >> 1 for nonzero φ.

Solution: First we consider π > φ > 0. We note that (27) can be written in more

standard asymptotic form
∫

C
e−|x| p(t) dt (29)

for which we applied the steepest descent method, provided we now take

p(t) = − eiφ (t3/3 + t) (30)

As before the saddle points are at t = ± i. Near the saddle point t = i,

p(t) = − eiφ (
2

3
+ (t − i)2 + ..) (31)
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Therefore, if t − i = r1 eiθ1 , then for r1 << 1,

Im p = Im p(i) =
2

3
sin φ implying sin (2 θ1 + φ) = 0 (32)

Since

Re p =
2

3
cos φ + r2

1 cos (2θ1 + φ) + O(r3
1) (33)

It follows that for even n, the local directions from t = i, corresponding to

θ1 = n π/2 − φ/2 (34)

correspond to descent, while odd n correspond to ascent. Notice that corresponding to x

real and positive, i.e. φ = 0, the local descent and ascent paths have rotated in a clockwise

direction by φ/2.

Similar analysis near t = −i shows that for t + i = r2 eiθ2 , in the limit r2 << 1, the

descent directions from t = −i correspond to

θ2 = n π/2 − φ/2 (35)

for odd n, while even n correspond to ascent. Once again the local descent and ascent

directions have been rotated clockwise by φ/2, compared to the direction for φ = 0.

Now for large t,

p(t) ∼ − i eiφ t3/3 (36)

So, if t = r eiθ, then for r >> 1,

Im p = constant corresponds to − r3

3
cos (φ + 3θ) ∼ Constant

i.e.

θ = − φ/3 + n π/3 + π/6 (37)

Since for large r,

Re p ∼ r3

3
sin (φ + 3 θ) (38)

the even values of n in (38) correspond to descent paths, while odd values correspond to

ascent. Note that compared to φ = 0, (38) implies that ascent and descent directions have

rotated clockwise by φ/3.

Now the descent path emanating from t = i, corresponding locally to θ1 = − φ/2

must approach one of the three descent paths at ∞. First we rule out this descent path

intersecting the imaginary axis at all. On the imaginary axis, t = iv, and so

Im p = (v − v3/3) sin φ = Im p(i) =
2

3
sin φ (15)
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only when v = 1 (double root of cubic) and v = −2. Thus, the descent path in question

can only intersect the imaginary axis at t = −2i (other than t = i, where it originated).

However,

Re p = (v − v3/3) cos φ (41)

and

Re p(−2i) =
2

3
cos φ = Re p(i) (42)

The equality (42) rules out this descent path from passing from t = −2i, since on a descent

path Re p must be monotonically increasing, except when it passes through a saddle or a

nonanalytic point. Thus this descent path must approach ∞ eiπ/6−φ/3; others are not even

on the right half t plane.

Similar reasoning applied to the descent path, locally directed as θ2 = π/2 − φ/2

(coming out of t = − i), shows that it cannot possibly intersect the imaginary axis and

must therefore asymptote to the same descent direction ∞ ei (π/6−φ/3).

Now consider the descent path away from t = i, corresponding to θ1 = π − φ/2. At

large distances, this must approach one of the two descent paths ∞ ei5π/6−φ/3 or ∞ e−iπ/2−φ/3

on the left half t-plane, since it cannot intersect the imaginary axis once again. However, on

the real negative t axis,

Re p = sin φ (t + t3/3) (43)

is negative and therefore since Re p(i) = 2
3

cos φ is non-negative for 0 < φ ≤ π/2,

there is no chance of this steepest descent path intersecting the negative real axis. For

π/2 < φ < π, we note that while Im p(i) = 2
3

sin φ > 0, on the negative real axis

Im p = − cos φ (t + t3/3) > 0 (44)

Thus, in this case as well, there is no possibility of this descent path to cross the negative real

axis. Therefore, we are forced to conclude that for large |t|, this descent path asymptotes

∞ ei5π/6−φ/3.

Similar considerations for all other steepest descent paths emanating from saddle points

t = ± i leads us to Fig. 2.

As far as evaluating the answer, the only relevant information is that the steepest descent

path passes through t = i that is locally directed towards θ1 = −φ/2 and θ1 = π − φ/2.

To calculate the leading order answer, we can resort to Laplace’s method and write down

I(x) ∼ exp [−2

3
eiφ|x|]

{
∫ ǫ

0
e−i φ/2 dr1 e−|x| r2

1 −
∫ 0

ǫ
e−i φ/2 dr1 e−|x|r2

1

}

∼ exp[−2

3
x]

√

π

x
(45)

Now, we consider the special case φ = π. At this point, the steepest descent path looks

like that shown in Fig. 3 (Leave it upto you to confirm that this is the case). Note that
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θ=

θ=

θ=
θ=

θ=

θ=

−φ/3 + π/6

−φ/3+5 π/6 −φ/3+π/2

−φ/3−π/2
−φ/3−π/6

−φ/3−5π/6

θ1 =−φ/3
θ1=−φ/3+π/2

Figure 3: Steepest descent path for 0 < φ < π. The one relevant for integration shown in
thicker line

in evaluating the asymptotics of I(x), we now collect contribution from both the saddles.

However, since

Re p(−i) = − 2

3
cos φ > Re p(i) =

2

3
cos φ for φ = φ (46)

The contribution from the saddle t = − i is exponentially small, and the same result (45)

is still valid.

Re t

Im t

i

-i

θ=5π/6−φ/3

θ=π/6 − φ/3

Figure 4: Steepest descent path for φ = π. The one relevant for integration shown in
thicker line

For 2 π > φ > π, the steepest descent paths change qualitatively as shown in Fig. 3

(This can be argued using the same kind of consideration, as given above). Now, we get the

full contribution from both saddles, and one obtains besides (45) the additional contribution
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i

-i

θ=−φ/3+π/6

θ=−φ/3+5π/6

Figure 5: Steepest descent path for π < φ < 2 π. The one relevant for integration shown
in thicker line

at the saddle t = −i:

∼ exp [
2

3
eiφ|x|]

{
∫ ǫ

0
e−i φ/2+i π/2 dr2 e−|x| r2

2 +
∫ 0

ǫ
e−i φ/2 − i π/2 dr2 e−|x| r2

2

}

∼ i exp[
2

3
x]

√

π

x

Combining with (45), we get to the leading order,

I(x) ∼
√

π

x

{

exp[−2

3
x] + i exp[

2

3
x]

}

(47)

We note that as long as φ < 3π/2, the result (45) remains valid; at φ = 3π/2, both

the exponential contributions are of the same order. For 2 π > φ > 3π/2, only the

contribution from the second term is relevant, since the first is exponentially small.

Comment: The change of asymptotic behavior of an analytic function of x for large x, as

φ = arg x is changed is referred to as Stokes phenomena. It seems mysterious, since the

analytic function cannot have any discontinuity, yet the formula describing its asymptotic

behavior does have an apparent discontinuity across particular values of φ, called Stokes

lines. This is important in a number of physical applications.
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