
Week 11 Notes, Math 8610, Tanveer

1. 2-D inviscid irrotional free boundary: Conformal

Mapping

Last week, we looked at the problem of bubble in a 3-D flow, found
solutions of spherical bubbles and determined the motion for linear
perturbation about a sphere. We did not discuss the fully nonlinear
problem. There are two general approaches for nonlinear free-boundary
problems in inviscid irrotational flow: Boundary integral method and
conformal mapping approach. The latter is restricted to 2-D, as one
might expect.

We illustrate here the formulation of the free-boundary problem for
an evolving bubble in a conformal mapping representation. Further,
we investigate mathematical properties of a 2-D steadily translating
bubble in the absence of a body force, but in the presence of surface
tension. Note that 2-D water waves may be formulated in a similar
manner.

Consider the evolution of 2-D bubble of arbitrary shape where fluid
is moving uniformly with speed U0 at ∞ along the x1-axis, say with no
circulation or change of bubble volume. We introduce complex variable

(1.1) z = x1 + ix2

Since we have by assumption a potential flow with harmonic potential
Φ in Ω outside the bubble, it is appropriate to introduce the complex
potential W (z) and complex velocity dW

dz
:

(1.2) W (z) = Φ + iΨ ,
dW

dz
= Φx1

− iΦx2
= u1 − iu2

So, as z → ∞ the condition of uniform flow with no circulation and
source becomes

(1.3)
dW

dz
∼ U0 + O(1/z2)

Consider the conformal map

(1.4) z = Z(ζ, t),

that at each instant of time maps the domain interior of the unit circle
in the ζ-plane into the exterior of the evolving bubble (See Fig. 1),
with ζ = 0 corresponding to z = ∞. This mapping must have the form
(1.5)

Z(ζ, t) = −
a(t)

ζ
+ f(ζ, t) , f(ζ, t) =

∞
∑

n=0

an(t)ζn convergent for |ζ | < 1
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where we require a(t) > 0, which uniquely determines the conformal
map. It is to be noted from the nature of conformal map that if we

ζ

z

Ω

=Z (ζ, t)

Figure 1. Conformal map Z(ζ, t) from ζ to z-plane

traverse the boundary |ζ | = 1 counter-clockwise, then in the z-plane,
the corresponding image under z = Z(ζ, t) traverses the boundary of
the bubble clockwise. It is convenient to define

(1.6) w(ζ, t) = W (Z(ζ, t), t)

We notice that through chain-rule.

(1.7)
dW

dz

dZ

dζ
=

dw

dζ

(1.8) ∂tW +
dW

dz
∂tZ = ∂tw , hence ∂tW = ∂tw −

dw
dζ

dZ
dζ

∂tZ

The free boundary ∂Ω is characterized in the ζ-plane by |ζ | = 1; we
use the paramterization ζ = eiν on the free boundary and so, it is para-
metrically determined by z = Z(eiν , t) We denote by θ, the angle made
by the unit tangent with the Re z-axis, as the the bubble boundary
is traversed clockwise and s the arclength along the bubble boundary.
Then curvature of the bubble

(1.9) κ = −
dθ

ds
= −[

ds

dν
]−1

d

dν
arg

dZ

dν
= −

1

|dZ
dν
|
Im

{

d

dν
log Zν

}

Recall pressure condition on the free boundary ∂Ω:

(1.10) Φt +
1

2
|∇Φ|2 + V =

σ

ρ
κ

Because of relations (1.7)-(1.9), we obtain the following pressure con-
dition on ζ = eiν , on using iζ dZ

dζ
= dZ

dν
:

(1.11) Re

{

∂tw −

dw
dζ

dZ
dζ

∂tZ

}

+
1

2
|

dw
dζ

dZ
dζ

|2+V = −
σ

ρ|dZ
dζ
|
Re

{

ζ
d

dζ
log[ζZζ]

}
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If body force potential is due to gravity, i.e. V = gx2, we write it as
g ImZ. We now derive the kinematic boundary condition. Since the
free boundary is given by |ζ | = 1, or log |ζ(z, t)| = 0, it follows that

(1.12) ∂t log |ζ(z, t)| + [u1∂x1
+ u2∂x2

] log |ζ(z, t)| = 0

= Re

{

∂t log ζ(z, t) +

(

dW

dz

)

∗

d

dz
log ζ(z, t)

}

We note that

(1.13)
dζ

dz
=

1

Zζ

, while 0 = ∂tz = ∂t[Z(ζ(z, t), t)] = ∂tZ +
dZ

dζ
ζt

Hence from (1.12), we obtain the kinematic condition to be equivalent
to

(1.14) Re

{

−
∂tZ

ζ dZ
dζ

+
1

ζZζ

(

dw
dζ

dZ
dζ

)

∗
}

= 0

or by using the fact that on ζ = eiν ,

Re

{

1

ζ

(

dw

dζ

)

∗
}

= Re

{

ζ
dw

dζ

}

,

(1.15) Re

{

Zt

ζZζ
−

ζ dw
dζ

|Zζ |2

}

= 0

Equation (1.15) is the kinematic condition for any potential 2-D free
boundary problem; not just for a bubble. At z = ∞, which corre-
sponds to ζ = 0, the asymptotic condition (1.3) becomes equivalent to
requiring that as ζ → 0,

(1.16) w ∼ −
U0a(t)

ζ
+ O(1)

It is clear that, since w(ζ, t) must be regular at other points in |ζ | < 1,
w has the representation:
(1.17)

w = −
U0a(t)

ζ
+

∞
∑

n=0

bn(t)ζn , where series convergent for |ζ | < 1

For the evolution of the free surface, we have to solve (1.11) and (1.15)
for w and Z, each of which have the representation (1.5) and (1.17). It
is not difficult to show that if the boundary is smooth, the convergence
of the series representation extends to |ζ | = 1. Indeed, it the boundaries
are analytic, the convergence extends slightly beyond the unit circle.
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Generally, because of the complication of the equations (1.11) and
(1.15), these problems cannot be solved exactly. However, numerically,
this form of representation is useful since we can truncate the series
to (1.5) and (1.17) to a finite number of terms and solve the resulting
ODEs for a, {an} , {bn} and hence for the shape of the free boundary.
The advantage of the conformal mapping representation is that we have
converted a free boundary problem into a fixed boundary problem, the
domain now being |ζ | < 1. In the next section, we will consider the
special case of a steady translating bubble with no body force, i.e.

V = 0, where further progress can be made through analysis.

2. Steadily translating 2-D inviscid irrotational bubble:

In this case there is no-time dependence, and we are neglecting grav-
ity or any other body force, i.e. V = 0. Then, from (1.15), we have
Re ζ dw

dζ
= 0, implying d

dν
Im w = 0, which without loss of generality

means

(2.18) Ψ = Im w = 0 on ζ = eiν

From (1.16), it follows that without any loss of generality,

(2.19) w = −U0a

(

1

ζ
+ ζ

)

= −U0aω(ζ)

The pressure boundary condition reduces to

(2.20)
1

2
U2

0
a2|

dω
dζ

dZ
dζ

|2 = C −
σ

ρ|dZ
dζ
|
Re

{

ζ
d

dζ
log[ζZζ]

}

We have a constant C on the right because steady flow only implies
that Re[∂tw] = −C is independent of time, though not necessarily zero.
It is convenient to rescale Z so that

(2.21) Z(ζ) = af(ζ)

Then, (2.20) reduces to one parameter equation on |ζ | = 1:

(2.22) b|
ωζ

fζ
|2 = γ −

1

|fζ |
Re

{

1 + ζ
fζζ

fζ

}

, where b =
aρU2

0

2σ

It is convenient to introduce

(2.23) y(ζ) = f
1/2

ζ (ζ)

The function y(ζ) will then have a convergent series representation

(2.24) y(ζ) =
1

ζ
+

∞
∑

n=0

cn ζn
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for |ζ | ≤ 1, where it will be nonzero as well since fζ 6= 0 for |ζ | ≤ 1 for
a smooth boundary. The pressure condition (2.22) can be rewritten as

(2.25) |y|2
[

1 + 2Re

(

ζ
yζ

y

)]

+ b |ζ2 − 1|2 − γ |y|4 = 0,

2.1. General properties of the analytically continued y(ζ). With
a view to understanding the analytic properties of the conformal map-
ping function Z(ζ), we investigate the related function y(ζ) outside the
unit disk. In the process, it becomes necessary to analytically continue
the Bernoulli equation (2.25) off the boundary |ζ | = 1. Equation (2.25)
is not suitable for such a continuation since it involves absolute values.
However, we notice that on |ζ | = 1, ζ∗ = 1/ζ , [y(ζ)]∗ = ȳ(1/ζ) and
y∗

ζ = ȳζ(1/ζ), where the superscript ∗ denotes complex conjugate and
ȳ(ζ) is defined by

(2.26) ȳ(ζ) = 1/ζ +

∞
∑

n=0

c∗nζn,

Using these properties, it is found that (2.25) is equivalent to

(2.27) yζ − q1y − q2 − γq3y
2 = 0

on |ζ | = 1, where

(2.28) q1 = −
1

ζ

[

1 +
1

ζ

ȳζ(1/ζ)

ȳ(1/ζ)

]

,

(2.29) q2 =
b(ζ2 − 1)

2

ζ3ȳ(1/ζ)
,

(2.30) q3 =
1

ζ
ȳ(1/ζ),

Note that with the conditions on y on |ζ | = 1, each of q1, q2, q3, y
and therefore the left hand side of (2.27) is analytic on |ζ | = 1. It
follows from the well known principle of analytic continuation that
(2.27) holds everywhere in the complex ζ plane. Singularities of the
conformal mapping function Z and hence of y, aside from the pole at
ζ = 0, can occur in |ζ | > 1 only if a solution to (2.27) encounters
singularities.

Also from the property that y is analytic and nonzero inside and on
the unit circle except for a simple pole at ζ = 0, it follows that each
of q1, q2 and q3 defined in (2.28)-(2.30) will be analytic everywhere in
|ζ | ≥ 1, with the following general behavior at ∞

(2.31) q1(ζ) = O(ζ−2),
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(2.32) q2 ∼ b + O(1/ζ),

(2.33) q3 ∼ 1 + O(1/ζ).

Note, also that since y is nonzero inside the unit circle, q3 defined by
(2.30) cannot be zero anywhere outside the unit ζ circle. This property
will be important later.

The simplest case for which there is a trivial exact solution is when
γ = −1 corresponding to which b = 0 and

(2.34) y(ζ) =
1

ζ

This is for a circular bubble that is stationary is a quiescent fluid. This
solution is approached when surface tension effects are very strong
compared to inertial effects.

The other case for which there is a known exact solution is when
γ = 0. The y4 term drops out of (2.27) and the a priori knowledge of
analyticity of q1 and q2 implies that any solution to this equation has
the well known properties of a solution to a linear first order differential
equation with analytic coefficients in |ζ | ≥ 1. This is true despite the
fact that q1 and q2 depend on y. As a consequence of the analyticity
of q1 and q2, it follows that y cannot have any singularity in the finite
ζ plane outside the unit circle. Further, since y is related to the con-
formal mapping function z(ζ, t) through (2.23), the only singularity of
y inside the unit circle can be a simple pole at ζ = 0. Examining the
neighborhood of ζ = ∞, it is easy to see from (2.27) and properties
(2.31)-(2.33) that ζ = ∞ is a regular singular point. From a Froe-
binius series representation for y in the variable in 1/ζ , we conclude
from (2.27) that y ∼ b ζ + O(1), as ζ → ∞. Combining all the
information about y, we conclude that

(2.35) y = 1/ζ + a0 + b ζ,

for some complex a0. Substituting this form into (2.27), with q1 and q2

determined accordingly, the ζ−1 term of the Laurent series expansion
of the left hand side of (2.27) about ζ = ∞, when equated to zero,
results in

a0 = 0.

Similarly, from the constant term of this Laurent series, we obtain the
condition

(2.36) b−1 (b + 1)(1 − 3b) = 0.
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Equation (2.36) implies that b = 1

3
, since it must be a finite nonnegative

number. Thus, for γ = 0,

(2.37) Zζ = ay2 = a(1/ζ + ζ/3)2.

More generally, for γ 6= 0, it is possible to recognize that (2.27) has
the form of a Ricatti equation, and therefore can be related to a linear
second order equation with a transformation. It is possible to conclude
that b = b(γ) and

(2.38) y =
1

ζ
+

∞
∑

j=1

2rjζ

ζ2 − ζ2

j

, implying Zζ = a

{

1

ζ
+

∞
∑

j=1

2rjζ

ζ2 − ζ2

j

}2

,

where ζj is a discrete sets with the following asymptotic behavior as
j → +∞:

(2.39) ζj ∼ γ−1/2b−1/2

[

(2j − 1)
π

2
+ φ
]

,

(2.40) rj ∼
1

γ
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