More Week 12 Notes, Math 8610, Tanveer

1. Steady Stokes Equation – preliminaries

We now discuss the steady Stokes equation. The objective here is to build the necessary tools needed to prove that steady Stokes equation has a unique solution; as a bi-product, we are able able to bridge some of the gaps in steady Navier-Stokes analysis.

Recall the domain $\Omega \subset \mathbb{R}^n$ is an open domain on one side of Γ , which is Lipschitz. We will denote $\{\mathcal{O}_j\}_{i \in J}$ as an open cover for Γ .

Definition 1.1. Let $\mathcal{D}(\Omega)$ and $\mathcal{D}(\overline{\Omega})$ be the space of C^{∞} functions with compact support contained Ω and $\overline{\Omega}$ respectively.

Definition 1.2. Let \mathcal{V} be the space of functions

(1.1)
$$\mathcal{V} = \{ u \in \mathcal{D}(\Omega) , \nabla \cdot u = 0 \}$$

We define the closure of \mathcal{V} in $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ to be H and V respectively.

1.1. The space $E(\Omega)$.

Definition 1.3. We define the auxiliary space $E(\Omega)$

(1.2)
$$E(\Omega) = \left\{ u \in L^2(\Omega) , \nabla \cdot u \in L^2(\Omega) \right\}$$

This is a Hilbert space with scalar product

(1.3)
$$(u,v)_{E(\Omega)} = (u,v) + (\nabla \cdot u, \nabla \cdot v)$$

and norm $||u||_{E(\Omega)} = \left[(u, u)_{E(\Omega)} \right]^{1/2}$.

Theorem 1.1. Let Ω be a Lipschitz open set in \mathbb{R}^n . Then $\mathcal{D}(\overline{\Omega})$ is dense in $E(\Omega)$.

Proof. Let $u \in E(\Omega)$. We see to show u is th limit of functions in $\mathcal{D}(\overline{\Omega})$. We will assume without any loss of generality that u has bounded support even when Ω is unbounded; otherwise we replace u may be replaced by $u\phi(x/a)$ where $\phi(x)$ is a smooth positive cutoff function that is zero for $|x| \geq 2$ and equal to 1 for $|x| \leq 1$ and it is known that $u(x)\phi(x/a) \to u$ in $L^2(\Omega)$ and $\nabla \cdot (u(x)\phi(x/a)) \to \nabla \cdot u$ as $a \to \infty$. **i.** First, consider the case $\Omega = \mathbb{R}^n$. Then we can introduce a standard mollification $u_{\epsilon} \equiv \rho_{\epsilon} * u \in \mathcal{D}(\overline{\Omega})$ and it is known that $u_{\epsilon} \to u$ and $\nabla \cdot u_{\epsilon} = \rho_{\epsilon} * (\nabla \cdot u) \to \nabla \cdot u$, each in $L^2(\mathbb{R}^n)$ and the theorem is proved. **ii.** For the general case when $\Omega \neq \mathbb{R}^n$, we consider the open cover $\{\mathcal{O}_j\}_{i\in J}$ of Γ . It is clear that the sets Ω , $\{\mathcal{O}_j\}_{j\in J}$ is an open cover of $\overline{\Omega}$ and we consider a partition of unity so that for any $x \in \overline{\Omega}$,

(1.4)
$$1 = \phi(x) + \sum_{j \in J} \phi_j(x) \text{, where } \phi \in \mathcal{D}(\Omega) \text{, } \phi_j \in \mathcal{D}(\mathcal{O}_j)$$

So, if we decompose

 $\mathbf{2}$

(1.5)
$$u = \phi u + \sum_{j \in J} \phi_j u$$

Since the function ϕu has compact support in Ω , the argument in **i** may be repeated to show that $\rho_{\epsilon} * (\phi u) \in \mathcal{D}(\Omega)$ and approaches ϕu in $E(\Omega)$ norm.

Let us now consider one of the $u_j = \phi_j u$ that is not identically 0. Since the set $\mathcal{O}'_j = \mathcal{O}_j \cap \Omega$ is star shaped with respect to one of its points, we will translate that point, w.l.o.g to zero. We define for $\lambda > 0$, the linear scaling transformation $\sigma_{\lambda}: x \to \lambda x$ and $\sigma_{\lambda} \circ v$ to be the function $x \to v(\lambda x)$. Since \mathcal{O}'_j is star shaped and Lipschitz with respect to 0, it follows that

(1.6)
$$\mathcal{O}'_j \subset \overline{\mathcal{O}'_j} \subset \sigma_\lambda \mathcal{O}'_j$$
 for $\lambda > 1$, $\sigma_\lambda \mathcal{O}'_j \subset \overline{\sigma_\lambda \mathcal{O}'_j} \subset \mathcal{O}'_j$ for $0 < \lambda < 1$

Now, we claim the restriction of $\sigma_{1/\lambda} \circ u_j$ to \mathcal{O}'_j for $\lambda > 1$ converges to u_j in $E(\mathcal{O}'_j)$ (or $E(\mathcal{O})$) as $\lambda \to 1$. We note that

(1.7)
$$\int_{x\in\sigma_{\lambda}\mathcal{O}_{j}^{\prime}}\left|u_{j}\left(\lambda^{-1}x\right)\right|^{2}dx = \lambda^{n}\int_{y\in\mathcal{O}_{j}^{\prime}}\left|u_{j}(y)\right|^{2}dy$$

Therefore, it is enough to show that $\sigma_{1/\lambda} \circ u$ restricted to \mathcal{O}'_j converges to u. But this is true for $u \in \mathcal{D}(\mathcal{O}'_1)$, which is dense subset of $L^2(\mathcal{O}'_j)$.

Furthermore, if $\psi_j \in \mathcal{D}(\sigma_\lambda \mathcal{O}'_j)$ with $\psi_j = 1$ in \mathcal{O}'_j then $w_j = \psi_j \sigma_{1/\lambda} \circ u_j \in E(\mathbb{R}^n)$ and has compact support in $\sigma_\lambda \mathcal{O}'_j \subset \mathbb{R}^n$. Repeating the argument in part **i**, there exists a sequence of functions in $\mathcal{D}(\sigma_\lambda \mathcal{O}'_j)$ which converge to w_j in $E(\sigma_\lambda \mathcal{O}'_j)$ and therefore to u_j in $E(\mathcal{O}'_j)$ as $\lambda \to 1$.

Now, we seek to prove a trace theorem when Ω is an open bounded set with a C^2 boundary Γ . We seek to define normal velocity component $u \cdot n$ on Γ for $u \in E(\Omega)$, even when it is not defined pointwise.

Remark 1.4. First we state a few PDE results without proof for such a domain. It is known that there exists a linear continuous operator, usually called the trace operator $\gamma_0 : H^1(\Omega) \to L^2(\Gamma)$, which agrees with point values u on the boundary if $u \in C^2(\overline{\Omega})$. The image $\gamma_0(H^1(\Omega))$ is a dense subspace of $L^2(\Gamma)$ and denoted by $H^{1/2}(\Gamma)$. More over, there is

a linear contious operator $l_{\Omega} : H^{1/2}(\Gamma) \to H^1(\Omega)$ such that $\gamma_0 \circ l_0 = I$ (identity) on Γ .

Definition 1.5. Define $H^{-1/2}(\Gamma)$ is the dual space of $H^{1/2}(\Gamma)$

Remark 1.6. Note that

(1.8)
$$H^{1/2}(\Gamma) \subset L^2(\Gamma) \subset H^{-1/2}(\Gamma)$$

Theorem 1.2. (Trace Theorem in $E(\Omega)$): Let Ω be an open bounded set of class C^2 . Then there exists a continuous linear operator γ_{ν} : $E(\Omega) \to H^{-1/2}(\Gamma)$ such that $\gamma_{\nu}u = u \cdot n$ on Γ for $u \in \mathcal{D}(\overline{\Omega})$. Futher, for any $u \in E(\Omega)$ and scalar function $w \in H^1(\Omega)$

(1.9)
$$(u, \nabla w) + (\nabla \cdot u, w) = (\gamma_{\nu} u, \gamma_0 w)$$

Proof. Let $\phi \in H^{1/2}(\Gamma)$ and $w \in H^1(\Omega)$ such that $\gamma_0 w = \phi$. For $u \in E(\Omega)$, define corresponding functional

(1.10)
$$X_u(\phi) = (\nabla \cdot u, w) + (u, \nabla w) = \int_{\Omega} (w\nabla \cdot u + u \cdot \nabla w) dx$$

First, we note that $X_u(\phi)$ is independent of the particular choice of w since if we had $\gamma_0 w_1 = \gamma_0 w_2 = \phi$, then the difference of two calculations of $X_u(\phi)$ involving w_1 and w_2 respectively would be

(1.11)
$$(\nabla \cdot u, w) + (u, \nabla w)$$
, where $w = w_1 - w_2$

Since $\gamma_0 w = \gamma_0 w_1 - \gamma_0 w_1 = \phi - \phi = 0$, we know that $w \in H_0^1(\Omega)$ and can be approximated by a sequence $w_m \in \mathcal{D}(\Omega)$ and integration by parts gives

(1.12)
$$(\nabla \cdot u, w_m) + (u, \nabla w_m) = 0$$

Therefore, $X_u(\phi)$ does not depend on the particular choice of $w \in H^1(\Omega)$. We define one such $w = l_\Omega \phi$. Then, from Cauchy-Schwartz,

(1.13)
$$|X_u(\phi)| \le ||u||_{E(\Omega)} ||w||_{H^1(\Omega)} \le c_0 ||u||_{E(\Omega)} ||\phi||_{H^{1/2}(\Gamma)},$$

where c_0 is the norm of the bounded linear operator l_{Ω} . Therefore the mapping $\phi \to X_u(\phi)$ is a linear continuous mapping from $H^{1/2}(\Gamma)$ to \mathbb{R} . Thus, there exists $g = g(u) \in H^{-1/2}(\Gamma)$ such that $X_u(\phi) = \langle g, \phi \rangle$. Further, it is clear that

(1.14)
$$\|g\|_{H^{-1/2}(\Gamma)} \le c_0 \|u\|_{E(\Omega)}$$

We define $\gamma_{\nu} u = g(u)$, which is a continuous linear mapping from $E(\Omega)$ into $H^{-1/2}(\Gamma)$. Furthermore, for $u, w \in \mathcal{D}(\overline{\Omega})$, then, using divergence theorem,

(1.15)
$$X_u(\phi) = \int_{\Omega} \nabla \cdot (wu) \, dx = \int_{\Gamma} \phi u \cdot n \, dx = \langle u \cdot n, \gamma_0 w \rangle$$

Since for these functions w, $\gamma_0 w$ form a dense set in $H^{1/2}(\Gamma)$, it follows that the formula $X_u(\phi) = \langle u \cdot n, \phi \rangle$ is true for any $\phi \in H^{1/2}(\Gamma)$ and therefore, $\gamma_{\nu} u = u \cdot n$ for $u \in \mathcal{D}(\Omega)$.

Remark 1.7. The operator γ_{ν} actually maps $E(\Omega)$ onto $H^{-1/2}(\Gamma)$. To show this let $\phi \in H^{-1/2}(\Gamma)$ such that $\langle \phi, 1 \rangle = 0$. Then the Neumann problem

(1.16)
$$\Delta p = 0 , \text{ in } \Omega \frac{\partial p}{\partial n} = \phi , \text{ on } \Gamma$$

has a weak solution $p = p(\phi) \in H^1(\Omega)$, which is unique up to an additive constant. For one of these solutions define $u = \nabla p$. It is clear that $u \in E(\Omega)$ and $\gamma_{\nu}u = \frac{\partial p}{\partial n} = \phi$. Further, we can easily construct $u_0 \in C^1(\overline{\Omega})$ with $\gamma_{\nu}u_0 = 1$. Then for any $\psi \in H^{1/2}(\Gamma)$, decomposing

(1.17)
$$\psi = \phi + \frac{\langle \psi, 1 \rangle}{\text{measure}\Gamma},$$

we can define u depending on ψ with $\gamma_{\nu} u = \psi$ simply by setting

(1.18)
$$u = \nabla p + \frac{\langle \psi, 1 \rangle}{\text{measure of } \Gamma} \mathbf{u}_0,$$

where p is determine from (1.16) in terms of ϕ . Moreover the mapping $\psi \to u(\psi)$ is a linear continuous mapping from $H^{-1/2}(\Gamma)$ into $E(\Omega)$, *i.e.* is a lifting operator l_{Ω} .

Definition 1.8. Define $E_0(\Omega)$ to be the closure of $\mathcal{D}(\Omega)$ in $E(\Omega)$.

We have the following theorem

Theorem 1.3. The kernel of γ_{ν} is equal to $E_0(\Omega)$.

Proof. If $u \in E_0(\Omega)$, then by definition, there exists a sequence $u_m \in \mathcal{D}(\Omega)$ which converges to u in $E(\Omega)$. Since $u_m = 0$ on boundary Γ , it follows that $\gamma_{\nu}u_m = 0$ and therefore $\gamma_{\nu}u = 0$.

Now assume for $u \in E(\Omega)$, $\gamma_{\nu}u = 0$. Since $u \in E(\Omega)$, it can be approximated arbitrarily closely by functions in $\mathcal{D}(\overline{\Omega})$. Let $\Phi \in \mathcal{D}(\mathbb{R}^n)$ and ϕ be the restriction of Φ to Ω . Since $\gamma_{\nu}u = 0$, it follows that $\langle \gamma_{\nu}u, \gamma_0\phi \rangle = 0$, implying

(1.19)
$$\int_{\Omega} \left(\phi \nabla \cdot u + u \cdot \nabla \phi \right) dx = 0$$

Define for functions v in Ω extensions to \mathbb{R}^n so that $\overline{v}(x) = v(x)$ for $x \in \Omega$ and $\overline{v}(x) = 0$ for $x \in \mathbb{R}^n \setminus \Omega$. Then, we may re-write relation

(1.19) as
(1.20)
$$\int_{\mathbb{R}^n} \left(\Phi \overline{\nabla \cdot u} + \overline{u} \cdot \nabla \Phi \right) dx = 0 = \int_{\mathbb{R}^n} \left(\Phi \nabla \cdot \overline{u} + \overline{u} \cdot \nabla \Phi \right) dx, \text{ for any } \Phi \in \mathcal{D}(\mathbb{R}^n)$$

This implies $\overline{\nabla \cdot u} = \nabla \cdot \overline{u}$ and therefore $\overline{u} \in E(\mathbb{R}^n)$.

Now carry out the same steps as in Theorem 1.1. We use as before an open covering of $\overline{\Omega}$ using $\{\mathcal{O}_j\}_{j\in J}$ and Ω and using partition of unity, we reduce the general case to one where u has only support in $\mathcal{O}_j \cap \overline{\Omega}$. Then for $0 < \lambda < 1$, $\sigma_{\lambda} \circ \overline{u}$ has support within \mathcal{O}'_j and yet converges to \overline{u} in $E(\mathbb{R}^n)$ as $\lambda \to 1$. On the other and, using standard molification, one can approximate $\sigma_{\lambda} \circ \overline{u}$ by functions in $\mathcal{D}(\Omega)$.

Remark 1.9. If the set Ω is unbounded or if its boundary is not smooth, some partial results remain true: for example, if $u \in E(\Omega)$, we can define $\gamma_{\nu}u$ on each bounded part Γ_0 of Γ of class C^2 , and $\gamma_{\nu}u \in H^{-1/2}(\Gamma_0)$. If Ω is smooth but unbounded or if the boundary is the union of a finite number of bounded (n-1)-dimensional manifolds of class C^2 , then $\gamma_{\nu}u$ is defined in this way on all Γ . Nevertheless, the generalized Stokes formula (1.9) does not hold.

Remark 1.10. If $u \in H^1(\Omega)$, then we will assume the following results as known: (a) There exists continuous linear mapping $\gamma_0 : \mathcal{H}^1(\Omega) \to L^2(\Gamma)$ such that $\gamma_0 u = u \Big|_{\Gamma}$ for every $u \in \mathcal{D}(\overline{\Omega})$. We denote $\mathcal{H}^{1/2}(\Gamma) = \gamma_0(H^1(\Omega))$; (b) There exists a lifting operator $l_\Omega : \mathcal{H}^{1/2}(\Gamma) \to H^1(\Omega)$ such that $\gamma_0 \circ l_\Omega = I$, the identity operator on $\mathcal{H}^{1/2}(\Gamma)$; $\mathcal{H}^{1/2}(\Gamma_0)$ is equipped with the norm carried by γ_0 . (c) Ω is a Lipschitz set. Then, all the preceding results can be extended to this case. Theorems 1.1-1.3 hold. The proof of Theorem 1.2 leads to a definition of $\gamma_{\nu} u \in \mathcal{H}^{-1/2}(\Gamma)$, which is the dual space of $\mathcal{H}^{1/2}(\Gamma)$. The generalized Stokes formula (1.9) is also valid.