More Week 12 Notes, Math 8610, Tanveer

1. STEADY STOKES EQUATION — PRELIMINARIES

We now discuss the steady Stokes equation. The objective here is to
build the necessary tools needed to prove that steady Stokes equation
has a unique solution; as a bi-product, we are able able to bridge some
of the gaps in steady Navier-Stokes analysis.

Recall the domain £2 C R™ is an open domain on one side of I'; which
is Lipschitz. We will denote {O;},_; as an open cover for I'.

Definition 1.1. Let D(Q2) and D (Q) be the space of C* functions
with compact support contained Q and Q2 respectively.

Definition 1.2. Let V be the space of functions

(1.1) V={ueD(Q) ,V-u=0}

We define the closure of V in L* (Q) and H] (Q) to be H and V' respec-
tively.

1.1. The space E(f2).
Definition 1.3. We define the auziliary space F ()

(1.2) EQ) = {u€L2 Q) ,V-ucL? (Q)}
This is a Hilbert space with scalar product
(1.3) (w, V) gy = (w,v) + (V- -4, V- v)

1/2
and norm ||u|| gy = [(uvu)E(Q)} :

Theorem 1.1. Let €2 be a Lipschitz open set in R™. Then D (ﬁ) 1S
dense in E ().

Proof. Let u € E(£2). We see to show w is th limit of functions in D (€2).
We will assume without any loss of generality that v has bounded
support even when () is unbounded; otherwise we replace u may be
replaced by u¢ (z/a) where ¢(z) is a smooth positive cutoff function
that is zero for |z| > 2 and equal to 1 for |z| < 1 and it is known that
uw(z)p(z/a) — win L*(Q) and V - (u(x)¢p(z/a)) — V - u as a — oo.

i. First, consider the case 2 = R™. Then we can introduce a standard
mollification v, = p. x u € D (ﬁ) and it is known that u, — w and
V-ue = p.*(V-u) — V-u, each in L?(R") and the theorem is proved.
ii. For the general case when 2 # R", we consider the open cover
{Oj},c; of I'. It is clear that the sets Q, {O;},_; is an open cover of
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Q and we consider a partition of unity so that for any = € Q,
(1.4) 1=g¢(x)+ Y ¢j(x) ,where ¢ € D(Q) ,¢; € D(0;)

jeJ
So, if we decompose
(1.5) u = ¢u+z¢ju

jeJ

Since the function ¢u has compact support in €2, the argument in i
may be repeated to show that p. * (¢pu) € D(£2) and approaches ¢u in
E() norm.

Let us now consider one of the u; = ¢;u that is not identically 0.
Since the set O} = O; N is star shaped with respect to one of its
points, we will translate that point, w.l.o.g to zero. We define for
A > 0, the linear scaling transformation o): * — Ax and o) o v to be

the function z — v (Az). Since O} is star shaped and Lipschitz with
respect to 0, it follows that

(1.6) O;C@CO’)\O; for A >1,0,\0; C0,0; C O] for 0 <A< 1

Now, we claim the restriction of o/ o u; to (9;- for A > 1 converges to
uj in E(Oj) (or E(O)) as A — 1. We note that

(1.7) / ol (A1) fdx — A" /

yEO;
Therefore, it is enough to show that o1y o u restricted to O} converges
to u. But this is true for u € D(0[), which is dense subset of L*(0j).

Furthermore, if ¢; € D (U)\O;-) with ¢; = 1 in O} then w; = ;0150
u; € E(R") and has compact support in 0,O; C R". Repeating the

uj(y)rdy

argument in part i, there exists a sequence of functions in D (0,\(9;-)

which converge to w; in E (0,0}) and therefore to u; in E(O}) as
A—1. 1

Now, we seek to prove a trace theorem when (2 is an open bounded set
with a C? boundary I'. We seek to define normal velocity component
u-nonl foru € E(Q), even when it is not defined pointwise.

Remark 1.4. First we state a few PDE results without proof for such a
domain. It is known that there exists a linear continuous operator, usu-
ally called the trace operator o : H'(2) — L?(T'), which agrees with
point values u on the boundary if u € C? (©2). The image 7o (H'(2)) is
a dense subspace of L?(I") and denoted by H'/? (T"). More over, there is
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a linear contious operator lg : H/2(I') — H'(£2) such that v oly = I
(identity) on T'.

Definition 1.5. Define H=Y/2(T") is the dual space of HY/?(T')
Remark 1.6. Note that
(1.8) HY*() ¢ L) ¢ H V(I

Theorem 1.2. (Trace Theorem in FE(SY)): Let 2 be an open bounded
set of class C*. Then there exists a continous linear operator =, :
E(Q) — H~Y2(T) such that y,u =u-n on T for u € D(Q). Futher,
for any v € E(Q) and scalar function w € H'(Q)

(1.9) (u, Vw) + (V- u,w) = (,u, yow)

Proof. Let ¢ € HY*(T') and w € H'(Q) such that yyw = ¢. For
u € E(§), define corresponding functional

(1.10) X, (¢):(V‘U,U))“‘(U,VUJ):A(WV'U+U'VW)dx

First, we note that X,(¢) is independent of the particular choice of w
since if we had yow; = Yywy = ¢, then the difference of two calculations
of X, (¢) involving w; and wy respectively would be

(1.11) (V-u,w)+ (u, Vw) ,where w = w;y — ws
Since Yow = Yow; — Yow; = ¢ — ¢ = 0, we know that w € H}(Q2) and

can be approximated by a sequence w,, € D(f)) and integration by
parts gives

(1.12) (V- u,wy,) + (u, Vwy,) =0

Therefore, X,(¢) does not depend on the particular choice of w €
H'(Q2). We define one such w = lg¢. Then, from Cauchy-Schwartz,

(L13) [ Xu(0)] < lullmw Il < collullpe) 9]l nq.

where ¢ is the norm of the bounded linear operator lg. Therefore the
mapping ¢ — X,(¢) is a linear continuous mapping from H'/?(T') to
R. Thus, there exists g = g(u) € H~Y2(T) such that X,(¢) = (g, $).
Further, it is clear that

(1.14) 91l rr-1/2r) < collull

We define v,u = g(u), which is a continuous linear mapping from E((2)
into H~Y/(T"). Furthermore, for u,w € D(f), then, using divergence
theorem,

(1.15) Xy (9) = /QV (wu) de == /F¢u -ndx = (u - n, yw)



4

Since for these functions w, yow form a dense set in H'/2(T"), it follows
that the formula X,(¢) = (u-n,¢) is true for any ¢ € H'/?(T') and
therefore, v,u =u-n foru e D(Q2). 1

Remark 1.7. The operator v, actually maps F(2) onto H~/2(I"). To
show this let ¢ € H~/?(I") such that (¢,1) = 0. Then the Neumann
problem

0
(1.16) Ap=0,in QL =6 onT

on
has a weak solution p = p(¢) € H'(Q), which is unique up to an
additive constant. For one of these solutions define u = Vp. It is clear
that v € E(Q) and y,u = 2 = ¢. Further, we can easily construct

- on
ug € CY(Q) with y,uo = 1. Then for any ¢ € H/?(T'), decomposing
1
(1.17) YV =¢+ M,
measurel’

we can define u depending on 1 with v,u = 1 simply by setting
(¥, 1)

1.18 =V SR N Mt A
( ) Y Pt measure of T "

where p is determine from ([CI6) in terms of ¢. Moreever the mapping
Y — u(v) is a linear continuous mapping from H~V2(T') into E(1Q),
i.e. is a lifting operator lq.

Definition 1.8. Define Ey(2) to be the closure of D(2) in E(£2).
We have the following theorem
Theorem 1.3. The kernel of v, is equal to Ey(2).

Proof. If u € Ey(2), then by definition, there exists a sequence u,, €
D(Q2) which converges to v in E(f2). Since u,, = 0 on boundary I, it
follows that v,u,, = 0 and therefore v,u = 0.

Now assume for v € E(Q), y,u = 0. Since u € E(f), it can be

approximated arbitrarily closely by functions in D(f2). Let & € D(R")
and ¢ be the restriction of ® to 2. Since y,u = 0, it follows that

(Vwu, v0¢) = 0, implying
(1.19) /(¢V-u+u-V¢)d:ﬂ:0
Q

Define for functions v in €2 extensions to R™ so that (z) = v(x) for
x € Qand v(z) =0 for z € R"\ Q. Then, we may re-write relation



(CT9) as
(1.20)

/ (PV-u+u-V®)dr =0 :/ (dV -u+7u-V®P)dx, for any & € D(R")
This implies V - u = V - @ and therefore u € E(R").

Now carry out the same steps as in Theorem [T We use as before an
open covering of 2 using {Oj}je ; and © and using partition of unity,

we reduce the general case to one where u has only support in O; N Q.
Then for 0 < A < 1, 0 0% has support within O’ and yet converges to
uin E(R") as A — 1. On the otherhand, using standard molification,
one can approximate oy o u by functions in D(Q2). 1

Remark 1.9. If the set 2 is unbounded or if its boundary is not
smooth, some partial results remain true: for example, if u € E(Q),
we can define v,u on each bounded part Iy of I' of class C?, and
Y € H=2(Ty). If Q is smooth but unbounded or if the boundary is
the union of a finite number of bounded (n — 1)-dimensional manifolds
of class C?, then ~,u is defined in this way on all I. Nevertheless, the
generalized Stokes formula (L) does not hold.

Remark 1.10. If u € H'(Q2), then we will assume the following results
as known: (a) There exists continuous linear mapping v : H}(Q) —

L3(T') such that you = u . for every u € D(Q). We denote H'/%(T) =

Yo(H'(Q)); (b) There exists a lifting operator I : HY2(I') — H()
such that vy o lq = I, the identity operator on HY2(T"); HY2(Ty) is
equipped with the norm carried by 7. (c) €2 is a Lipschitz set. Then,
all the preceding results can be extended to this case. Theorems
hold. The proof of Theorem [[2 leads to a definition of v,u € H~Y/2(T),
which is the dual space of H'/?(T"). The generalized Stokes formula
([C3) is also valid.
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