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1. Steady Stokes Equation – preliminaries

We now discuss the steady Stokes equation. The objective here is to
build the necessary tools needed to prove that steady Stokes equation
has a unique solution; as a bi-product, we are able able to bridge some
of the gaps in steady Navier-Stokes analysis.

Recall the domain Ω ⊂ R
n is an open domain on one side of Γ, which

is Lipschitz. We will denote {Oj}j∈J as an open cover for Γ.

Definition 1.1. Let D (Ω) and D
(

Ω
)

be the space of C∞ functions

with compact support contained Ω and Ω respectively.

Definition 1.2. Let V be the space of functions

(1.1) V = {u ∈ D (Ω) ,∇ · u = 0}

We define the closure of V in L2 (Ω) and H1
0 (Ω) to be H and V respec-

tively.

1.1. The space E(Ω).

Definition 1.3. We define the auxiliary space E(Ω)

(1.2) E(Ω) =
{

u ∈ L2 (Ω) ,∇ · u ∈ L2 (Ω)
}

This is a Hilbert space with scalar product

(1.3) (u, v)E(Ω) = (u, v) + (∇ · u,∇ · v)

and norm ‖u‖E(Ω) =
[

(u, u)E(Ω)

]1/2

.

Theorem 1.1. Let Ω be a Lipschitz open set in R
n. Then D

(

Ω
)

is
dense in E(Ω).

Proof. Let u ∈ E(Ω). We see to show u is th limit of functions in D
(

Ω
)

.
We will assume without any loss of generality that u has bounded
support even when Ω is unbounded; otherwise we replace u may be
replaced by uφ (x/a) where φ(x) is a smooth positive cutoff function
that is zero for |x| ≥ 2 and equal to 1 for |x| ≤ 1 and it is known that
u(x)φ(x/a) → u in L2(Ω) and ∇ · (u(x)φ(x/a)) → ∇ · u as a→ ∞.
i. First, consider the case Ω = R

n. Then we can introduce a standard
mollification uǫ ≡ ρǫ ∗ u ∈ D

(

Ω
)

and it is known that uǫ → u and
∇·uǫ = ρǫ ∗ (∇·u) → ∇·u, each in L2(Rn) and the theorem is proved.
ii. For the general case when Ω 6= R

n, we consider the open cover
{Oj}j∈J of Γ. It is clear that the sets Ω, {Oj}j∈J is an open cover of
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Ω and we consider a partition of unity so that for any x ∈ Ω,

(1.4) 1 = φ(x) +
∑

j∈J

φj(x) ,where φ ∈ D (Ω) , φj ∈ D (Oj)

So, if we decompose

(1.5) u = φu+
∑

j∈J

φju

Since the function φu has compact support in Ω, the argument in i

may be repeated to show that ρǫ ∗ (φu) ∈ D(Ω) and approaches φu in
E(Ω) norm.

Let us now consider one of the uj = φju that is not identically 0.
Since the set O′

j = Oj ∩ Ω is star shaped with respect to one of its
points, we will translate that point, w.l.o.g to zero. We define for
λ > 0, the linear scaling transformation σλ: x → λx and σλ ◦ v to be
the function x → v (λx). Since O′

j is star shaped and Lipschitz with
respect to 0, it follows that

(1.6) O′
j ⊂ O′

j ⊂ σλO
′
j forλ > 1 , σλO

′
j ⊂ σλO

′
j ⊂ O′

j for 0 < λ < 1

Now, we claim the restriction of σ1/λ ◦ uj to O′
j for λ > 1 converges to

uj in E
(

O′
j

)

(or E (O)) as λ→ 1. We note that

(1.7)

∫

x∈σλO
′

j

∣

∣

∣
uj

(

λ−1x
)

∣

∣

∣

2

dx = λn

∫

y∈O′

j

∣

∣

∣
uj(y)

∣

∣

∣

2

dy

Therefore, it is enough to show that σ1/λ ◦u restricted to O′
j converges

to u. But this is true for u ∈ D(O′
|), which is dense subset of L2(O′

j).

Furthermore, if ψj ∈ D
(

σλO
′
j

)

with ψj = 1 in O′
j then wj = ψjσ1/λ ◦

uj ∈ E (Rn) and has compact support in σλO
′
j ⊂ R

n. Repeating the

argument in part i, there exists a sequence of functions in D
(

σλO
′
j

)

which converge to wj in E
(

σλO
′
j

)

and therefore to uj in E(O′
j) as

λ→ 1.

Now, we seek to prove a trace theorem when Ω is an open bounded set
with a C2 boundary Γ. We seek to define normal velocity component
u · n on Γ for u ∈ E (Ω), even when it is not defined pointwise.

Remark 1.4. First we state a few PDE results without proof for such a
domain. It is known that there exists a linear continuous operator, usu-
ally called the trace operator γ0 : H1(Ω) → L2(Γ), which agrees with
point values u on the boundary if u ∈ C2

(

Ω
)

. The image γ0 (H1(Ω)) is

a dense subspace of L2(Γ) and denoted by H1/2 (Γ). More over, there is



3

a linear contious operator lΩ : H1/2 (Γ) → H1(Ω) such that γ0 ◦ l0 = I
(identity) on Γ.

Definition 1.5. Define H−1/2(Γ) is the dual space of H1/2(Γ)

Remark 1.6. Note that

(1.8) H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ)

Theorem 1.2. (Trace Theorem in E(Ω)): Let Ω be an open bounded
set of class C2. Then there exists a continous linear operator γν :
E(Ω) → H−1/2 (Γ) such that γνu = u · n on Γ for u ∈ D

(

Ω
)

. Futher,
for any u ∈ E(Ω) and scalar function w ∈ H1(Ω)

(1.9) (u,∇w) + (∇ · u, w) = (γνu, γ0w)

Proof. Let φ ∈ H1/2(Γ) and w ∈ H1(Ω) such that γ0w = φ. For
u ∈ E(Ω), define corresponding functional

(1.10) Xu (φ) = (∇ · u, w) + (u,∇w) =

∫

Ω

(w∇ · u+ u · ∇w) dx

First, we note that Xu(φ) is independent of the particular choice of w
since if we had γ0w1 = γ0w2 = φ, then the difference of two calculations
of Xu(φ) involving w1 and w2 respectively would be

(1.11) (∇ · u, w) + (u,∇w) ,where w = w1 − w2

Since γ0w = γ0w1 − γ0w1 = φ − φ = 0, we know that w ∈ H1
0 (Ω) and

can be approximated by a sequence wm ∈ D(Ω) and integration by
parts gives

(1.12) (∇ · u, wm) + (u,∇wm) = 0

Therefore, Xu(φ) does not depend on the particular choice of w ∈
H1(Ω). We define one such w = lΩφ. Then, from Cauchy-Schwartz,

(1.13)
∣

∣

∣
Xu(φ)

∣

∣

∣
≤ ‖u‖E(Ω)‖w‖H1(Ω) ≤ c0‖u‖E(Ω)‖φ‖H1/2(Γ),

where c0 is the norm of the bounded linear operator lΩ. Therefore the
mapping φ → Xu(φ) is a linear continuous mapping from H1/2(Γ) to
R. Thus, there exists g = g(u) ∈ H−1/2(Γ) such that Xu(φ) = 〈g, φ〉.
Further, it is clear that

(1.14) ‖g‖H−1/2(Γ) ≤ c0‖u‖E(Ω)

We define γνu = g(u), which is a continuous linear mapping from E(Ω)
into H−1/2(Γ). Furthermore, for u, w ∈ D(Ω), then, using divergence
theorem,

(1.15) Xu (φ) =

∫

Ω

∇ · (wu) dx ==

∫

Γ

φu · ndx = 〈u · n, γ0w〉
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Since for these functions w, γ0w form a dense set in H1/2(Γ), it follows
that the formula Xu(φ) = 〈u · n, φ〉 is true for any φ ∈ H1/2(Γ) and
therefore, γνu = u · n for u ∈ D(Ω).

Remark 1.7. The operator γν actually maps E(Ω) ontoH−1/2(Γ). To
show this let φ ∈ H−1/2(Γ) such that 〈φ, 1〉 = 0. Then the Neumann
problem

(1.16) ∆p = 0 , in Ω
∂p

∂n
= φ , on Γ

has a weak solution p = p(φ) ∈ H1(Ω), which is unique up to an
additive constant. For one of these solutions define u = ∇p. It is clear
that u ∈ E(Ω) and γνu = ∂p

∂n
= φ. Further, we can easily construct

u0 ∈ C1(Ω) with γνu0 = 1. Then for any ψ ∈ H1/2(Γ), decomposing

(1.17) ψ = φ+
〈ψ, 1〉

measureΓ
,

we can define u depending on ψ with γνu = ψ simply by setting

(1.18) u = ∇p +
〈ψ, 1〉

measure of Γ
u0,

where p is determine from (1.16) in terms of φ. Moreever the mapping
ψ → u(ψ) is a linear continuous mapping from H−1/2(Γ) into E(Ω),
i.e. is a lifting operator lΩ.

Definition 1.8. Define E0(Ω) to be the closure of D(Ω) in E(Ω).

We have the following theorem

Theorem 1.3. The kernel of γν is equal to E0(Ω).

Proof. If u ∈ E0(Ω), then by definition, there exists a sequence um ∈
D(Ω) which converges to u in E(Ω). Since um = 0 on boundary Γ, it
follows that γνum = 0 and therefore γνu = 0.

Now assume for u ∈ E(Ω), γνu = 0. Since u ∈ E(Ω), it can be
approximated arbitrarily closely by functions in D(Ω). Let Φ ∈ D(Rn)
and φ be the restriction of Φ to Ω. Since γνu = 0, it follows that
〈γνu, γ0φ〉 = 0, implying

(1.19)

∫

Ω

(φ∇ · u+ u · ∇φ) dx = 0

Define for functions v in Ω extensions to R
n so that v(x) = v(x) for

x ∈ Ω and v(x) = 0 for x ∈ R
n \ Ω. Then, we may re-write relation
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(1.19) as
(1.20)
∫

Rn

(

Φ∇ · u+ u · ∇Φ
)

dx = 0 =

∫

Rn

(Φ∇ · u+ u · ∇Φ) dx , for any Φ ∈ D(Rn)

This implies ∇ · u = ∇ · u and therefore u ∈ E(Rn).
Now carry out the same steps as in Theorem 1.1. We use as before an

open covering of Ω using {Oj}j∈J and Ω and using partition of unity,

we reduce the general case to one where u has only support in Oj ∩Ω.
Then for 0 < λ < 1, σλ ◦ u has support within O′

j and yet converges to
u in E(Rn) as λ → 1. On the otherhand, using standard molification,
one can approximate σλ ◦ u by functions in D(Ω).

Remark 1.9. If the set Ω is unbounded or if its boundary is not
smooth, some partial results remain true: for example, if u ∈ E(Ω),
we can define γνu on each bounded part Γ0 of Γ of class C2, and
γνu ∈ H−1/2(Γ0). If Ω is smooth but unbounded or if the boundary is
the union of a finite number of bounded (n− 1)-dimensional manifolds
of class C2, then γνu is defined in this way on all Γ. Nevertheless, the
generalized Stokes formula (1.9) does not hold.

Remark 1.10. If u ∈ H1(Ω), then we will assume the following results
as known: (a) There exists continuous linear mapping γ0 : H1(Ω) →

L2(Γ) such that γ0u = u
∣

∣

∣

Γ
for every u ∈ D(Ω). We denote H1/2(Γ) =

γ0(H
1(Ω)); (b) There exists a lifting operator lΩ : H1/2(Γ) → H1(Ω)

such that γ0 ◦ lΩ = I, the identity operator on H1/2(Γ); H1/2(Γ0) is
equipped with the norm carried by γ0. (c) Ω is a Lipschitz set. Then,
all the preceding results can be extended to this case. Theorems 1.1-1.3
hold. The proof of Theorem 1.2 leads to a definition of γνu ∈ H−1/2(Γ),
which is the dual space of H1/2(Γ). The generalized Stokes formula
(1.9) is also valid.
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