
Week 12 Notes, Math 8610, Tanveer

1. Navier-Stokes with Boundaries

We now turn to analysis of Navier-Stokes equations with solid bound-
aries on which no-slip condition boundary conditions will be imposed.
The notes in this part follow Temam’s book on Navier-Stokes equa-
tions.
We will assume that the domain Ω is an open set on one side of a

boundary Γ that is locally Lipschitz, i.e. locally in a neighborhood of a
point x ∈ Γ, we have a representation xj = θ (x1, x2, · · ·xj−1, xj+1, · · ·xn)
for some j, where θ is a Lipschitz function. It is known that such a
a set Ω is locally star-shaped, i.e. for each point xj ∈ Γ, there exists
an open neighborhood Oj such that there O′

j = Ω ∩ Oj is star-shaped
with respect to one of its points. It is clear that if Γ is finite, then it
has a finite open cover {Oj}j∈J for a finite set J . We may arrange the
same to be true even when Γ is not finite.

Definition 1.1. Let D (Ω) and be the space of C∞ functions with com-
pact support contained Ω.

Definition 1.2. Let V be the space of functions

(1.1) V = {u ∈ D (Ω) ,∇ · u = 0}

We define the closure of V in L2 (Ω) and H1
0 (Ω) to be H and V respec-

tively.

2. Steady Navier-Stokes equation with stationary

boundaries

First, we assume Ω to be a Lipschitz, bounded and open set in R
n.

We assume f ∈ L2(Ω). We look for solution u : Rn → R
n, p : Rn → R

satisfying

(2.2) − ν∆u+ (u · ∇)u+∇p = f in Ω

(2.3) ∇ · u = 0 in Ω

(2.4) u = 0 on Γ

If u, p and f were smooth functions satisfying (2.2)-(2.4), then clearly
u ∈ V , and for any v ∈ V, inner product of (2.2) with v and integration
leads to

(2.5) ν (u, v)1 + b(u, u, v) = (f, v)0 ,
1
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where recall that (, )m is the inner-product in the Hm Hilbert space
and b is a trilinear functional of its arguments defined by

(2.6) b(u, v, w) =

∫

Ω

uivj,iwjdx

It is useful to identify the given f ∈ L2 with f ∈ V ′ the dual space of
V , such that the right side of (2.7) may be interpreted as 〈f, v〉. We
then rewrite (2.7) as

(2.7) ν (u, v)1 + b(u, u, v) = 〈f, v〉

Equation (2.7) provides the the weak formulation of steady Navier-
Stokes equation–we require that the solution u ∈ V satisfies (2.7) for
any v ∈ V (note V is the closure of V in H1

0 norm), where f ∈ V ′

is a given function. It may be shown that any such solution to (2.7)
satisfies (2.2) in a distributional sense.

3. Weak solutions to steady Navier Stokes

Our focus right now will be to prove solutions to (2.7) exist(1).

Lemma 3.1. The trilinear form b is defined and trilinear continuous
on H1

0 (Ω)×H1
0 (Ω)×H1

0 (Ω) for 2 ≤ n ≤ 4 and for bounded Ω.

Proof. If u, v, w ∈ H1
0 (Ω), and 2 < n ≤ 4,

(3.8) u ∈ L2n/(n−2) (Ω) , Dv ∈ L2(Ω) , w ∈ Ln(Ω),

where we used Sobolev embedding theorems, definition of H1
0 , the ob-

servation that n ≤ 2n
n−2

for 2 ≤ n ≤ 4 and the fact that L2n/(n−2)(Ω) ⊂

Ln(Ω) for finite bounded domain Ω. By the Holder inequality,

(3.9)
∣

∣

∣

∫

Ω

uivj,iwjdx

∣

∣

∣
≤ c′‖ui‖L2n/(n−2)(Ω)‖vj,i‖L2(Ω)‖wj‖Ln(Ω)

It follows that

(3.10)
∣

∣

∣
b(u, v, w)

∣

∣

∣
≤ c(n,Ω)‖u‖H1

0 (Ω)‖v‖H1
0 (Ω)‖w‖H1

0 (Ω)

When n = 2, the same results (3.10) hold since

(3.11)
∣

∣

∣

∫

Ω

uivj,iwjdx

∣

∣

∣
≤ ‖ui‖L4(Ω)‖vj,k‖L2(Ω)‖w‖L4(Ω),

and for n = 2 and Sobolev inequality gives ‖g‖L4(Ω) ≤ c′‖g‖H1(Ω).
Continuity of the trilinear form b in each argument follows immediately
from (3.10).

(1)It is to be noted that if Ω is not bounded then b as defined in (2.6) need not make sense.
In that case, we have to introduce auxiliary space for v other than V
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Corollary 3.2. For an open bounded set Ω and u, v, w ∈ V and 2 ≤
n ≤ 4, b is trilinear continuous form on V × V × V .

Definition 3.3. For u, v ∈ H1
0 (Ω), we define B(u, v) the linear con-

tinuous form on V defined by

(3.12) 〈B(u, v), w〉 = b(u, v, w) , u, v ∈ H1
0 (Ω) for any w ∈ V

Lemma 3.4. For any open bounded set Ω, for 2 ≤ n ≤ 4,

(3.13) b(u, v, v) = 0 , for any u ∈ V, v ∈ H1
0 (Ω)

(3.14) b(u, w, v) = −b(u, v, w) , for any u ∈ V, v, w ∈ H1
0 (Ω)

Proof. It is enough to prove these equalities for u ∈ V and v ∈ D(Ω)
since they are dense in the given spaces. Integration by parts gives

(3.15) b(u, v, v) =

∫

Ω

ujvi,jvidx =

∫

Ω

∂xj

(

1

2
ujvivi

)

dx = 0

Now, if we replace v in (3.13) by v + w, we obtain
(3.16)
0 = b(u, v+w, v+w) = b(u, v, w)+b(u, v, v)+b(u, w, v)+b(u, w, w) = b(u, v, w)+b(u, w, v)

and (3.14) follows.

Before we prove a theorem on existence of steady solutions, we will
need the following preliminary lemma:

Lemma 3.5. Let X be a finite dimensional Hilbert sapce with inner-

product ( , ) and norm
∣

∣

∣
.
∣

∣

∣
. Let P be a continuous mapping from X to

itself such that

(3.17) (P (ξ), ξ) > 0 , for
∣

∣

∣
ξ

∣

∣

∣
= k > 0

Then, there exists ξ ∈ X with |ξ| ≤ k such that P (ξ) = 0.

Proof. Suppose that P has no zero in the closed Ball B ⊂ X centered
at 0 with radius k. Then,

(3.18) S(ξ) = −
kP (ξ)
∣

∣

∣
P (ξ)

∣

∣

∣

maps the B back to itself and is continuous in ξ. Brower fixed point
theorem implies that S has a fixed point in B, i.e. there exists ξ0 ∈ B

so that

(3.19) ξ0 = −
kP (ξ0)
∣

∣

∣
P (ξ0)

∣

∣

∣
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Clearly from above
∣

∣

∣
ξ0

∣

∣

∣
= k. Inner-product with ξ0 and use of (3.17)

leads to

(3.20) (ξ0, ξ0) = −
k (P (ξ0), ξ0)

∣

∣

∣
P (ξ0)

∣

∣

∣

< 0,

which is a contradiction. Hence we must have a zero of P (ξ) for |ξ| ≤ k.

Lemma 3.6. If u(m) → u in V weakly and in L2(Ω) strongly, then

(3.21) b(u(m), u(m), v) → b(u, u, v) , for any v ∈ V

Proof. We know that

(3.22) b(u(m), u(m), v) = −b
(

u(m), v, u(m)

)

= −

∫

Ω

u(m),iu(m),j∂xi
vjdx

Therefore, we have
(3.23)

b(u(m), u(m), v)−b(u, u, v) = −

∫

Ω

u(m),i

(

u(m),j − uj

)

vj,idx−

∫

Ω

(

u(m),i − ui

)

ujvj,idx

Since ‖Dv‖L∞(Ω) < ∞, and
{

u(m)

}

m
is a bounded sequence in L2(Ω),

application of Cauchy-Schwartz inequality completes the proof.

Theorem 3.1. (Existence of steady solution): Let Ω be a bounded set
in R

n for 2 ≤ n ≤ 4 and f ∈ H−1(Ω). Then there exists at least one
weak solution u ∈ V to steady Navier Stokes equation (2.7).

Proof. We will take as given the fact that Stokes operator −P∆, where
P is the Hodge projection, has an orthornormal set of eigen functions
{

w(i)
}

∞

i=1
that form a complete set in V and that each w(i) is smooth in

Ω. Then, for each fixed integerm ≥ 1, we use a Galerkin approximation

(3.24) u(m) =

m
∑

i=1

ξi,mw
(i)

We require choice of coefficients ξi,m, if there exists one, so that we
satisfy the Galerkin approximation to (2.7):
(3.25)

ν
(

u(m), w
(k)
)

+ b(u(m), u(m), w
(k)) = 〈f, w(k)〉 , for k = 1, 2, · · · , m

Equation (3.25) constitute a system of nonlinear equations for ξ1,m, ξ2,m, ...ξm,m.
We will now prove that this nonlinear system has a solution. Define X
to be the space spanned by w(1), w(2), .. w(m) and the inner product
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in X will be the inner product (, )1 induced by V , while P = Pm is
defined by
(3.26)
(Pm(u), v) = (Pm(u), v)1 = ν(u, v)1+b(u, u, v)−〈f, v〉 , for any u, v ∈ X

From properties of b in Lemma 3.4, it is clear that Pm is a continuous
mapping in X , and we have

(3.27) (Pm(u), u) = ν‖u‖21 − ‖f‖V ′‖u‖1 = ‖u‖1 (ν‖u‖1 − ‖f‖V ′)

It follows that (Pm(u), u) > 0 for ‖u‖ = k > 1
ν
‖f‖V ′ . Using lemma

3.5, we know there exists a solution u(m) to (3.25). Now, we seek to
determine limit of m → ∞. If we multiply (3.25) by ξk,m and sum over
k = 1, 2, ·, m, it follows that

(3.28) ν‖u(m)‖
2
1 + b

(

u(m), u(m), u(m)

)

= 〈f, u(m)〉

Since b(u, u, u) = 0, the above gives rise to the uniform estimate in m:

(3.29) ‖u(m)‖1 ≤
1

ν
‖f‖V ′

Since the sequence u(m) remains bounded in V , by Banach-Alouglu
theorem, there exists some u ∈ V and a subsequence m′ → ∞ so that

(3.30) u(m′) → u ,weakly in V,

and therefore strongly in L2(Ω) since H1
0 (Ω) is compactly embedded in

L2(Ω). Now, we take v = wj for any fixed j, From (3.25) for m ≥ j, it
follows that

(3.31) ν
(

u(m), v
)

+ b(u(m), u(m), v) = 〈f, v〉

Using Lemma 3.6, on the subsequence u(m′), it follows that

(3.32) ν (u, v) + b(u, u, v) = 〈f, v〉

Since this is true for any v = wj, it is also true for a linear combination
of wj and by density for v ∈ V , and we have always have a weak
solution u ∈ V to the Navier-Stokes equation.

Theorem 3.2. Uniqueness for large ν (small Reynolds number) As-
sume 2 ≤ n ≤ 4 and domain Ω is Lipschitz and bounded. If ν is
sufficiently large or equivalently ‖f‖V ′ is sufficiently small, then there
exists unique weak solution u ∈ V to (2.7).

Proof. In (2.7), we substitute v = u to obtain

(3.33) ν‖u‖21 = 〈f u〉 ≤ ‖f‖V ′‖u‖1 , implying ‖u‖1 ≤
1

ν
‖f‖V ′
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Also, if u∗, u∗∗ ∈ V are two different solutions to (2.7), then it follows
from subtraction that w = u∗ − u∗∗ satisfies

(3.34) ν (w, v)1 + b(w, u∗, v) + b(u∗, w, v) = 0

Now choose v = w and use Lemma 3.1 and (3.33) to obtain

(3.35) ν‖w‖21 ≤ c(n,Ω)‖w‖21‖u∗‖1 ≤
c(n,Ω)

ν
‖f‖V ′‖w‖21

which gives rise to the only possibility ‖w‖1 = 0 when

(3.36)
c(n,Ω)

ν2
‖f‖V ′ < 1
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