Week 12 Notes, Math 8610, Tanveer

1. NAVIER-STOKES WITH BOUNDARIES

We now turn to analysis of Navier-Stokes equations with solid bound-
aries on which no-slip condition boundary conditions will be imposed.
The notes in this part follow Temam’s book on Navier-Stokes equa-
tions.

We will assume that the domain €) is an open set on one side of a
boundary I" that is locally Lipschitz, i.e. locally in a neighborhood of a
point x € I', we have a representation z; = 0 (x1, T, - - Tj_1, Tjs1, " - Tp)
for some j, where # is a Lipschitz function. It is known that such a
a set () is locally star-shaped, i.e. for each point z; € I, there exists
an open neighborhood O; such that there O} = QN O; is star-shaped
with respect to one of its points. It is clear that if I' is finite, then it
has a finite open cover {O;},_; for a finite set J. We may arrange the
same to be true even when I' is not finite.

Definition 1.1. Let D (Q2) and be the space of C* functions with com-
pact support contained ).

Definition 1.2. Let V be the space of functions
(1.1) V={ueD(Q) ,V-u=0}
We define the closure of V in L? () and Hy () to be H and V respec-
tively.
2. STEADY NAVIER-STOKES EQUATION WITH STATIONARY
BOUNDARIES

First, we assume €2 to be a Lipschitz, bounded and open set in R".
We assume f € L*(2). We look for solution v : R™ — R", p: R — R
satisfying

(2.2) —vAu+ (u-V)u+Vp=finQ
(2.3) V.ou=0inQ
(2.4) u=0onTI

If u, p and f were smooth functions satisfying (Z.2)-([24), then clearly
u € V, and for any v € V, inner product of (2:2) with v and integration
leads to

(2.5) v (u,v); + b(u,u,v) = (f,v)o,
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where recall that (,),, is the inner-product in the H™ Hilbert space
and b is a trilinear functional of its arguments defined by

(26) b(U,U,U)):/uin’iwdeL’
Q

It is useful to identify the given f € L? with f € V' the dual space of
V', such that the right side of (2.7) may be interpreted as (f,v). We
then rewrite (2.7)) as

(2.7) v (u,v); + blu,u,v) = (f,v)

Equation (2.7) provides the the weak formulation of steady Navier-
Stokes equation—we require that the solution u € V satisfies (2.17) for
any v € V (note V is the closure of V in H} norm), where f € V'
is a given function. It may be shown that any such solution to (2.7))
satisfies (2.2)) in a distributional sense.

3. WEAK SOLUTIONS TO STEADY NAVIER STOKES
Our focus right now will be to prove solutions to (2.7)) exist{(],

Lemma 3.1. The trilinear form b is defined and trilinear continuous
on H}(Q) x HL(Q) x HY(Q) for 2 < n <4 and for bounded ().

Proof. If u,v,w € H}(Q), and 2 < n < 4,
(3.8) we LY 2(Q) | Dve L*Q) ,we L"),

where we used Sobolev embedding theorems, definition of H{, the ob-
servation that n < -2 for 2 < n < 4 and the fact that L*"/("=2(Q) C
L™(92) for finite bounded domain 2. By the Holder inequality,

B9 | [ wvsada] < e v llslze oo
It follows that

(3.10)  [bu,v,w)| < el Qlullyien [0yl g
When n = 2, the same results (3.10) hold since

(3.11)

[ wwswde] < Bl ool o
Q

and for n = 2 and Sobolev inequality gives ||g|lr1) < ¢|lgllm1@)-

Continuity of the trilinear form b in each argument follows immediately

from B.I0). 1

(D1t is to be noted that if Q is not bounded then b as defined in [236) need not make sense.
In that case, we have to introduce auxiliary space for v other than V'
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Corollary 3.2. For an open bounded set Q2 and u,v,w € V and 2 <
n < 4, b is trilinear continuous form on' V. xV x V.

Definition 3.3. For u,v € H}(Q), we define B(u,v) the linear con-
tinuous form on V' defined by

(3.12) (B(u,v),w) = b(u,v,w) ,u,v € Hy() for any w €V
Lemma 3.4. For any open bounded set ), for 2 < n <4,

(3.13) b(u,v,v) =0 ,for any u € V,v € H}(Q)

(3.14) b(u,w,v) = —b(u,v,w) ,for any u € V,v,w € Hy ()

Proof. 1t is enough to prove these equalities for u € V and v € D(Q)
since they are dense in the given spaces. Integration by parts gives

(3.15) b(u,v,v):/ujvijvida::/&c. lujvivi dex =0
Q ’ o \2

Now, if we replace v in (B13) by v + w, we obtain
(3.16)
0 = b(u, v+w, v+w) = b(u, v, w)+b(u, v, v)+b(u, w, v)+b(u, w, w) = b(u, v, w)+b(u, w,v)

and (3.I4) follows. 1

Before we prove a theorem on existence of steady solutions, we will
need the following preliminary lemma:

Lemma 3.5. Let X be a finite dimensional Hilbert sapce with inner-

product () and norm ’
itself such that

(3.17) (P(€),€) > 0 ,for g‘ — k>0
Then, there ezists £ € X with |£| < k such that P(§) = 0.

. Let P be a continuous mapping from X to

Proof. Suppose that P has no zero in the closed Ball B C X centered
at 0 with radius k. Then,

(3.18) s() = —+ 20

P©)

maps the B back to itself and is continuous in &. Brower fixed point
theorem implies that S has a fixed point in B, i.e. there exists £, € B
so that

(3.19) g = &)

P(&)]
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Clearly from above ‘fo’ = k. Inner-product with &, and use of (8.17)
leads to

(3.20) (0, 6) = —F(PlE0). o)

P©)
which is a contradiction. Hence we must have a zero of P(¢) for |£| < k.
|

Lemma 3.6. If ug, — u in V weakly and in L*(Q) strongly, then
(3.21) b(U(my» U(m), v) = b(u,u,v) ,for any v € V

Proof. We know that

(3.22)  b(t(m), Ugm),v) = —b (u(m),v,u(m)) = /Qu(m iU(m),j Oz, VjdT

Therefore, we have
(3.23)

b(U(my, U(m), V) —b(u, u,v) = —/Qu(m),i (u(mm — uj) vj,id:z—/ﬂ (u(m),i - uz) u;v;dx

Since || Dv||p(q) < 00, and {u@} is a bounded sequence in L?(9),
application of Cauchy-Schwartz inequality completes the proof. |

Theorem 3.1. (Existence of steady solution): Let €2 be a bounded set
inR™ for2 <n <4 and f € H (). Then there exists at least one
weak solution u € V' to steady Navier Stokes equation (2.7).

Proof. We will take as given the fact that Stokes operator —PA, where
P is the Hodge projection, has an orthornormal set of eigen functions
{w® }21 that form a complete set in V and that each w® is smooth in
Q). Then, for each fixed integer m > 1, we use a Galerkin approximation

(3.24) Uy = 3 €
1=1

We require choice of coefficients &;,,, if there exists one, so that we
satisfy the Galerkin approximation to (2.7):
(3.25)

V (U(my, w )+b(u(m U(m) &) = (f,w®) for k=1,2,--- ,m

Equation (3:20) constitute a system of nonlinear equations for &1 ,,,, &2.m, -+-Emom-
We will now prove that this nonlinear system has a solution. Define X
to be the space spanned by w™", w®, .. w™ and the inner product
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in X will be the inner product (,); induced by V, while P = P, is
defined by

(3.26)

(P (u),v) = (Pn(u),v), = v(u,v)1+b(u,u,v)—(f,v), for any u,v € X

From properties of b in Lemma [3.4] it is clear that P, is a continuous
mapping in X, and we have

(327)  (Pu(w),u) = vlullf = [ fllvllully = llully @[lull = [1£]h)

It follows that (P (u),u) > 0 for |lul| = k > %[/ f|ly. Using lemma
B8 we know there exists a solution w(, to ([3:25). Now, we seek to
determine limit of m — oo. If we multiply (8:25) by &, and sum over
k=1,2,-, m, it follows that

(3.28) V] lI; 4 b (@), Umys wmy) = (s m))

Since b(u, u,u) = 0, the above gives rise to the uniform estimate in m:

1
(3.20) eyl < < I1f e

Since the sequence ;) remains bounded in V, by Banach-Alouglu
theorem, there exists some u € V' and a subsequence m’ — oo so that

(3.30) Uy — U, weakly in V,

and therefore strongly in L*(Q) since Hg () is compactly embedded in
L*(2). Now, we take v = w; for any fixed j, From ([3.25) for m > j, it
follows that

(3.31) V (U(my, ) + b(tm), Um), v) = (f, )
Using Lemma [3.6, on the subsequence u,,, it follows that
(3:32) v (,0) + b, 0, v) = {£,v)

Since this is true for any v = wyj, it is also true for a linear combination
of w; and by density for v € V, and we have always have a weak
solution v € V' to the Navier-Stokes equation. |

Theorem 3.2. Uniqueness for large v (small Reynolds number) As-
sume 2 < n < 4 and domain Q is Lipschitz and bounded. If v is
sufficiently large or equivalently || f||v is sufficiently small, then there
exists unique weak solution u € V to (2.7).

Proof. In (21), we substitute v = u to obtain

. . 1
(3:33)  vllullf = (fu) < | fllvllull , implying [Jull < lF v
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Also, if Uy, uw € V' are two different solutions to (2.7)), then it follows
from subtraction that w = u, — u,, satisfies

(3.34) v (w,v); + b(w, u,, v) + b(u,, w,v) =0
Now choose v = w and use Lemma B.] and (8:33)) to obtain
c(n, Q2
335 vl < et Dl < L) pdo?
which gives rise to the only possibility ||w|; = 0 when
c(n,
(3.36) 5 e <1
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