Week 12 Notes, Math 8610, Tanveer

1. NAVIER-STOKES WITH BOUNDARIES

We now turn to analysis of Navier-Stokes equations with solid boundaries on which no-slip condition boundary conditions will be imposed. The notes in this part follow Temam's book on Navier-Stokes equations.

We will assume that the domain Ω is an open set on one side of a boundary Γ that is locally Lipschitz, *i.e.* locally in a neighborhood of a point $x \in \Gamma$, we have a representation $x_j = \theta(x_1, x_2, \cdots, x_{j-1}, x_{j+1}, \cdots, x_n)$ for some j, where θ is a Lipschitz function. It is known that such a a set Ω is locally star-shaped, *i.e.* for each point $x_j \in \Gamma$, there exists an open neighborhood \mathcal{O}_j such that there $\mathcal{O}'_j = \Omega \cap \mathcal{O}_j$ is star-shaped with respect to one of its points. It is clear that if Γ is finite, then it has a finite open cover $\{\mathcal{O}_j\}_{j\in J}$ for a finite set J. We may arrange the same to be true even when Γ is not finite.

Definition 1.1. Let $\mathcal{D}(\Omega)$ and be the space of C^{∞} functions with compact support contained Ω .

Definition 1.2. Let \mathcal{V} be the space of functions

(1.1)
$$\mathcal{V} = \{ u \in \mathcal{D}(\Omega) , \nabla \cdot u = 0 \}$$

We define the closure of \mathcal{V} in $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ to be H and V respectively.

2. Steady Navier-Stokes equation with stationary boundaries

First, we assume Ω to be a Lipschitz, bounded and open set in \mathbb{R}^n . We assume $f \in L^2(\Omega)$. We look for solution $u : \mathbb{R}^n \to \mathbb{R}^n$, $p : \mathbb{R}^n \to \mathbb{R}$ satisfying

(2.2)
$$-\nu\Delta u + (u\cdot\nabla)u + \nabla p = f \text{ in } \Omega$$

(2.3)
$$\nabla \cdot u = 0 \text{ in } \Omega$$

$$(2.4) u = 0 on \Gamma$$

If u, p and f were smooth functions satisfying (2.2)-(2.4), then clearly $u \in V$, and for any $v \in \mathcal{V}$, inner product of (2.2) with v and integration leads to

(2.5)
$$\nu(u,v)_1 + b(u,u,v) = (f,v)_0 ,$$

where recall that $(,)_m$ is the inner-product in the H^m Hilbert space and b is a trilinear functional of its arguments defined by

(2.6)
$$b(u, v, w) = \int_{\Omega} u_i v_{j,i} w_j dx$$

It is useful to identify the given $f \in L^2$ with $f \in V'$ the dual space of V, such that the right of (2.7) may be interpreted as $\langle f, v \rangle$. We then rewrite (2.7) as

(2.7)
$$\nu (u, v)_1 + b(u, u, v) = \langle f, v \rangle$$

Equation (2.7) provides the the weak formulation of steady Navier-Stokes equation—we require that the solution $u \in V$ satisfies (2.7) for any $v \in V$ (note V is the closure of \mathcal{V} in H_0^1 norm), where $f \in V'$ is a given function. It may be shown that any such solution to (2.7) satisfies (2.2) in a distributional sense.

3. Weak solutions to steady Navier Stokes

Our focus right now will be to prove solutions to (2.7) exist⁽¹⁾.

Lemma 3.1. The trilinear form b is defined and trilinear continuous on $H_0^1(\Omega) \times H_0^1(\Omega) \times H_0^1(\Omega)$ for $2 \le n \le 4$ and for bounded Ω .

Proof. If $u, v, w \in H_0^1(\Omega)$, and $2 < n \le 4$,

(3.8)
$$u \in L^{2n/(n-2)}(\Omega)$$
, $Dv \in L^2(\Omega)$, $w \in L^n(\Omega)$,

where we used Sobolev embedding theorems, definition of H_0^1 , the observation that $n \leq \frac{2n}{n-2}$ for $2 \leq n \leq 4$ and the fact that $L^{2n/(n-2)}(\Omega) \subset L^n(\Omega)$ for finite bounded domain Ω . By the Holder inequality,

(3.9)
$$\left| \int_{\Omega} u_i v_{j,i} w_j dx \right| \le c' \|u_i\|_{L^{2n/(n-2)}(\Omega)} \|v_{j,i}\|_{L^2(\Omega)} \|w_j\|_{L^n(\Omega)}$$

It follows that

(3.10)
$$|b(u, v, w)| \le c(n, \Omega) ||u||_{H_0^1(\Omega)} ||v||_{H_0^1(\Omega)} ||w||_{H_0^1(\Omega)}$$

When n = 2, the same results (3.10) hold since

(3.11)
$$\left| \int_{\Omega} u_i v_{j,i} w_j dx \right| \le \|u_i\|_{L^4(\Omega)} \|v_{j,k}\|_{L^2(\Omega)} \|w\|_{L^4(\Omega)}$$

and for n = 2 and Sobolev inequality gives $||g||_{L^4(\Omega)} \leq c' ||g||_{H^1(\Omega)}$. Continuity of the trilinear form b in each argument follows immediately from (3.10).

 $^{^{(1)}}$ It is to be noted that if Ω is not bounded then b as defined in (2.6) need not make sense. In that case, we have to introduce auxiliary space for v other than V

Corollary 3.2. For an open bounded set Ω and $u, v, w \in V$ and $2 \leq n \leq 4$, b is trilinear continuous form on $V \times V \times V$.

Definition 3.3. For $u, v \in H_0^1(\Omega)$, we define B(u, v) the linear continuous form on V defined by

(3.12)
$$\langle B(u,v), w \rangle = b(u,v,w) , u,v \in H_0^1(\Omega) \text{ for any } w \in V$$

Lemma 3.4. For any open bounded set Ω , for $2 \le n \le 4$,

(3.13)
$$b(u, v, v) = 0$$
, for any $u \in V, v \in H_0^1(\Omega)$

(3.14)
$$b(u, w, v) = -b(u, v, w)$$
, for any $u \in V, v, w \in H_0^1(\Omega)$

Proof. It is enough to prove these equalities for $u \in \mathcal{V}$ and $v \in \mathcal{D}(\Omega)$ since they are dense in the given spaces. Integration by parts gives

(3.15)
$$b(u,v,v) = \int_{\Omega} u_j v_{i,j} v_i dx = \int_{\Omega} \partial_{x_j} \left(\frac{1}{2} u_j v_i v_i\right) dx = 0$$

Now, if we replace v in (3.13) by v + w, we obtain (3.16)

$$0 = b(u, v+w, v+w) = b(u, v, w) + b(u, v, v) + b(u, w, v) + b(u, w, w) = b(u, v, w) + b(u, w, v)$$

and (3.14) follows.

Before we prove a theorem on existence of steady solutions, we will need the following preliminary lemma:

Lemma 3.5. Let X be a finite dimensional Hilbert sapce with innerproduct (,) and norm |.|. Let P be a continuous mapping from X to itself such that

(3.17)
$$(P(\xi),\xi) > 0$$
, for $|\xi| = k > 0$

Then, there exists $\xi \in X$ with $|\xi| \leq k$ such that $P(\xi) = 0$.

Proof. Suppose that P has no zero in the closed Ball $B \subset X$ centered at 0 with radius k. Then,

$$(3.18) S(\xi) = -\frac{kP(\xi)}{\left|P(\xi)\right|}$$

maps the *B* back to itself and is continuous in ξ . Brower fixed point theorem implies that *S* has a fixed point in *B*, *i.e.* there exists $\xi_0 \in B$ so that

(3.19)
$$\xi_0 = -\frac{kP(\xi_0)}{|P(\xi_0)|}$$

Clearly from above $\left|\xi_{0}\right| = k$. Inner-product with ξ_{0} and use of (3.17) leads to

(3.20)
$$(\xi_0, \xi_0) = -\frac{k \left(P(\xi_0), \xi_0 \right)}{\left| P(\xi_0) \right|} < 0,$$

which is a contradiction. Hence we must have a zero of $P(\xi)$ for $|\xi| \le k$.

Lemma 3.6. If $u_{(m)} \to u$ in V weakly and in $L^2(\Omega)$ strongly, then

(3.21)
$$b(u_{(m)}, u_{(m)}, v) \to b(u, u, v)$$
, for any $v \in \mathcal{V}$

Proof. We know that

(3.22)
$$b(u_{(m)}, u_{(m)}, v) = -b(u_{(m)}, v, u_{(m)}) = -\int_{\Omega} u_{(m),i} u_{(m),j} \partial_{x_i} v_j dx$$

Therefore, we have (3.23)

$$b(u_{(m)}, u_{(m)}, v) - b(u, u, v) = -\int_{\Omega} u_{(m),i} \left(u_{(m),j} - u_j \right) v_{j,i} dx - \int_{\Omega} \left(u_{(m),i} - u_i \right) u_j v_{j,i} dx$$

Since $||Dv||_{L^{\infty}(\Omega)} < \infty$, and $\{u_{(m)}\}_m$ is a bounded sequence in $L^2(\Omega)$, application of Cauchy-Schwartz inequality completes the proof.

Theorem 3.1. (Existence of steady solution): Let Ω be a bounded set in \mathbb{R}^n for $2 \leq n \leq 4$ and $f \in H^{-1}(\Omega)$. Then there exists at least one weak solution $u \in V$ to steady Navier Stokes equation (2.7).

Proof. We will take as given the fact that Stokes operator $-\mathcal{P}\Delta$, where \mathcal{P} is the Hodge projection, has an orthornormal set of eigen functions $\{w^{(i)}\}_{i=1}^{\infty}$ that form a complete set in V and that each $w^{(i)}$ is smooth in Ω . Then, for each fixed integer $m \geq 1$, we use a Galerkin approximation

(3.24)
$$u_{(m)} = \sum_{i=1}^{m} \xi_{i,m} w^{(i)}$$

We require choice of coefficients $\xi_{i,m}$, if there exists one, so that we satisfy the Galerkin approximation to (2.7): (3.25)

$$\nu(u_{(m)}, w^{(k)}) + b(u_{(m)}, u_{(m)}, w^{(k)}) = \langle f, w^{(k)} \rangle$$
, for $k = 1, 2, \cdots, m$

Equation (3.25) constitute a system of nonlinear equations for $\xi_{1,m}, \xi_{2,m}, ..., \xi_{m,m}$. We will now prove that this nonlinear system has a solution. Define X to be the space spanned by $w^{(1)}, w^{(2)}, ..., w^{(m)}$ and the inner product in X will be the inner product $(,)_1$ induced by V, while $P = P_m$ is defined by

$$(3.26) (P_m(u), v) = (P_m(u), v)_1 = \nu(u, v)_1 + b(u, u, v) - \langle f, v \rangle, \text{ for any } u, v \in X$$

From properties of b in Lemma 3.4, it is clear that P_m is a continuous mapping in X, and we have

$$(3.27) (P_m(u), u) = \nu \|u\|_1^2 - \|f\|_{V'} \|u\|_1 = \|u\|_1 \left(\nu \|u\|_1 - \|f\|_{V'}\right)$$

It follows that $(P_m(u), u) > 0$ for $||u|| = k > \frac{1}{\nu} ||f||_{V'}$. Using lemma 3.5, we know there exists a solution $u_{(m)}$ to (3.25). Now, we seek to determine limit of $m \to \infty$. If we multiply (3.25) by $\xi_{k,m}$ and sum over $k = 1, 2, \cdot, m$, it follows that

(3.28)
$$\nu \|u_{(m)}\|_{1}^{2} + b\left(u_{(m)}, u_{(m)}, u_{(m)}\right) = \langle f, u_{(m)} \rangle$$

Since b(u, u, u) = 0, the above gives rise to the uniform estimate in m:

(3.29)
$$\|u_{(m)}\|_1 \le \frac{1}{\nu} \|f\|_{V'}$$

Since the sequence $u_{(m)}$ remains bounded in V, by Banach-Alouglu theorem, there exists some $u \in V$ and a subsequence $m' \to \infty$ so that

(3.30)
$$u_{(m')} \to u$$
, weakly in V,

and therefore strongly in $L^2(\Omega)$ since $H_0^1(\Omega)$ is compactly embedded in $L^2(\Omega)$. Now, we take $v = w_j$ for any fixed j, From (3.25) for $m \ge j$, it follows that

(3.31)
$$\nu\left(u_{(m)},v\right) + b(u_{(m)},u_{(m)},v) = \langle f,v \rangle$$

Using Lemma 3.6, on the subsequence $u_{(m')}$, it follows that

(3.32)
$$\nu(u,v) + b(u,u,v) = \langle f, v \rangle$$

Since this is true for any $v = w_j$, it is also true for a linear combination of w_j and by density for $v \in V$, and we have always have a weak solution $u \in V$ to the Navier-Stokes equation.

Theorem 3.2. Uniqueness for large ν (small Reynolds number) Assume $2 \leq n \leq 4$ and domain Ω is Lipschitz and bounded. If ν is sufficiently large or equivalently $||f||_{V'}$ is sufficiently small, then there exists unique weak solution $u \in V$ to (2.7).

Proof. In (2.7), we substitute v = u to obtain

(3.33)
$$\nu \|u\|_1^2 = \langle f u \rangle \le \|f\|_{V'} \|u\|_1$$
, implying $\|u\|_1 \le \frac{1}{\nu} \|f\|_{V'}$

Also, if $u_*, u_{**} \in V$ are two different solutions to (2.7), then it follows from subtraction that $w = u_* - u_{**}$ satisfies

(3.34)
$$\nu(w,v)_1 + b(w,u_*,v) + b(u_*,w,v) = 0$$

Now choose v = w and use Lemma 3.1 and (3.33) to obtain

(3.35)
$$\nu \|w\|_{1}^{2} \leq c(n,\Omega) \|w\|_{1}^{2} \|u_{*}\|_{1} \leq \frac{c(n,\Omega)}{\nu} \|f\|_{V'} \|w\|_{1}^{2}$$

which gives rise to the only possibility $||w||_1 = 0$ when

(3.36)
$$\frac{c(n,\Omega)}{\nu^2} \|f\|_{V'} < 1$$