
Week 13 Notes, Math 8610, Tanveer

1. Characterization of spaces H and V .

Recall spaces V, H and V :

(1.1) V = {v ∈ D(Ω),∇ · v = 0}

and H is the closure of V in L2(Ω), while V is the closure in H1
0 (Ω).

1.1. Characterization of gradient of a distribution. Let Ω ⊂ R
n

be open and let p be a distribution on Ω, i.e. using standard notation
p ∈ D′(Ω). We note that for any v ∈ V,

(1.2) 〈∇p, v〉 = 〈∂xj
p, vj〉 = −〈p, ∂xj

vj〉 = 0

The converse of this result is also true as in the following proposition,
though the proof is harder and will be skipped:

Proposition 1.1. Let Ω be an open set of Rn and f = (f1, f2, .., fn),
with fi ∈ D′(Ω). A necessary and sufficient condition that f = ∇p for
some p ∈ D′(Ω) is that

(1.3) 〈f, v〉 = 0 , for any v ∈ V

Definition 1.2. We define the following subspace of L2(Ω):

(1.4) L2(Ω)/R =

{

p ∈ L2(Ω),

∫

Ω

p(x)dx = 0

}

We will also use the following results without proof (See Deny &
Lions Ann. Inst. Fourier 5, 1954, pp 305-370.)

Proposition 1.3. Let Ω be a bounded Lipschitz open set in R
n.

i. If a distribution p has all its first-order derivatives ∂xi
p ∈ L2(Ω),

then p ∈ L2(Ω), which may be chosen to be in the subspace (1.4) with

(1.5) ‖p‖L2(Ω)/R ≤ c(Ω)‖∇p‖L2(Ω)

ii. If a distribution p has all its first derivatives ∂xi
p ∈ H−1(Ω), then

p ∈ L2(Ω) and

(1.6) ‖p‖L2(Ω)/R ≤ c(Ω)‖∇p‖H−1(Ω)

In both cases, if Ω is any open set in R
n, p ∈ L2

loc(Ω).

Remark 1.4. Combining results in the previous two propositions we
note that if f ∈ H−1(Ω) (or L2

loc(Ω)) and 〈f, v〉 = 0 for any v ∈ V, then
f = ∇p with p ∈ L2

loc(Ω). Moreover, if Ω is open Lipschitz bounded,
then p ∈ L2(Ω) (or H1(Ω))
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2. Characterization of the space H

We can now give the following characterization of H and H⊥.

Theorem 2.1. Let Ω be Lipschitz open bounded set in R
n. Then

(2.7) H⊥ =
{

u ∈ L2(Ω), u = ∇p, p ∈ H1(Ω)
}

(2.8) H =
{

u ∈ L2(Ω),∇ · u = 0, γνu = 0
}

Proof. Assume u is in the space on the right side of (2.7). Then for
any v ∈ V,

(2.9) (v, u) = (v,∇p) = − (∇ · v, p) = 0

Since V is dense in H , u ∈ H⊥. Conversely, assume u ∈ H⊥. Then for
any v ∈ V,

(2.10) (u, v) = 0

implying from Propositon 1.1 that u = ∇p for p ∈ D′(Ω). By proposi-
tion 1.3, p ∈ H1(Ω) and therefore u belongs to the space on the right
hand side of (2.7).
Assume now that u ∈ H . Then u = limm→∞ um in E(Ω), where

um ∈ V. Further γνu = limm→∞ γνum = 0 since γνum = um · n = 0
for any um ∈ V, recalling V ⊂ D(Ω). Hence u ∈ H∗, the space on the
right side of (2.8), implying H ⊂ H∗. Assume H∗∗ is the orthogonal
compliment of H in H∗. Then from (2.7), it follows that for u ∈ H∗∗,
there exists p ∈ H1(Ω) with u = ∇p and moreover from (2.8), it follows
that

(2.11) ∆p = ∇ · u = 0 , u · n =
∂p

∂n
= 0

implying p is a constant (from Remark 1.7, in extra Week 12 notes),
and therefore u = 0. This implies H∗ = H

Theorem 2.2. Let Ω be an open bounded set of class C2. Then,

(2.12) L2(Ω) = H ⊕H1 ⊕H2

(2.13) H1 =
{

u ∈ L2(Ω) , u = ∇p , p ∈ H1(Ω) ,∆p = 0
}

(2.14) H2 =
{

u ∈ L2(Ω) , u = ∇p , p ∈ H1
0 (Ω)

}

Proof. Clearly from the characterization of H⊥ in 2.1, H1, H2 ⊂ H⊥.
Now, take u ∈ H1 and v ∈ H2, with v = ∇p. Then from generalized
Stokes formula

(2.15) (u, v) = (u,∇p) = 〈γνu, γ0p〉 − (∇ · u, p) = 0
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Therefore, H1 ⊥ H2. Now, we seek to show that any u ∈ L2 can be
written as a sum of u0, u1 and u2 in H , H1 and H2 respectively. Define
u2 = ∇p, where p ∈ H1

0 to be the unique solution of

(2.16) ∆p = ∇ · u ∈ H−1(Ω)

We then define u1 = ∇q, where q ∈ H1(Ω) is the solution (unique
upto additive constant, see Remark 1.7 week 12 extra notes) to the
Neumann problem

(2.17) ∆q = 0 ,
∂q

∂n
= γν (u−∇p) ,

which exists since ∇ · (u − ∇p) = 0 and therefore u − ∇p ∈ E(Ω)
and so γν (u−∇p) ∈ H−1/2(Γ) is well-defined (Note Theorem 1.2 of
Week 12 extra notes). Now, consider u0 = u − u1 − u2. We note that
∇ · u0 = ∇ · u−∇ · u1 −∇ · u2 = 0 and γνu0 = γν (u−∇p)− ∂q

∂n
= 0.

Therefore u0 ∈ H .

Remark 2.1. We may define P to be the orthogonal projection (Hodge
projection) of L2(Ω) onto H ; clearly P is continuous into L2(Ω). In
fact P → H1(Ω) → H1(Ω) and is continuous in the norm of H1. In
the proof of the previous theorem, let us assume u ∈ H1(Ω); then
p ∈ H1

0 (Ω) ∩H
2(Ω); and u−∇p ∈ H1(Ω) and γν(u−∇p) ∈ H1/2(Ω).

Finally, we infer from (2.17) that q ∈ H2(Ω) and

(2.18) Pu = u−∇(p+ q) ∈ H1(Ω)

It is also clear that the mappings u→ p and u−∇p→ q are continuous
in the appropriate spaces and we conclude that P : H1

0 (Ω) → H1(Ω is
continuous with

(2.19) ‖Pu‖H1(Ω) ≤ c(Ω)‖u‖H1(Ω)

If Ω is Cr+1 for integer r ≥ 1, a similar argument shows that for
u ∈ Hr(Ω), Pu ∈ Hr(Ω) and P is linear and continuous with

(2.20) ‖Pu‖Hr(Ω) ≤ c(r,Ω)‖u‖Hr(Ω)

3. Characterization of space V

Theorem 3.1. Let Ω be an open bounded Lipschitz set. Then

(3.21) V =
{

u ∈ H1
0 (Ω) ,∇ · u = 0

}

Proof. Define V∗ to be the set on the right side of (3.21). It is clear
that V ⊂ V∗ since V is the closure of V in H1

0 . To prove V = V∗, it
is enough to show that a continuous linear functional L in V∗, which
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vanishes on V , is identically 0. We know there exists l ∈ V ′

∗
so that for

any v ∈ V∗,

(3.22) L(v) = 〈l, v〉

Since V∗ is a closed subspace of H1
0 (Ω) it may be extended as a linear

continuous functional onH1
0 (Ω) and so l ∈ H−1(Ω) and we have 〈l, v〉 =

0 for any v ∈ V. Propositions 1.1 and 1.3 imply that l = ∇p and
p ∈ L2(Ω), and thus for any v ∈ H1

0 (Ω),

(3.23) L(v) = 〈l, v〉 = 〈∂xi
p, vi〉 = − (p, ∂xi

vi)

Therefore L(v) = 0 for v ∈ V∗.

4. Existence and uniqueness for the steady Stokes

equations

let Ω be an open bounded set in R
n with boundary Γ and let f ∈

L2(Ω). We seek to find solution to

(4.24) − ν∆u+∇p = f in Ω

(4.25) ∇ · u = 0 in Ω

(4.26) u = 0 on Γ

If f , u and p were smooth functions, it would follow from multiplying
(4.24) and using integration by parts that for any v ∈ V,

(4.27) ν (u, v)1 = (f, v) ,

where (u, v)1 = (Du,Dv). Since each side of (4.27) depends linearly
and continuously on v ∈ H1

0 (Ω), the equality (4.27) holds for any v ∈ V ,
the closure of V in H1

0 (Ω). If Ω is of class C2, then any smooth solution
u ∈ H1

0 (Ω). From (4.25), u ∈ V in addition to satisfying (4.27). We
will now show that (4.27) provides for a weak formulation of Stokes
equation (4.24)-(4.26).

Lemma 4.1. Let Ω be an open bounded set of class C2. The following
conditions are equivalent
i. u ∈ V and satisfies (4.27) for every v ∈ V .
ii. u ∈ H1

0 (Ω) satisfies (4.24)-(4.26) in the following weak sense:
there exists p ∈ L2(Ω) so that (4.24)-(4.25) are satisfied in the sense
of distribution and γ0u = 0

Proof. If (ii.) is satisfied, then (4.27) follows for any v ∈ V since we
can make (4.24) act on v in the sense of a distribution. Since V is dense
in V in H1

0 , statement (i) follows.
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Assume now u ∈ V satisfies (4.27) for any v ∈ V. Then, it follows
that

(4.28) 〈−ν∆u − f, v〉 = 0 for any v ∈ V

From Proposition 1.1 and 1.3, there exists p ∈ L2(Ω) such that

(4.29) − ν∆u− f = −∇p

in the sense of distribution. Further since u ∈ V ⊂ H1
0 , ∇ · u = 0 in

the sense of distribution and γ0u = 0; thus statement (ii) follows.

Theorem 4.1. (Projection Theorem) For any open set Ω ⊂ R
n, which

is bounded in some direction and every f ∈ L2(Ω), the problem (4.27)
has unique solution u ∈ V (the result is equally valid for any f ∈
H−1(Ω)). More over, there exists a function p ∈ L2

loc(Ω) such that
(4.24)-(4.25) are satisfied in the sense of distribution.
If Ω is a bounded open set of class C2, then p ∈ L2(Ω) and (4.24)-

(4.25) are satisfied by u and p.

This theorem is a consequence of Lemma 4.1 and the following (Lax-
Milgram) Theorem:

Theorem 4.2. If W is a separable real Hilbert Space with norm ‖.‖W
and let a(u, v) be a linear continuous form on W ×W , so that there
exists α > 0 such that

(4.30) a(u, u) ≥ α‖u‖2w , for any u ∈ W

Then for each l ∈ W ′, the dual space of W , there exists unique u ∈ W
such that

(4.31) a(u, v) = 〈l, v〉 , for any v ∈ W

To apply the above Theorem to prove Theorem 4.1, we take W = V
and a(u, v) = (u, v)1 and define l so that 〈l, v〉 = (f, v). The space V is
separable as a closed subspace of a separable space H1

0 (Ω) (in particular
V = PH1

0 ).
Proof of Theorem 4.2 Uniqueness part of the theorem follows from
the observation that if u1 and u2 are two solutions then

(4.32) a(u1 − u2, v) = a(u1, v)− a(u2, v) = 0

Using v = u1−u2, we obtain 0 ≥ α‖u1−u2‖
2
W , implying u1 = u2. Now

consider existence question. Since W is separable, thee exists {wi}
∞

i=1

which forms a basis forW . DefineWm = Span {w1, w2, · · · , wm} ⊂ W .
For each fixed integer m ≥ 1, we define approximate solution um:

(4.33) um =

m
∑

i=1

ξi,mwi
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and require it to satisfy

(4.34) a(um, v) = 〈l, v〉 , for any v ∈ Wm

By replacing v by wj, j = 1, ..m, we get a linear system of m equations
for unknowns {ξi,m}

m
i=1:

(4.35) a(um, wj) = 〈l, wj〉 , for j = 1, 2 · · ·m

We now claim there exists a unique solution to (4.35) for if there were
two such solutions their difference vm would satisfy

(4.36) a (vm, wj) = 0

It follows that a(vm, vm) = 0, which implies vm = 0. Therefore, we
have a uniqe solution to (4.34). Now, by substituting v = um in (4.34),
it follows that

(4.37) α‖um‖
2
W ≤ ‖l‖W ′‖um‖W , implying ‖um‖W ≤

1

α
‖l‖W ′

Therefore, there exists subsequence um′ → u ∈ W weakly. Take v ∈ Wj

to be a fixed element for some j. Then when m′ ≥ j, v ∈ Wm′ and
according to (4.34)

(4.38) a(u′m, v) = 〈l, v〉

On using the following Lemma 4.2 and taking the limit m′ → ∞, we
obtain

(4.39) a(u, v) = 〈l, v〉

Since this is true for v ∈ Wj for any j we have

(4.40) a(u, v) = 〈l, v〉 for any v ∈ W

Lemma 4.2. Let a(u, v) be a bilinear continuous form on a Hilbert
space W . Let φm (or ψm) be a sequence of elements of W which con-
verges to φ (or ψ) in the weak (or strong) topology of W . Then

(4.41) lim
m→∞

a (ψm, φm) = a(ψ, φ)

(4.42) lim
m→∞

a (φm, ψm) = a(φ, φ)

Proof. We write

(4.43) a(ψm, φm)− a(ψ, φ) = a(ψm − ψ, φm) + a(ψ, φm − φ)

Since a is continuous and the sequence φm is bounded

(4.44)
∣

∣

∣
a (ψm − ψ, φm)

∣

∣

∣
≤ c‖ψm − ψ‖W‖‖φm‖W ≤ c′‖ψm − ψ‖W

and this term converges to 0 as m→ ∞.
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We notice next that v → a(ψ, v) is continuous onW and there exists
an element A(ψ) ∈ W ′ with a(ψ, v) = 〈A(ψ), v〉 for every v ∈ W .
Therefore, we can write

(4.45) lim
m→∞

a(ψ, φm − φ) = lim
m→∞

〈A(ψ), φm − φ〉 = 0

To prove the second statement (4.42), we simply use a∗(u, v) = a(v, u).

5. Eigenfunctions of the Stokes problem

Let Ω be an open bounded set in R
n. Define Λ : f → 1

ν
u to be the

map defined in Theorem 4.1, which is clearly a linear and continuous
map from L2(Ω) onto V ⊂ H1

0 (Ω). Since Ω is bounded, the injection
H1

0 (Ω) in L
2(Ω) is compact, implying the compactness of the operator

Λ. Further, the Λ is self-adjoint and positive operator since

(5.46) (Λf1, f2) = ν (u1, u2)1 = (f1,Λf2)

It follows that there exists orthonormal sequence of eigenfunctions
{wj}

∞

j=1 ∈ V and corresponding set {λj}
∞

j=1 of eigenvalues with λj > 0

and λj → ∞ such that Λwj =
1
λj
wj and for any j ≥ 1,

(5.47) (wj, v)1 = λj (wj, v) for any v ∈ V

(5.48) (wj, wk) = δj,k

(5.49) (wj, wk)1 = λjδj,k

Using Theorem 4.1, it follows that for any j ≥ 1, there exists pj ∈ L2(Ω)
so that

(5.50) − ν∆wj +∇pj = λjwj in Ω

(5.51) ∇ · wj = 0 in Ω

(5.52) γ0wj = 0

These are the eigenfunctions of the Stokes problem. If Ω is of class Cm

for integer m ≥ 2, a iterated application of Proposition 1.3 shows that

(5.53) wj ∈ Hm(Ω) , pj ∈ Hm−1(Ω) , for any j ≥ 1

If Ω is of class C∞, then wj, pj ∈ C∞(Ω). and the asymptotic behavior
λj ∼ cjn/2 can be derived from a variational approach.
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