Week 13 Notes, Math 8610, Tanveer

1. CHARACTERIZATION OF SPACES H AND V.
Recall spaces V, H and V:
(1.1) V={veD),V -v=0}
and H is the closure of V in L?*(€2), while V is the closure in H{ ().
1.1. Characterization of gradient of a distribution. Let (2 C R"

be open and let p be a distribution on {2, i.e. using standard notation
p € D'(Q2). We note that for any v € V,

(1.2) (Vp.v) = (0n,p.05) = —(p. Oryvy) = 0

The converse of this result is also true as in the following proposition,
though the proof is harder and will be skipped:

Proposition 1.1. Let Q be an open set of R™ and f = (f1, fay -, [n),
with f; € D'(Q). A necessary and sufficient condition that f = Vp for
some p € D'(Q) is that

(1.3) (f,v) =0 ,for any v eV
Definition 1.2. We define the following subspace of L*(Q):

(1.4) L%QﬂRz{pEE%Q%Ap@szo}

We will also use the following results without proof (See Deny &
Lions Ann. Inst. Fourier 5, 1954, pp 305-370.)

Proposition 1.3. Let 2 be a bounded Lipschitz open set in R™.
i. If a distribution p has all its first-order derivatives O,,p € L*(Q),
then p € L*(Q), which may be chosen to be in the subspace (1.4) with

(1.5) 1Pl 220/ < (VP20

ii. If a distribution p has all its first derivatives 0,,p € H=Y(Q), then
p € L*(Q) and

(1.6) 1Pllz2@) < (VP10
In both cases, if Q is any open set in R™, p € L2 (Q).

loc

Remark 1.4. Combining results in the previous two propositions we
note that if f € H=1(Q) (or L2 .(Q)) and (f,v) = 0 for any v € V, then

loc

f = Vp with p € L2 (). Moreover, if Q is open Lipschitz bounded,

loc

then p € L?(Q) (or H(Q))



2. CHARACTERIZATION OF THE SPACE H
We can now give the following characterization of H and H*'.
Theorem 2.1. Let €2 be Lipschitz open bounded set in R™. Then
(2.7) H*={ue L*Q),u=Vppe H(Q)}

(2.8) H={uel*(Q),V-u=0u=0}

Proof. Assume u is in the space on the right side of (Z71). Then for
any v € V,

(2.9) (v,u) = (v, Vp) = = (V-v,p) =0

Since V is dense in H, u € H*. Conversely, assume v € H*. Then for
any v € V,

(2.10) (u,v) =0

implying from Propositon [Tl that u = Vp for p € D'(Q2). By proposi-
tion L3, p € H'(Q) and therefore u belongs to the space on the right
hand side of (2.7]).

Assume now that v € H. Then u = lim,, o u, in E(£2), where
Uy, € V. Further v,u = lim,, o VU, = 0 since VU, = Uy -n = 0
for any u,, € V, recalling V C D(f2). Hence u € H,, the space on the
right side of (Z8), implying H C H,. Assume H,, is the orthogonal
compliment of H in H,. Then from (2.7), it follows that for u € H.,.,
there exists p € H'(Q) with u = Vp and moreover from (2.8, it follows

that
(2.11) Ap:V-u:O,u-n:@zo
on

implying p is a constant (from Remark 1.7, in extra Week 12 notes),
and therefore u = 0. This implies H, = H 1

Theorem 2.2. Let Q be an open bounded set of class C?. Then,

(2.12) L*(Q) = H o H, ® H,
(2.13) Hy={ueLl*Q) ,u=Vp,pe H(Q) ,Ap=0}
(2.14) Hy={ue L*(Q) ,u=Vp,pe HyQ)}

Proof. Clearly from the characterization of H+ in 21, Hy, H, C H*.
Now, take u € Hy and v € H,y, with v = Vp. Then from generalized
Stokes formula

(2.15) (u,v) = (u, Vp) = (v, y0p) — (V- u,p) =0
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Therefore, H, 1. H,. Now, we seek to show that any v € L? can be
written as a sum of ug, u; and us in H, H; and Hy respectively. Define
uy = Vp, where p € Hj to be the unique solution of

(2.16) Ap=V-uec H Q)

We then define u; = Vg, where ¢ € H'(Q) is the solution (unique
upto additive constant, see Remark 1.7 week 12 extra notes) to the
Neumann problem

(2.17) Ag=0 ,g—izvy(u—Vp),

which exists since V - (v — Vp) = 0 and therefore v — Vp € E(Q)
and so 7, (u — Vp) € H~Y2(T) is well-defined (Note Theorem 1.2 of
Week 12 extra notes). Now, consider ug = u — u; — ug. We note that
V-uozv-u—v-ul—V-ug:0and%u0:%(u—Vp)—%:O.
Therefore ug € H. 1

Remark 2.1. We may define P to be the orthogonal projection (Hodge
projection) of L?(2) onto H; clearly P is continuous into L?(Q2). In
fact P — H'(Q) — H(Q) and is continuous in the norm of H'. In
the proof of the previous theorem, let us assume u € H'(Q); then
p € HY Q)N H*Q); and u — Vp € HY(Q) and 7, (u — Vp) € HY/3(Q).
Finally, we infer from ([ZI7) that ¢ € H%*(2) and

(2.18) Pu=u—V(p+q) € H(Q)

It is also clear that the mappings © — p and u—Vp — ¢ are continuous
in the appropriate spaces and we conclude that P : H}(Q2) — H'(Q is
continuous with

(2.19) [Pull o) < e(Q)lullmi)

If Qis C™*! for integer » > 1, a similar argument shows that for
u € H"(Q), Pu€ H"(2) and P is linear and continuous with

(2.20) |Pull ) < c(r, Q)||ull g @)

3. CHARACTERIZATION OF SPACE V
Theorem 3.1. Let €2 be an open bounded Lipschitz set. Then
(3.21) V={ueH)Q) ,V-u=0}

Proof. Define V, to be the set on the right side of (B21I]). It is clear
that V' C V, since V is the closure of V in H&. To prove V = V,, it
is enough to show that a continuous linear functional L in V,, which
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vanishes on V', is identically 0. We know there exists [ € V so that for
any v € Vi,

(3.22) L(v) = (l,v)

Since V, is a closed subspace of H}(f2) it may be extended as a linear
continuous functional on H}(2) and so I € H~1(Q2) and we have ([, v) =
0 for any v € V. Propositions [T and imply that [ = Vp and
p € L*(2), and thus for any v € H}(Q),

(323> L(U) = <l,U> = <8-'Eip7 Ui) == (pv 8%”@)
Therefore L(v) =0 forv e V,. 1

4. EXISTENCE AND UNIQUENESS FOR THE STEADY STOKES
EQUATIONS

let 2 be an open bounded set in R™ with boundary I' and let f €
L?(2). We seek to find solution to

(4.24) —vAu+Vp = fin Q
(4.25) V-u=0in
(4.26) u=0onT

If f, u and p were smooth functions, it would follow from multiplying
(@24)) and using integration by parts that for any v € V,

(4.27) v(u,v)y = (f,0)

where (u,v); = (Du, Dv). Since each side of (£.27) depends linearly
and continuously on v € H} (), the equality ([£27) holds for any v € V,
the closure of V in H}(Q). If Q is of class C?, then any smooth solution
w € H}(Q). From ([{27), u € V in addition to satisfying ([£27). We
will now show that (£27) provides for a weak formulation of Stokes

equation (4.24))-(4.24)).

Lemma 4.1. Let Q be an open bounded set of class C?. The following
conditions are equivalent

i. uw €V and satisfies {{.27) for every v € V.

ii. w e HYNQ) satisfies (£.24)-(4-20) in the following weak sense:
there exists p € L*(Q) so that {{.-2)-([4.23) are satisfied in the sense
of distribution and ~you = 0

Proof. If (ii.) is satisfied, then (L27) follows for any v € V since we
can make (£24) act on v in the sense of a distribution. Since V is dense
in V in HJ, statement (i) follows.
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Assume now u € V satisfies (4.27)) for any v € V. Then, it follows
that

(4.28) (—vAu — f,v) =0 forany v eV
From Proposition [T and [[.3] there exists p € L?(Q) such that
(4.29) —vAu— f=-Vp

in the sense of distribution. Further since u € V.C H}, V-u =0 in
the sense of distribution and yyu = 0; thus statement (ii) follows.

Theorem 4.1. (Projection Theorem) For any open set Q@ C R™, which
is bounded in some direction and every f € L*(Q), the problem (4.27)
has unique solution u € V (the result is equally valid for any f €
H=Y(Q)). More over, there exists a function p € L% _(Q) such that

(4-24)-(7-23) are satisfied in the sense of distribution.
If Q is a bounded open set of class C*, then p € L*(Q) and ({{.24)-

(4-23) are satisfied by u and p.

This theorem is a consequence of Lemma [£.T] and the following (Lax-
Milgram) Theorem:

Theorem 4.2. If W is a separable real Hilbert Space with norm ||.||w
and let a(u,v) be a linear continuous form on W x W, so that there
exists o > 0 such that

(4.30) a(u,u) > allul]? ,for any u € W

Then for each I € W', the dual space of W, there exists unique u € W
such that

(4.31) a(u,v) = (l,v) ,for any v € W

To apply the above Theorem to prove Theorem A.1] we take W =V
and a(u,v) = (u,v); and define [ so that ([,v) = (f,v). The space V is
separable as a closed subspace of a separable space Hg () (in particular
V =PH}).

Proof of Theorem Uniqueness part of the theorem follows from
the observation that if u; and uy are two solutions then

(4.32) a(u; — ug,v) = a(uy,v) — a(ug,v) =0

Using v = u; — ug, we obtain 0 > «a|lu; — us||%,, implying u; = uy. Now
consider existence question. Since W is separable, thee exists {w;};,
which forms a basis for W. Define W,,, = Span {wy,ws, -+ ,w,} C W.
For each fixed integer m > 1, we define approximate solution ,,:

(4.33) U = Y im0
i=1
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and require it to satisfy

(4.34) a(tpy,,v) = (l,v) ,for any v € W,

By replacing v by w;, j = 1,..m, we get a linear system of m equations
for unknowns {&; ., }7" ;:

(4.35) a(tm,w;) = (l,w;) ,for j=1,2---m

We now claim there exists a unique solution to ([£38]) for if there were
two such solutions their difference v,, would satisfy

(4.36) a (U, w;) =0

It follows that a(v,,v,) = 0, which implies v,, = 0. Therefore, we
have a uniqe solution to (4.34]). Now, by substituting v = w,, in (£34]),
it follows that

- 1
437)  allumlliy < [lUlwllumllw  implying [[un/lw < el

Therefore, there exists subsequence u,,, — v € W weakly. Take v € W
to be a fixed element for some j. Then when m’ > j, v € W,,, and

according to (4.34)
(4.38) a(ul,,v) = {(l,v)

m?

On using the following Lemma and taking the limit m' — oo, we
obtain

(4.39) a(u,v) = (l,v)
Since this is true for v € W; for any j we have
(4.40) a(u,v) = (l,v) for any v € W

Lemma 4.2. Let a(u,v) be a bilinear continuous form on a Hilbert
space W. Let ¢y, (o1 1y, ) be a sequence of elements of W which con-
verges to ¢ (or 1) in the weak (or strong) topology of W. Then

(4.41) 1 _a (b, 60) = altp, )
(4.42) 1m_a (G, ) = (6, 9)

Proof. We write
(443) a(,lvbma ¢m) - a(% ¢) = a(,lvbm - ¢> ¢m) + a(¢> ¢m - ¢)

Since a is continuous and the sequence ¢,, is bounded

(4.44)  |a(Wm — ¥, 0m) | < clltm = Plwlldmllw < ltbm — Pllw

and this term converges to 0 as m — oo.



7

We notice next that v — a(1, v) is continuous on W and there exists
an element A(y) € W’ with a(y,v) = (A(y),v) for every v € W.
Therefore, we can write

(445) T a(, dm — 0) = Tim (A(®), ép — 6) =0

To prove the second statement (£42), we simply use a*(u, v) = a(v,u).

5. EIGENFUNCTIONS OF THE STOKES PROBLEM

Let 2 be an open bounded set in R”. Define A : f — %u to be the
map defined in Theorem [£.1] which is clearly a linear and continuous
map from L?*(Q) onto V C H}(Q). Since € is bounded, the injection
H}(Q) in L*(Q) is compact, implying the compactness of the operator
A. Further, the A is self-adjoint and positive operator since

(5.46) (Afi, fa) = v (ur,ug), = (f1, Af)

It follows that there exists orthonormal sequence of eigenfunctions
{w;}°2, € V and corresponding set {)\;}°Z, of eigenvalues with \; >0
and A\; — oo such that Aw; = /\ijwj and for any 7 > 1,

(5.47) (wj,v), = Aj (w;,v) for any v € V
(5.48) (wj, wi) = 0k
(549) (wj, wk)l = )‘jéj,k

Using Theorem [.1] it follows that for any j > 1, there exists p; € L*(2)
so that

(5.50) — vAw; + Vp; = \jw;in Q
(5.51) V- w; =0in Q

These are the eigenfunctions of the Stokes problem. If €2 is of class C™
for integer m > 2, a iterated application of Proposition [L.3] shows that
(5.53) w; € H™(Q) ,p; € H™(Q) ,for any j > 1

If Q is of class C*°, then w;,p; € C*°(Q2). and the asymptotic behavior
Aj ~ ¢j™? can be derived from a variational approach.
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