Week 13 Notes, Math 8610, Tanveer

1. Characterization of spaces H and V.

Recall spaces \mathcal{V} , H and V:

(1.1)
$$\mathcal{V} = \{ v \in \mathcal{D}(\Omega), \nabla \cdot v = 0 \}$$

and H is the closure of V in $L^2(\Omega)$, while V is the closure in $H^1_0(\Omega)$.

1.1. Characterization of gradient of a distribution. Let $\Omega \subset \mathbb{R}^n$ be open and let p be a distribution on Ω , *i.e.* using standard notation $p \in \mathcal{D}'(\Omega)$. We note that for any $v \in \mathcal{V}$,

(1.2)
$$\langle \nabla p, v \rangle = \langle \partial_{x_j} p, v_j \rangle = -\langle p, \partial_{x_j} v_j \rangle = 0$$

The converse of this result is also true as in the following proposition, though the proof is harder and will be skipped:

Proposition 1.1. Let Ω be an open set of \mathbb{R}^n and $f = (f_1, f_2, ..., f_n)$, with $f_i \in \mathcal{D}'(\Omega)$. A necessary and sufficient condition that $f = \nabla p$ for some $p \in \mathcal{D}'(\Omega)$ is that

(1.3)
$$\langle f, v \rangle = 0$$
, for any $v \in \mathcal{V}$

Definition 1.2. We define the following subspace of $L^2(\Omega)$:

(1.4)
$$L^2(\Omega)/\mathbb{R} = \left\{ p \in \mathcal{L}^2(\Omega), \int_{\Omega} p(x) dx = 0 \right\}$$

We will also use the following results without proof (See Deny & Lions Ann. Inst. Fourier 5, 1954, pp 305-370.)

Proposition 1.3. Let Ω be a bounded Lipschitz open set in \mathbb{R}^n . **i.** If a distribution p has all its first-order derivatives $\partial_{x_i} p \in L^2(\Omega)$, then $p \in L^2(\Omega)$, which may be chosen to be in the subspace (1.4) with

(1.5)
$$\|p\|_{L^2(\Omega)/\mathbb{R}} \le c(\Omega) \|\nabla p\|_{L^2(\Omega)}$$

ii. If a distribution p has all its first derivatives $\partial_{x_i} p \in H^{-1}(\Omega)$, then $p \in L^2(\Omega)$ and

(1.6)
$$\|p\|_{L^2(\Omega)/\mathbb{R}} \le c(\Omega) \|\nabla p\|_{H^{-1}(\Omega)}$$

In both cases, if Ω is any open set in \mathbb{R}^n , $p \in L^2_{loc}(\Omega)$.

Remark 1.4. Combining results in the previous two propositions we note that if $f \in H^{-1}(\Omega)$ (or $L^2_{loc}(\Omega)$) and $\langle f, v \rangle = 0$ for any $v \in \mathcal{V}$, then $f = \nabla p$ with $p \in L^2_{loc}(\Omega)$. Moreover, if Ω is open Lipschitz bounded, then $p \in L^2(\Omega)$ (or $H^1(\Omega)$)

2. Characterization of the space H

We can now give the following characterization of H and H^{\perp} .

Theorem 2.1. Let Ω be Lipschitz open bounded set in \mathbb{R}^n . Then

(2.7)
$$H^{\perp} = \left\{ u \in L^2(\Omega), u = \nabla p, p \in H^1(\Omega) \right\}$$

(2.8)
$$H = \left\{ u \in L^2(\Omega), \nabla \cdot u = 0, \gamma_{\nu} u = 0 \right\}$$

Proof. Assume u is in the space on the right side of (2.7). Then for any $v \in \mathcal{V}$,

(2.9)
$$(v, u) = (v, \nabla p) = -(\nabla \cdot v, p) = 0$$

Since \mathcal{V} is dense in $H, u \in H^{\perp}$. Conversely, assume $u \in H^{\perp}$. Then for any $v \in \mathcal{V}$,

$$(2.10) (u,v) = 0$$

implying from Propositon 1.1 that $u = \nabla p$ for $p \in \mathcal{D}'(\Omega)$. By proposition 1.3, $p \in H^1(\Omega)$ and therefore u belongs to the space on the right hand side of (2.7).

Assume now that $u \in H$. Then $u = \lim_{m\to\infty} u_m$ in $E(\Omega)$, where $u_m \in \mathcal{V}$. Further $\gamma_{\nu}u = \lim_{m\to\infty} \gamma_{\nu}u_m = 0$ since $\gamma_{\nu}u_m = u_m \cdot n = 0$ for any $u_m \in \mathcal{V}$, recalling $\mathcal{V} \subset \mathcal{D}(\Omega)$. Hence $u \in H_*$, the space on the right side of (2.8), implying $H \subset H_*$. Assume H_{**} is the orthogonal compliment of H in H_* . Then from (2.7), it follows that for $u \in H_{**}$, there exists $p \in H^1(\Omega)$ with $u = \nabla p$ and moreover from (2.8), it follows that

(2.11)
$$\Delta p = \nabla \cdot u = 0 , \ u \cdot n = \frac{\partial p}{\partial n} = 0$$

implying p is a constant (from Remark 1.7, in extra Week 12 notes), and therefore u = 0. This implies $H_* = H$

Theorem 2.2. Let Ω be an open bounded set of class C^2 . Then,

(2.12)
$$L^2(\Omega) = H \oplus H_1 \oplus H_2$$

(2.13)
$$H_1 = \{ u \in L^2(\Omega) , u = \nabla p , p \in H^1(\Omega) , \Delta p = 0 \}$$

(2.14)
$$H_2 = \left\{ u \in L^2(\Omega) , u = \nabla p , p \in H_0^1(\Omega) \right\}$$

Proof. Clearly from the characterization of H^{\perp} in 2.1, $H_1, H_2 \subset H^{\perp}$. Now, take $u \in H_1$ and $v \in H_2$, with $v = \nabla p$. Then from generalized Stokes formula

(2.15)
$$(u,v) = (u,\nabla p) = \langle \gamma_{\nu}u, \gamma_0 p \rangle - (\nabla \cdot u, p) = 0$$

Therefore, $H_1 \perp H_2$. Now, we seek to show that any $u \in L^2$ can be written as a sum of u_0 , u_1 and u_2 in H, H_1 and H_2 respectively. Define $u_2 = \nabla p$, where $p \in H_0^1$ to be the unique solution of

(2.16)
$$\Delta p = \nabla \cdot u \in H^{-1}(\Omega)$$

We then define $u_1 = \nabla q$, where $q \in H^1(\Omega)$ is the solution (unique upto additive constant, see Remark 1.7 week 12 extra notes) to the Neumann problem

(2.17)
$$\Delta q = 0 \ , \frac{\partial q}{\partial n} = \gamma_{\nu} \left(u - \nabla p \right),$$

which exists since $\nabla \cdot (u - \nabla p) = 0$ and therefore $u - \nabla p \in E(\Omega)$ and so $\gamma_{\nu} (u - \nabla p) \in H^{-1/2}(\Gamma)$ is well-defined (Note Theorem 1.2 of Week 12 extra notes). Now, consider $u_0 = u - u_1 - u_2$. We note that $\nabla \cdot u_0 = \nabla \cdot u - \nabla \cdot u_1 - \nabla \cdot u_2 = 0$ and $\gamma_{\nu} u_0 = \gamma_{\nu} (u - \nabla p) - \frac{\partial q}{\partial n} = 0$. Therefore $u_0 \in H$.

Remark 2.1. We may define \mathcal{P} to be the orthogonal projection (Hodge projection) of $L^2(\Omega)$ onto H; clearly \mathcal{P} is continuous into $L^2(\Omega)$. In fact $\mathcal{P} \to H^1(\Omega) \to H^1(\Omega)$ and is continuous in the norm of H^1 . In the proof of the previous theorem, let us assume $u \in H^1(\Omega)$; then $p \in H^1_0(\Omega) \cap H^2(\Omega)$; and $u - \nabla p \in H^1(\Omega)$ and $\gamma_{\nu}(u - \nabla p) \in H^{1/2}(\Omega)$. Finally, we infer from (2.17) that $q \in H^2(\Omega)$ and

(2.18)
$$\mathcal{P}u = u - \nabla(p+q) \in H^1(\Omega)$$

It is also clear that the mappings $u \to p$ and $u - \nabla p \to q$ are continuous in the appropriate spaces and we conclude that $\mathcal{P} : H_0^1(\Omega) \to H^1(\Omega)$ is continuous with

$$(2.19) ||\mathcal{P}u||_{H^1(\Omega)} \le c(\Omega) ||u||_{H^1(\Omega)}$$

If Ω is C^{r+1} for integer $r \geq 1$, a similar argument shows that for $u \in H^r(\Omega)$, $\mathcal{P}u \in H^r(\Omega)$ and \mathcal{P} is linear and continuous with

(2.20)
$$\|\mathcal{P}u\|_{H^r(\Omega)} \le c(r,\Omega)\|u\|_{H^r(\Omega)}$$

3. Characterization of space V

Theorem 3.1. Let Ω be an open bounded Lipschitz set. Then

$$(3.21) V = \left\{ u \in H_0^1(\Omega) \ , \nabla \cdot u = 0 \right\}$$

Proof. Define V_* to be the set on the right side of (3.21). It is clear that $V \subset V_*$ since V is the closure of \mathcal{V} in H_0^1 . To prove $V = V_*$, it is enough to show that a continuous linear functional L in V_* , which

vanishes on V, is identically 0. We know there exists $l \in V'_*$ so that for any $v \in V_*$,

$$L(v) = \langle l, v \rangle$$

Since V_* is a closed subspace of $H_0^1(\Omega)$ it may be extended as a linear continuous functional on $H_0^1(\Omega)$ and so $l \in H^{-1}(\Omega)$ and we have $\langle l, v \rangle =$ 0 for any $v \in \mathcal{V}$. Propositions 1.1 and 1.3 imply that $l = \nabla p$ and $p \in L^2(\Omega)$, and thus for any $v \in H_0^1(\Omega)$,

(3.23)
$$L(v) = \langle l, v \rangle = \langle \partial_{x_i} p, v_i \rangle = -(p, \partial_{x_i} v_i)$$

Therefore L(v) = 0 for $v \in V_*$.

4

4. Existence and uniqueness for the steady Stokes equations

let Ω be an open bounded set in \mathbb{R}^n with boundary Γ and let $f \in L^2(\Omega)$. We seek to find solution to

(4.24)
$$-\nu\Delta u + \nabla p = f \text{ in } \Omega$$

(4.25)
$$\nabla \cdot u = 0 \text{ in } \Omega$$

$$(4.26) u = 0 \text{ on } \mathbf{I}$$

If f, u and p were smooth functions, it would follow from multiplying (4.24) and using integration by parts that for any $v \in \mathcal{V}$,

(4.27)
$$\nu(u,v)_1 = (f,v)$$
,

where $(u, v)_1 = (Du, Dv)$. Since each side of (4.27) depends linearly and continuously on $v \in H_0^1(\Omega)$, the equality (4.27) holds for any $v \in V$, the closure of \mathcal{V} in $H_0^1(\Omega)$. If Ω is of class C^2 , then any smooth solution $u \in H_0^1(\Omega)$. From (4.25), $u \in V$ in addition to satisfying (4.27). We will now show that (4.27) provides for a weak formulation of Stokes equation (4.24)-(4.26).

Lemma 4.1. Let Ω be an open bounded set of class C^2 . The following conditions are equivalent

i. $u \in V$ and satisfies (4.27) for every $v \in V$.

ii. $u \in H_0^1(\Omega)$ satisfies (4.24)-(4.26) in the following weak sense: there exists $p \in L^2(\Omega)$ so that (4.24)-(4.25) are satisfied in the sense of distribution and $\gamma_0 u = 0$

Proof. If (ii.) is satisfied, then (4.27) follows for any $v \in \mathcal{V}$ since we can make (4.24) act on v in the sense of a distribution. Since \mathcal{V} is dense in V in H_0^1 , statement (i) follows.

Assume now $u \in V$ satisfies (4.27) for any $v \in \mathcal{V}$. Then, it follows that

(4.28)
$$\langle -\nu\Delta u - f, v \rangle = 0 \text{ for any } v \in \mathcal{V}$$

From Proposition 1.1 and 1.3, there exists $p \in L^2(\Omega)$ such that

$$(4.29) \qquad \qquad -\nu\Delta u - f = -\nabla p$$

in the sense of distribution. Further since $u \in V \subset H_0^1$, $\nabla \cdot u = 0$ in the sense of distribution and $\gamma_0 u = 0$; thus statement (ii) follows.

Theorem 4.1. (Projection Theorem) For any open set $\Omega \subset \mathbb{R}^n$, which is bounded in some direction and every $f \in L^2(\Omega)$, the problem (4.27) has unique solution $u \in V$ (the result is equally valid for any $f \in$ $H^{-1}(\Omega)$). More over, there exists a function $p \in L^2_{loc}(\Omega)$ such that (4.24)-(4.25) are satisfied in the sense of distribution.

If Ω is a bounded open set of class C^2 , then $p \in L^2(\Omega)$ and (4.24)-(4.25) are satisfied by u and p.

This theorem is a consequence of Lemma 4.1 and the following (Lax-Milgram) Theorem:

Theorem 4.2. If W is a separable real Hilbert Space with norm $\|.\|_W$ and let a(u, v) be a linear continuous form on $W \times W$, so that there exists $\alpha > 0$ such that

(4.30)
$$a(u, u) \ge \alpha ||u||_w^2$$
, for any $u \in W$

Then for each $l \in W'$, the dual space of W, there exists unique $u \in W$ such that

(4.31)
$$a(u,v) = \langle l,v \rangle$$
, for any $v \in W$

To apply the above Theorem to prove Theorem 4.1, we take W = Vand $a(u, v) = (u, v)_1$ and define l so that $\langle l, v \rangle = (f, v)$. The space V is separable as a closed subspace of a separable space $H_0^1(\Omega)$ (in particular $V = \mathcal{P}H_0^1$).

Proof of Theorem 4.2 Uniqueness part of the theorem follows from the observation that if u_1 and u_2 are two solutions then

$$(4.32) a(u_1 - u_2, v) = a(u_1, v) - a(u_2, v) = 0$$

Using $v = u_1 - u_2$, we obtain $0 \ge \alpha ||u_1 - u_2||_W^2$, implying $u_1 = u_2$. Now consider existence question. Since W is separable, thee exists $\{w_i\}_{i=1}^{\infty}$ which forms a basis for W. Define $W_m = Span \{w_1, w_2, \cdots, w_m\} \subset W$. For each fixed integer $m \ge 1$, we define approximate solution u_m :

(4.33)
$$u_m = \sum_{i=1}^m \xi_{i,m} w_i$$

and require it to satisfy

(4.34)
$$a(u_m, v) = \langle l, v \rangle$$
, for any $v \in W_m$

By replacing v by w_j , j = 1, ...m, we get a linear system of m equations for unknowns $\{\xi_{i,m}\}_{i=1}^m$:

(4.35)
$$a(u_m, w_j) = \langle l, w_j \rangle \text{, for } j = 1, 2 \cdots m$$

We now claim there exists a unique solution to (4.35) for if there were two such solutions their difference v_m would satisfy

It follows that $a(v_m, v_m) = 0$, which implies $v_m = 0$. Therefore, we have a unique solution to (4.34). Now, by substituting $v = u_m$ in (4.34), it follows that

(4.37)
$$\alpha \|u_m\|_W^2 \le \|l\|_{W'} \|u_m\|_W$$
, implying $\|u_m\|_W \le \frac{1}{\alpha} \|l\|_{W'}$

Therefore, there exists subsequence $u_{m'} \to u \in W$ weakly. Take $v \in W_j$ to be a fixed element for some j. Then when $m' \geq j$, $v \in W_{m'}$ and according to (4.34)

On using the following Lemma 4.2 and taking the limit $m' \to \infty$, we obtain

Since this is true for $v \in W_j$ for any j we have

(4.40)
$$a(u, v) = \langle l, v \rangle$$
 for any $v \in W$

Lemma 4.2. Let a(u, v) be a bilinear continuous form on a Hilbert space W. Let ϕ_m (or ψ_m) be a sequence of elements of W which converges to ϕ (or ψ) in the weak (or strong) topology of W. Then

(4.41)
$$\lim_{m \to \infty} a\left(\psi_m, \phi_m\right) = a(\psi, \phi)$$

(4.42)
$$\lim_{m \to \infty} a(\phi_m, \psi_m) = a(\phi, \phi)$$

Proof. We write

(4.43)
$$a(\psi_m, \phi_m) - a(\psi, \phi) = a(\psi_m - \psi, \phi_m) + a(\psi, \phi_m - \phi)$$

Since a is continuous and the sequence ϕ_m is bounded

(4.44)
$$|a(\psi_m - \psi, \phi_m)| \le c ||\psi_m - \psi||_W ||||\phi_m||_W \le c' ||\psi_m - \psi||_W$$

and this term converges to 0 as $m \to \infty$.

We notice next that $v \to a(\psi, v)$ is continuous on W and there exists an element $A(\psi) \in W'$ with $a(\psi, v) = \langle A(\psi), v \rangle$ for every $v \in W$. Therefore, we can write

(4.45)
$$\lim_{m \to \infty} a(\psi, \phi_m - \phi) = \lim_{m \to \infty} \langle A(\psi), \phi_m - \phi \rangle = 0$$

To prove the second statement (4.42), we simply use $a^*(u, v) = a(v, u)$.

5. Eigenfunctions of the Stokes problem

Let Ω be an open bounded set in \mathbb{R}^n . Define $\Lambda : f \to \frac{1}{\nu}u$ to be the map defined in Theorem 4.1, which is clearly a linear and continuous map from $L^2(\Omega)$ onto $V \subset H^1_0(\Omega)$. Since Ω is bounded, the injection $H^1_0(\Omega)$ in $L^2(\Omega)$ is compact, implying the compactness of the operator Λ . Further, the Λ is self-adjoint and positive operator since

(5.46)
$$(\Lambda f_1, f_2) = \nu (u_1, u_2)_1 = (f_1, \Lambda f_2)$$

It follows that there exists orthonormal sequence of eigenfunctions $\{w_j\}_{j=1}^{\infty} \in V$ and corresponding set $\{\lambda_j\}_{j=1}^{\infty}$ of eigenvalues with $\lambda_j > 0$ and $\lambda_j \to \infty$ such that $\Lambda w_j = \frac{1}{\lambda_j} w_j$ and for any $j \ge 1$,

(5.47)
$$(w_j, v)_1 = \lambda_j (w_j, v) \text{ for any } v \in V$$

$$(5.48) (w_j, w_k) = \delta_{j,k}$$

(5.49)
$$(w_j, w_k)_1 = \lambda_j \delta_{j,k}$$

Using Theorem 4.1, it follows that for any $j \ge 1$, there exists $p_j \in L^2(\Omega)$ so that

(5.50)
$$-\nu\Delta w_j + \nabla p_j = \lambda_j w_j \text{ in } \Omega$$

(5.51)
$$\nabla \cdot w_j = 0 \text{ in } \Omega$$

$$(5.52) \qquad \qquad \gamma_0 w_j = 0$$

These are the eigenfunctions of the Stokes problem. If Ω is of class C^m for integer $m \geq 2$, a iterated application of Proposition 1.3 shows that

(5.53)
$$w_j \in H^m(\Omega) , p_j \in H^{m-1}(\Omega) , \text{for any } j \ge 1$$

If Ω is of class C^{∞} , then $w_j, p_j \in C^{\infty}(\overline{\Omega})$. and the asymptotic behavior $\lambda_j \sim cj^{n/2}$ can be derived from a variational approach.