
1. Introduction

First, we describe the basic equations governing motion of fluids. The description
is on a length scale far larger than inter-molecular distance and on a time scale far
larger than the typical time between collision of molecules. Over such scales, it
is appropriate to assume a continuum description of fluid mechanics, as described
below. By averaging over many fluid molecules and many collisions, one avoids
dealing with randomness of molecular motion.

In the continuum hypothesis, we postulate existence of appropriately smooth
density (ρ), velocity (u) and pressure p as a function of space and time. These
are denoted by ρ(x, t), v(x, t), and p(x, t). In MKS system, these are measured in
units of Kg/m3, m/s and Newton/m2 (or Kg/m/sec), respectively. Additionally,
for compressible fluids, it also necessary to include additional dependent variables:
temperature T (x, t), entropy s(x, t), enthalpy w(x, t) and internal energy e(x, t).
The existence of such well defined smooth functions reduces fundamental laws of
conservation of mass, momentum and energy into partial differential equations. In
this course, we will derive these PDEs, discuss their solutions and sometimes discuss
physical insights into actual behavior of fluids.

We will assume that the fluid occupies some open connected set Ω ⊂ R
3. Some-

times we will consider Ω = R
3, while time t ∈ R

+. In special cases, when there is
no dependence on one component of x, say x3, it is appropriate to define a reduced
problem, where x = (x1, x2). In that case, the space domain Ω ⊂ R

2.

2. Conservation of mass: continuity equation

The principle of conservation of mass statesmass is neither created nor destroyed.
Consider fluid occupying a fixed closed and bounded region W ⊂ Ω(1) The mass of
a small infinitesimal volume dx at a point x ∈ W at time t is ρ(x, t)dx. The total
mass m of fluid within W is therefore

(2.1) m =

∫

W

ρ(x, t)dx

Note, in general m depends on time t.
If we assume that there is no source or sink of fluid in the region W , then m

changes with time only because fluid moves in or out of the region W .
Consider a infinitesimal surface element of area dA at x on the surface of W (see

Fig. 1), with outward normal n.
The volume of fluid getting out of W through dA in unit time must be u · ndA

(see Fig. 2). Therefore, the mass of fluid getting out of W through dA, called the
outward mass-flux, is ρu · ndA. The total mass-flux out of W must be

∫

∂W

ρu · ndA

From principle of conservation of mass, the rate of decrease of mass m must be
equal to the outward flux. Therefore,

(2.2) −
dm

dt
=

∫

∂W

ρu · ndA

(1)For now, we will assume W to be a simply connected set in R
3, with a smooth boundary

∂W , though smoothness assumption can be weakened.
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Figure 1. W ⊂ Ω ⊂ R
3, with normal n at x ∈ ∂Ω

nu

x

dA
Figure 2. Volume escaping W through dA at x ∈ ∂Ω is u · ndA

Using (2.1) and (2.2), appropriate regularity of ρ, u and ∂W and Gauss’s divergence
Theorem,

(2.3)

∫

W

{

∂ρ

∂t
+∇ · (ρu)

}

dx = 0
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Since (2.3) is true for arbitrary W , it follows that

(2.4)
∂ρ

∂t
+∇ · (ρu) = 0

Using vector identities, we may rewrite (2.3) as

(2.5)
∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0

Equation (2.3) or (2.5) is referred to as the general continuity equation and follows
from conservation of mass. Note, this is valid without any assumption on whether
fluid is compressible or not.

3. Balance of momentum

Consider the momentum within a fixed volume W . Since momentum is the
product of mass and velocity, for an infinitesimal volume dx, the corresponding
momentum is uρdx. Therefore, the total momentum within W is

(3.6) M =

∫

W

ρudx

Now momentum within the fixed volume W changes because (i) fluid with momen-
tum moves in and out of the volume W and (ii) force causes a change in momentum
according to Newton’s second law.

Consider (i) the momentum transferred in and out of W to neighboring fluid.
Realizing the vector nature of momentum, it is convenient to consider the scalar:
i-th component of the momentum, where i = 1, 2 or 3. Similar to expression
for outward flux of mass (see Fig. 2), the outward flux of the i-th component of
momentum through area element dA is given by (ρui)u ·ndA. So, the net outward
flux FM,i of i-th component of momentum is given by

(3.7) FM,i =

∫

∂W

(ρui)u · ndA =

∫

W

∇ · [ρuiu] dx =

∫

W

{ρu · ∇ui + ui∇ · [ρu]}

As a vector with components FM,i, we have

(3.8) FM =

∫

W

{ρ[u · ∇]u+ u∇ · [ρu]}

Now, consider source (ii) for change of momentum, which is the external force
acting on W . Note different parts of the fluid within volume W exert force on
each other; however, from Newton’s third law, these internal forces are equal and
opposite to each other and therefore do not contribute to the net force on W . There
are two kind of external forces on W . The first type are (a) body forces, like gravity
or electro-magnetic forces, if they are relevant. These act at every point W . We
will denote it by b(x, t) per unit mass that the total body force on W is

(3.9) Fb =

∫

W

bρdx

The second kind of force on W is due to (b) surface forces, which act only on

boundary ∂W . For an ideal fluid, defined by neglect of viscous-friction(2), surface
force on W acts towards the inward normal −n. The magnitude of this surface

(2) This friction is an aggregate effect resulting from molecular collisions that tend to slow

down fast moving fluid-molecules and speed up slower ones
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force per unit area is called pressure p. Therefore, from definition of pressure, the
surface force on W for an ideal fluid is:

(3.10) FS =

∫

∂W

[−pn]dA = −

∫

W

∇pdx, from divergence theorem

From balance of momentum, implicit in Newton’s second law,

(3.11)
d

dt
M = −FM + Fb + FS

Note that the minus sign on the first term on the right is because FM measures
the outward momentum flux; if FM,i > 0, d

dt
Mi < 0 when Fb + FS = 0. Using

expressions for M, FM , Fb and FS in (3.6), (3.8), (3.9) and (3.10), the latter only
valid for an ideal fluid,

(3.12)
∫

W

∂

∂t
[ρu] dx = −

∫

W

{ρ[u · ∇]u+ u∇ · [ρu]} dx +

∫

W

ρbdx −

∫

W

∇p dx

Since, this is true for any volume W , it follows that for an ideal fluid, momentum
balance implies:

(3.13)
∂

∂t
[ρu] + ρ[u · ∇]u+ u∇ · [ρu] = ρb−∇p

We note that

∂

∂t
[ρu] + ρ[u · ∇]u+ u∇ · [ρu] = u

(

∂ρ

∂t
+∇ · [ρu]

)

+ ρ

(

∂u

∂t
+ [u · ∇]u

)

Hence using continuity equation (2.5), momentum equation (3.13) for ideal fluid
reduces to

(3.14) ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρb

We note since Fb + FS is the total force on W and the volume of W is
∫

x∈W
dx,

it follows from (3.8) and (3.9), that the right hand side of (3.14) is the Force per
unit volume acting at x at time t. This gives an alternate interpretation of (3.14).

Consider a fluid particle(3) located at x = x(t). The velocity of this particle is
d
dt
x(t) = u(x(t), t) from definition of u. However, we note that its acceleration

(3.15)
d2

dt2
x(t) =

d

dt
u(x(t), t) =

∂

∂t
u(x, t) +

dx

dt
· ∇u(x, t) =

∂u

∂t
+ (u · ∇)u ≡

Du

Dt

So, (3.14) may be written as

(3.16) ρ
Du

Dt
= −∇p+ ρb

In this form (3.16) is see as a direct statement of Newton’s second law: the product
of mass times acceleration per unit volume equals total force per unit volume.

(3)Not to be confused with a fluid molecule. We using continuum hypothesis; so any graininess

is being neglected.
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3.1. Viscous Effects. As mentioned earlier, the expression FS in (3.10) and hence
the momentum equations, either in the form (3.14) or (3.16), are valid only when
we assume an ideal fluid, i.e. a fluid where surface force acts in the inward normal
direction. This ignores the fact that layers of fluids moving parallel to each other
will cause friction. More realistically, one includes a Viscous Stress tensorT, defined
such that the i-th component of the total surface force FS on the area element dA,
is given by

(3.17) dFS,i =







−pni +

3
∑

j=1

Ti,jnj







dA

Here T is a second order tensor, with components Ti,j. Therefore, (3.10) is replaced
by

(3.18) FS =

∫

W

{−∇p+∇ ·T} dx

where we define vector ∇ · T so that [∇ ·T]i =
∑3

j=1 ∂xj
Ti,j . Therefore, the

momentum equation (3.14) becomes

(3.19) ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+∇ ·T+ ρb

For so-called Newtonian fluid, which includes most common fluids(4), T is deter-
mined in terms of strain-tensor S(5), whose components are

(3.20) Si,j =
1

2

(

∂xj
ui + ∂xi

uj

)

The relation between stress and strain is given by a constitutive relation, which
models the physical behavior of fluids as seen in experiment. For Newtonian fluid,
this is given by

(3.21) T = 2µ

(

S−
1

3
(∇ · u)I

)

+

[

λ+
2

3
µ

]

(∇ · u)I

where µ and λ are constants, referred to as first and and second coefficient of vis-
cosity(6). When (3.21) is used in (3.19), vector identities show that the momentum
equation becomes:

(3.22) ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∆u+ (λ+ µ)∇(∇ · u) + ρb

4. Incompressible Fluid Equations

Recall that actual fluid-particle motion (or Langrangian motion) of is governed
by the ODE:

(4.23)
dξ

dt
= u(ξ(t), t) , ξ(0) = x

(4)This includes air, water; but not tooth-paste or blood which are Non-Newtonian fluid
(5)

Strain tensor is the symmetric part of ∇u. The anti-symmetric part is related to simply

rotation of fluid element; this cannot contribute to fluid stresses
(6)Most often in the literature viscosity coefficient refers to µ since λ is not relevant for incom-

pressible flows, as we shall seee later
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We call this solution φ(x, t) This can be used as a map of an initial region W . We
define

(4.24) Wt ≡ {ξ : ξ = φ(x, t) , ξ(0) = x ∈ W} ,

which physically corresponds to the same set of particles that initially constitutes
W , even as they move around with time. For smooth velocity fields u, Wt is clearly
a smooth map of W . At each time t, at point x ∈ W , we can define the Jacobian
J of this transformation:

(4.25) J(x, t) = det [∂xξ]

Routine calculation using expression for the Jacobian, remembering ∂ξ
∂t

= u(ξ(x, t), t)
for fixed x, shows that

(4.26)
∂J

∂t
= [∇ · u]J

Using J(x, 0) = 1, the above implies

(4.27) J(x, t) = exp

[
∫ t

0

[∇ · u](φ(x, τ), τ)dτ

]

This relation implies in particular that unless ∇ · u is singular, J cannot be zero
for finite t.
Exercise: Prove relation (4.26)

An incompressible fluid is characterized by volume of Wt being fixed for any
initial set W0, i.e.

(4.28)
d

dt

∫

Wt

dξ = 0

This means

(4.29) 0 =
d

dt

∫

W0

J(x, t)dx =

∫

W0

Jtdx =

∫

W0

J(∇ · u)dx

Since this is true for any W0, incompressibility is equivalent to

(4.30) ∇ · u = 0

When incompressibility, i.e. (4.30) holds, the continuity equation (2.5) becomes:

(4.31) ∂tρ+ u · ∇ρ = 0,

while momentum equation (3.22) becomes

(4.32) ρ
Du

Dt
= −∇p+ µ∆u+ ρb

Equation (4.30), (4.31) and (4.32) constitute the complete equations, called the
Navier-Stokes equation for incompressible fluids for unknown density, velocity and
pressure functions ρ, u and p. Note that there are just as many scalar equations
(five altogether) as the number of unknowns, which are three components of u,
along with scalars p and ρ.
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5. Incompressible uniform density Navier-Stokes equation

Further simplifications occur when the initial fluid density ρ(x, 0) = ρ0, where
ρ0 does not depend on x. In that case (4.31) clearly implies that ρ(x, t) = ρ0 for
all t. The momentum equation (4.32) simplifies to

(5.33)
∂u

∂t
+ (u · ∇)u = −∇

(

p

ρ0

)

+ ν∆u + b,

where ν ≡ µ
ρ0

is a constant, called the kinematic viscosity, which has physical dimen-

sions of (Length)2/T ime In this limit, it is also common notation in the literature
to replace p

ρ0

by p. Equation (5.33) together with incompressibility equation:

(5.34) ∇ · u = 0

constitutes four scalar equations for four scalar unknowns (three component of u
and p.
Exercise: Suppose x = (x, y, z), u = (u, v, w). Express the incompressible uniform

density Navier-Stokes equations (5.33) and (5.34) in terms of its scalar components.

5.1. Initial Condition. Equations above have to be complimented by initial and
boundary conditions. Appropriate initial condition is given by

(5.35) u(x, 0) = u0(x)

where initial condition satisfies the incompressibility constraint ∇ · u0 = 0. Initial
conditions on pressure are inappropriate, since taking the divergence of (5.33) gives
us the relation

(5.36) −∆
p

ρ0
= ∇ · (u · ∇u) +∇ · b

Thus, pressure p(x, t) is determined at each instant of time for known u(x, t) by
inverting the Poisson equation (5.36), with boundary conditions discussed later.
Initial conditions for p is therefore inappropriate in this limit.

5.2. Boundary Condition for a solid boundary ∂Ω. Equations and initial con-
ditions have to be supplemented by boundary conditions. If Ω is finite, appropriate
boundary condition on a solid boundary is the so-called no-slip boundary condition:

(5.37) u = v on ∂Ω

where v is the specified velocity of boundary of the domain. For instance if Ω is a
fluid container, whose boundary is in motion with velocity v, specification of (5.37)
implies that at on the boundary, the container particles and fluid particles share
the same velocity; hence it is referred to as the no-slip boundary conditions. In the
special case, when v = 0, i.e. the boundary is at rest, the no-slip boundary con-
dition becomes u = 0 on ∂Ω. Additionally, taking dot product of (5.33) with unit
outwards normal n at the boundary ∂Ω, we obtain for no-slip boundary condition,

(5.38)
∂

∂n

(

p

ρ0

)

= −n · [(u · ∇)u] + νn · (∆u) + n · b,

which is a Neumann boundary condition for pressure p satisfying Poisson’s equation
(5.36) in Ω. Using ∇·u = 0, it is not difficult to show that the consistency condition

∫

∂Ω

∂p

∂n
dA = 0
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is satisfied by the right hand side of (5.38); and hence p is determined in terms of
velocity u upto an additive constant.

If Ω is unbounded and extends to ∞, one needs to specify asymptotic conditions
on u as x → ∞, either explicitly or implicity. For instance if we consider fluid
moving past a fixed body, Ω is then the exterior of the body and an appropriate
condition would be

(5.39) lim
x→∞

u(x, t) = U(t)

where U is velocity of the fluid at infinity.

5.3. Boundary condition on a free-boundary. The no-slip boundary condition
(5.37) is not appropriate on any part of ∂Ω, which is not a solid boundary. For
instance, at a free-boundary like the surface of a drop/bubble or water-wave, we
require instead that the net surface force at each point on the free boundary is
zero. This follows from Newton’s second law because the inertia of the free-surface
is negligible(7).

Thus, if ∂Ω or parts of it is bounded on the other side by vacuum or some other
fluid of negligible stress (air under most conditions), we replace (5.37) by

(5.40) − pn+T · n = −γκn

where γ is the surface tension coefficient and depends on the two fluids across the
two sides of the free boundary and κ is the mean-curvature of the interface, which
will be positive for a convex shape, such as shown in Fig. 1. For a Newtonian

incompressible fluid, (5.40) becomes

(5.41) − pn+ 2µS · n = −γκn

Boundary conditions become more involved when both fluids across ∂Ω have non-
trivial stresses. However, the basic principle is still the same and involves a similar
force balance at each point x ∈ ∂Ω.

5.4. Dimensionless variable and Reynolds Number Re. Consider the case
of flow without external forcing(8) i.e. b = 0. For incompressible constant density
case, we can nondimensionalize all the variables of interest by introducing a length
scale L and a velocity scale U . For instance in flow past a spherical body, we can
take L to the the diameter of the sphere and U to be the fluid velocity magnitude
at ∞. Without specifying precisely what they are, we think in general of L and U
representing a typical length and velocity magnitude that characterizes the problem.

We introduce nondimensional variables:

(5.42) u = Uu′ , t =
L

U
t′ , x = Lx′ , p = ρ0U

2p′

With this scaling, the incompressible constant density equations (5.33) and (3.22)
become:

(5.43) ∂t′u
′ + (u′ · ∇′)u′ = −∇′p′ +

1

Re
∆′u′

(5.44) ∇′ · u′ = 0

(7)Note ∂Ω has zero measure in R
3, hence finite fluid density ρ implies zero mass

(8)The same analysis holds if b = ∇Ψb, since pressure p can be replaced by p − ρ0Ψb, thus

reducing it to b = 0 case.
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where

(5.45) Re =
UL

ν
is a non-dimensional number, called the Reynolds Number that completely charac-
terizes flows, when a free boundary is not involved.

In the mathematical literature, it is common to take the non-dimensional equa-
tions (5.43) and (5.44) (without the primes) as the incompressible constant density
equations and think of Reynolds number given by (5.45) as the inverse of some
non-dimensionalized viscosity ν.

The advantage of a non-dimensional form is that we can predict the flow past
an aero-plane from wind-tunnel experiment on a laboratory object by ascertaining
that Re number is the same. It is the same reason why a small object moving
in water can generate the same flow conditions as a human being moving through
honey, after appropriate rescaling. What matters is not the absolute size of the
object, or typical velocity of motion or viscosity of fluid, but only the combination
that goes into the definition of Re in (5.45). More precisely, from (5.43) and (5.44)
it follows that in dimensional form,

u

U
= v

(

x

L
,
tU

L
;Re

)
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