
Week 2 Notes, Math 8610, Tanveer

1. Incompressible constant density equations in different forms

Recall we derived the Navier-Stokes equation for incompressible constant density,
i.e. homogeneous flows:

(1.1) ut + [u · ∇]u = −∇p+ ν∆u+ b

(1.2) ∇ · u = 0

where p is the scaled pressure (i.e. p
ρ0

in previous notation). We note that the

non-dimensional ν is simply 1
Re

, i.e. reciprocal of the Reynolds number.
There are alternate forms of Navier-Stokes equation besides (1.1)-(1.2). These

are sometimes more valuable in analysis. If we apply the divergence operator to
(1.1), which is well-defined if u ∈ C2, and use (1.2) to obtain

(1.3) −∆p = ∇ · ([u · ∇]u) +∇ · b

Boundary condition for p on ∂Ω is found by taking the dot product of (1.1), inter-
preted as the limit of x → ∂Ω, with unit normal n on the boundary. If the boundary
is at rest, no slip boundary condition implies u ·n = 0 and [(u · ∇)u] ·n = 0. Thus,
we obtain

(1.4)
∂p

∂n
= [b+ ν∆u] · n on ∂Ω

Given u, the pressure p is determined by the linear elliptic PDE (1.3) with Neumann
boundary condition (1.4). Note that the consistency condition for Neumann BC
(1.4)

∫

Ω

∆pdx =

∫

∂Ω

∂p

∂n
dA

is indeed satisfied. Also, the solution p is only determined up to a time-dependent
constant. However, this constant is irrelevant for determining velocity u since (1.1)
involves only ∇p. Instead of using (1.1)-(1.2) to solve for (u, p), it is sometimes
more convenient to use (1.1)-(1.3) to solve for (u, p). At each instant of time, given
u, (1.3) and (1.4) determine pressure p, which is then used in (1.1) to evolve u in
time. The following Lemma is easily proved

Lemma 1.1. Assume initial condition u(x, 0) = u0(x) is divergence free. Then
(u(x, t), p(x, t)) is a smooth solution to (1.1)-(1.2) if and only if it satisfies (1.1)-
(1.3)

Exercise: Prove Lemma 1.1.
There is yet another formulation of incompressible constant density Navier-

Stokes involving vorticity, defined as

(1.5) ω = ∇× u

In component form, the i-th component of vorticity vector is:

(1.6) ωi = ǫijk∂xj
uk ≡ ǫijkuk,j
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where uk,j is a short-hand notation for ∂xj
uk and ǫijk are the components of the

Levi-Civita tensor given by

ǫijk = 0 if any two indices equal ,(1.7)

ǫijk = 1 if indices are distinct and even permutation of {123}(1.8)

ǫijk = −1 if indices distinct and odd permutation of {123}(1.9)

Note that

ω1 = u3,2 − u2,3 = ∂x2
u3 − ∂x3

u2

ω2 = u1,3 − u3,1 = ∂x3
u1 − ∂x1

u3

ω3 = u2,1 − u1,2 = ∂x1
u2 − ∂x2

u1

Another well-known property of the product of Levi-Civita Tensor will be useful
later on.

(1.10) ǫijkǫklm = δilδjm − δimδjl

Expressing the displacement of a fluid particle in terms of a Taylor expansion in
space relative to a reference point, it is not difficult to show that vorticity ω is twice
the the local rotation speed in a fluid. If we imagine a small light stick put in a
fluid at x at time t, it will rotate with angular velocity 1

2 |ω| with axis of rotation
along ω.

We now apply the curl operator ∇× to (1.1) we obtain

(1.11) ωt +∇× [u · ∇u] = ν∆ω +∇× b

Now, using vector identities we obtain

(1.12) [u · ∇]u = ∇
u2

2
− u× ω

So the i-th component of the second term on the left of (1.11) is:

{∇ × [u · ∇u]}i = −ǫijk∂xj
ǫklm [ulωm]

= [δimδjl − δilδjm] [ul,jωm + ulωm,j] = −ui,jωj+ujωi,j = [−(ω · ∇)u+ (u · ∇)ω]i

Therefore, (1.11) becomes:

(1.13) ωt + [u · ∇]ω = [ω · ∇]u+ ν∆ω +∇× b

Equation (1.13) combined with (1.2) and (1.5) determines ω and u. Note in this
case, we have eliminated pressure p altogether.

Lemma 1.2. Assume that initial condition u0 is smooth and satisfies ∇ · u0 = 0.
Then, (u(x, t), p(x, t) is a smooth solution to (1.1)-(1.2) if and only if (ω(x, t),u(x, t))
is a solution satisfying (1.13)-(1.2) and (1.5).

Proof. Clearly if (u, p) satisfies (1.1)-(1.2), then the above derivation shows that
ω = ∇ × u satisfies (1.13). (1.5) follows from definition of vorticity ω. Now we
show the converse. Assume (ω,u) satisfies (1.13),(1.5) and (1.2). Then, we know
from the above process of derivation that (1.13) is the same as

∇× [ut + (u · ∇)u− ν∆u− b] = 0

Therefore, (1.1) follows since the curl of a vector field equals zero implies it is the
gradient of a scalar, defined as pressure p.
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Using (1.5) and (1.2), it is possible to have a more explicit representation of u
in terms of ω in simple geometries. To see this, first notice that (1.2) implies

(1.14) u = ∇×A

where A is generally called the vector potential. Now, (1.5), becomes

(1.15) ∇× [∇×A] = ω

The following vector identity is not difficult to show∇×(∇×A) = −∆A+∇(∇·A).
Since the physical velocity u = ∇×A = ∇× [A+∇φ], there is no loss of generality
choosing ∇·A = 0, as otherwise we can replace A by A+∇φ, where −∆φ = ∇·A.
Hence

(1.16) −∆A = ω

In any geometry that allows an explicit Green’s function for the −∆ operator, we
can have an explicit integral representation for A and hence on taking the curl an
explicit representation for u in terms of ω. For instance if Ω = R

3, then for ω
decaying appropriately at ∞, inversion of (1.16) gives

(1.17) A(x) =
1

4π

∫

R3

ω(x′, t)

|x− x′|
dx′

Applying curl operator to (1.17), we obtain the so-called Biot-Savart relation for
velocity u in terms of the vorticity ω:

(1.18) u(x, t) = −
1

4π

∫

R3

(x − x′)× ω(x′, t)

|x− x′|3

Note that in (1.18), we assume that the vorticity ω(x, t) goes to zero sufficiently
fast for the integral to make sense. Similar Biot-Savart relation can be derived for
other simple geometries. Also, velocity u is assumed to go to zero at ∞ as well. We
notice that (1.13) and (1.18) together can be thought of as an integro-differential
equation for one-quantity ω.

2. Ideal or Euler limit

When Reynolds number Re → ∞ or equivalently ν → 0 in (1.1)-(1.2), we for-
mally get the so-called Euler equations for ideal incompressible uniform density
fluid:

(2.19) ut + (u · ∇)u = −∇p+ b, ∇ · u = 0

while we still use incompressibility relation (1.2). In the vorticity form, the Euler
equation (2.19) takes the form

(2.20) ωt + (u · ∇)ω = (ω · ∇)u+∇× b

Since the order of the equation is now reduced, it is no longer possible to satisfy
the no-slip boundary condition u = v on ∂Ω at a solid body. Instead, one requires
equality of the normal components

(2.21) u · n = v · n on ∂Ω

The tangential components of fluid velocity need not be the same as the tangential
velocity of the boundary; i.e. we allow for fluid to slip past the solid body. One
way to understand how a Navier-Stokes solution in the limit of ν → 0 tends to an
Euler solution is to imagine a thin boundary layer adjacent to the solid body. In
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the limit, this layer shrinks to zero size and corresponds to a singular distribution
of vorticity on the solid boundary itself; this is called a vortex sheet.

On a free-boundary such as on the surface of a bubble/drop or water wave, we
only consider balance of normal forces; tangential component is identically zero,
i.e. we only use the condition

(2.22) p = σκ on ∂Ω

2.1. Irrotational or Potential Flow. In the vorticity form (2.20), it is clearly
seen that if the solution to (2.20),(1.2) and (1.5) in Ω = R

3 is unique, then ω(x, 0) =
0 implies ω(x, t) = 0 for all t > 0, i.e. the flow is irrotational for all time. From
(1.5), it follows that

(2.23) u = ∇Φ

where Φ is called the velocity potential. Then the divergence condition (1.2) implies

(2.24) ∆Φ = 0

Therefore in this case, we can solve Laplaces equation for the velocity potential and
determine velocity through (2.23), without ever solving the Euler equation directly.
Indeed, if the body force b = −∇V (in the case of gravity V = gx3), we we may
use ω = 0 and rewrite Euler equation (2.19) in the form

(2.25) ∇

[

Φt + p+
1

2
u2 + V

]

= 0

This gives rise to Bernoulli’s equation(1)

(2.26) Φt + p+
1

2
u2 + V = 0

Generally, we need an arbitrary function of time on the right side of (2.26); but
this is not necessary since it can be absorbed in Φ, without affecting ∇Φ, which is
the physical velocity. For steady flow, Bernoulli’s law (2.26) becomes

(2.27) p+
1

2
u2 + V = 0

In the absence of a a body force, i.e. V = 0, we note that (2.27) implies that
regions of large speed corresponds to small pressures, while in lower speed regions,
pressure is higher. This is important in aero-dynamics.

2.1.1. Potential Flow past a stationary sphere. We now seek to determine the steady
potential flow past a sphere of radius a with a constant uniform flow U at∞ with no
external forcing and determine the total total force exerted by fluid on the sphere.

We need to solve Laplace’s equation outside a sphere. Consider a spherical
coordinate system with origin at the center of the sphere. We take the x3-axis
along the direction of the flow at ∞, i.e. limx→∞ u(x) = Ux̂3, x̂3 being a unit
vector in the direction of x3. Since u = ∇Φ. So,

lim
x→∞

[Φ(x) − Ux3] = 0

In spherical coordinates (ρ, θ, φ), this implies

(2.28) lim
ρ→∞

{Φ(ρ, θ, φ)− Uρ cos θ} = 0

(1)Note p here is the scaled pressure, i.e. actual pressure/density.
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Note that since equations boundary conditions and asymptotic conditions remain
invariant with respect to rotation in φ. Therefore, the solution will not depend on
φ. We seek a simple solution to ∆Φ = 0 in the form suggested by the θ dependence
in (2.28):

(2.29) Φ(ρ, θ) = f(ρ) cos θ

Using Laplace’s equation representation in spherical coordinates, we have

(2.30)
∂2Φ

∂ρ2
+

2

ρ

∂Φ

∂ρ
+

1

ρ2 sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

ρ2 sin2 θ

∂2Φ

∂φ2
= 0

Substituting (2.29)

(2.31) f ′′ +
2

ρ
f ′ −

2

ρ2
f = 0

This has solution

(2.32) f(ρ) = C1ρ+ C2ρ
−2

In order to match to the asymptotic condition (2.28), we have C1 = U . Now, to
satisfy the condition u · n = 0 on ρ = a, we need ∂ρΦ(a, θ) = 0. this implies from
(2.32) that

(2.33) f ′(a) = U − 2C2a
−3 = 0 implying C2 =

Ua3

2

So, a solution for the potential flow problem is

(2.34) Φ(ρ, φ) = U cos θ

(

ρ+
a3

2ρ2

)

Uniqueness of this solution follows within a large class of functions (for e.g. H1 (Ω)
with continuity of derivative in Ω), using standard energy methods for Laplace’s
equation. The components of velocity u in spherical coordinates are

(2.35) uρ = ∂ρΦ = U cos θ

(

1−
a3

ρ3

)

, uθ =
1

ρ
∂θΦ = −U sin θ

(

1 +
a3

2ρ3

)

From the expressions for components (uρ, uθ) of velocity, we obtain on using steady
Bernoulli equation, that scaled pressure

(2.36) p(ρ, θ) = −
1

2
u2 = −

U2

2

{

cos2 θ

(

1−
a3

ρ3

)2

+ sin2 θ

(

1 +
a3

2ρ3

)2
}

On the sphere ρ = a, we obtain

(2.37) p(a, θ) = −
9U2

8
sin2 θ

The force exerted by the fluid on the sphere is

(2.38) F =

∫

ρ=a

−pndA

Along the x3 direction, since n3 = cos θ, we have

(2.39) F3 = −2πa2
∫ π

0

sin θ cos θp(a, θ)dθ = 0
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Since n1 = sin θ cosφ and n2 = sin θ sinφ, it follows that

(2.40) F1 = −a2
∫ π

0

{
∫ 2π

0

sin θp(a, θ) sin θ cosφdφ

}

dθ

So, there is no force on the sphere! This is called the D’Alembert paradox and can
be shown to be generally true for steady potential flow past any body.

The reason there is no force is because we have (i) assumed that there is no
viscosity, (ii) assumed that vorticity, which is generated at the boundary in a sin-
gular way because of the no-slip boundary condition is somehow confined to the
boundary. This is not the case for a realistic flow field.

Further notice from (2.35) that while the radial velocity component uρ = 0 at
ρ = a, this is not true for the θ component; i.e. fluid does slip past the cylinder at
ρ = a. We cannot generally impose a physical no-slip boundary condition for Euler
equation.
Exercise: Determine potential flow past an infinite stationary cylinder of radius a.
You can assume the axis of the cylinder to be aligned along the x3-axis and that the

flow has no x3 dependence. You can also assume that u − Ux̂1 = o(1/
√

x2
1 + x2

2)
as (x1, x2) → ∞.
Exercise: For a general smooth shaped body, use Bernoulli’s equation and diver-
gence theorem to show that the steady potential flow past a stationary body exerts
no force. What assumptions on u are necessary at ∞ for the above to be true?

2.1.2. Two dimensional Potential Flow. For two dimensional flow, i.e. no depen-
dence on x3, such as flow past an infinite cylinder, we may as well consider the
reduced dimensional problem where the independent space variable x = (x1, x2) ∈
Ω ⊂ R

2.
In two dimensions since every solution to ∆φ = 0 is associated with an analytic

function W of z = x1 + ix2
(2) so that

(2.41) Φ(x1, x2) = ReW (x1 + ix2) = ReW (z)

W (z) is usually referred to as the complex velocity potential. It’s imaginary part Ψ
is called the stream function. From use of Cauchy Riemann conditions and u = ∇Φ,
it follows that

(2.42) ∂x1
Φ = ∂x2

Ψ = u1 , ∂x2
Φ = −∂x1

Ψ = u2

Stream function has also a nice physical meaning–the fluid flow is always tangent
to level set of Ψ determined by Ψ(x1, x2) = Constant. To show this we note if
(dx1, dx2) is parallel to (u1, u2), then u1dx2 − u2dx1 = 0 = ∂x2

Ψdx2 + ∂x1
Ψdx1 =

dΨ. The level sets of the stream function are called streamlines.
Also, the total fluid flux (in 2-D sense) between two streamlines Ψ = c and Ψ = d

is simply d−c. To see this take two points on the two steamlines and draw a smooth
line (x1(s), x2(s)), s ∈ [0, 1] joining them. The flux through this line, whose normal
is clearly (x′

2,−x′
1), is given by

Flux =

∫ 1

0

[u1x
′
2 − u2x

′
1]ds =

∫ 1

0

d

ds
Ψ(x1(s), x2(s))ds

= Ψ(x1(1), x2(1))−Ψ(x1(0), x2(0)) = d− c

(2)There is no assumption on fluid being steady. W can also be a function of time t, but this
dependence is suppressed here.
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The condition on Euler flows that u · n = 0 on ∂Ω for a stationary boundary
implies fluid flow is tangential to the boundary. For a 2-D potential flow, this
implies that the free boundary is a stream line and we can set the condition

(2.43) Ψ(x, y) = c

In terms of the complex velocity potential W (z), we note that

(2.44)
dW

dz
= ∂x1

Φ+ i∂x1
Ψ = ∂x1

Φ− i∂x2
Φ = u1 − iu2

Because of the relation (2.44) with velocity (u1, u2),
dW
dz

is usually called the complex
velocity.

So, the problem of determining potential flow in 2-D reduces to finding an ap-
propriate analytic function W (z) which satisfies certain boundary conditions on
∂Ω and at ∞ (if ∞ ∈ Ω). Sometimes, it is appropriate to look for solutions where
W (z) can have singularities at one or more points. For instance, we can consider
an idealized point source at z = z0, which is characterized by fluid being added to
the domain Ω, say at a rate m. This would correspond to specifying

(2.45) W (z) ∼
m

2π
log(z − z0) +O(1) as z → z0

To show that this corresponds to a source of spewing out fluid at z = z0 (corre-
sponding to x = x0) at a rate m consider the boundary contribution of the 2-D

flux(3)

(2.46) 2−D flux =

∫

|x−x0|=ǫ

u · nds = ǫ

∫ 2π

0

∂rΦdθ , where z − z0 = reiθ

We now note that ∂rΦdθ = Re
{

∂rW
dz

i(z−z0)

}

. Further

ǫ

z − z0
∂rW = e−iθ∂rW =

dW

dz

So, from (2.46), the 2-D flux around z = z0 is given by

(2.47)

∫

|x−x0|=ǫ

u · nds = Re

{

−i

∮

|z−z0|=ǫ

dW

dz
dz

}

= m

from contour integration. Multiple sources at different points correspond to log
singularities of W (z) at such points.

Yet, another type of singularity arises in idealized potential flow. These are
called point vortices. A point vortex x = x0 of strength Γ is a singularity of u for
which

(2.48)

∮

|x−x0|=ǫ

u · τds = Γ , where τ is the unit tangent vector

for any ǫ > 0 sufficiently small, where the integral is traversed in the positive
sense (anti-clockwise). A point vortex corresponds to a singularity of W (z) at the
corresponding complex point z0 = x0,1 + ix0,2, such that

(2.49) W (z) ∼
−iΓ

2π
log(z − z0) + o(1)

(3) Note this involves arc-length integrals instead of area integral in 3-D
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Exercise: Show that if a 2-D potential flow u has a point vortex singularity at x0,
then the corresponding complex potential W (z) satisfies (2.49).

Because of the connection to complex analytic functions, and powerful complex
variable methods including conformal map, many problems of 2-D potential flow
can be solved explicitly, both for steady and time-dependent problems. We give
some simple examples in the subsections below.

2.1.3. Steady Flow past a flat plate aligned parallel to flow. Consider the steady
flow past a flat plate geometry, where the plate location is given by

∂Ω = {(x1, x2) : −1 < x1 < 1 , x2 = 0}

We seek solution so that as x → ∞,

(2.50) u− Ux̂1 = o(1/r) asr =
√

x2
1 + x2

2 → ∞

Using complex velocity dW
dz

, the condition (2.50) becomes

(2.51)
dW

dz
= U + o(1/z) as z → ∞

So,

(2.52) W (z) = Uz + o(1) as z → ∞

We just notice that W (z) = Uz satisfies the streamline condition on ∂Ω since

(2.53) Ψ = ImW (x1 + i0) = ImUx1 = 0

Therefore, the solution in this case is trivial

(2.54) W (z) = Uz , implying
dW

dz
= U i.e. (u1, u2) = (U, 0)

So, we have a uniform flow and the presence of the plate makes no difference. This
is expected since the flow is parallel to the plate and the plate has no effect on the
flow.

2.1.4. Steady Flow Past a Stationary Cylinder. We want flow past a cylinder. Con-
sider radius of the cylinder to be of radius 1, as it simplifies algebra a bit. However,
the same method is applicable for any radius. As z → ∞, we require as before for
a flat plate, that the asymptotic condition (2.52) is satisfied.

However, we note that the analytic function

(2.55) ζ = f(z) =
1

2
(z + 1/z)

maps the domain exterior of the unit circle to the domain exterior of the domain
of the slit joining ζ = −1 to ζ = +1. Its inversion is given by

(2.56) z = f−1(ζ) = ζ +
√

ζ2 − 1

Further, the mapping function (2.55) implies that as ζ → ∞, ζ ∼ z
2 ; hence the

asymptotic condition (2.52) on W (z) becomes

(2.57) W (z(ζ)) ∼ 2Uζ + o(1/ζ) as ζ → ∞

We know from previous section that

(2.58) W (z(ζ)) = 2Uζ
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satisfies the streamline condition on the real axis segment (−1, 1) in the ζ-plane.
But using (2.55), it follows that

(2.59) W (z) = U

(

z +
1

z

)

, implying Φ(r, θ) = U

(

r +
1

r

)

cos θ

is the solution we seek. We can check directly that on |z| = 1, W is real and so the
boundary condition Ψ = ImW = 0 is satisfied.
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