
Week 3 Notes, Math 865, Tanveer

1. More on 2-D potential flow solutions

1.0.1. Circle Theorem for 2-D potential flow. For 2-D flow, it is sometimes useful
to note that if flow is known in the absence of any boundary, then it possible to
determine the flow in the presence of a stationary circle. This is because of the
following circle Theorem.

Theorem 1.1. (Circle Theorem) If Wf (x1 + ix2) is the complex velocity potential
for Ω = R

2 satisfying given conditions at ∞ and at possible singularities (specified
sources and sinks for instance) located in |x1 + ix2| > a > 0, then

(1.1) W (z) = Wf (z) +
{

(Wf (a
2/z∗)

}∗

is the complex velocity potential for the domain Ω =
{

(x1, x2) : x
2
1 + x2

2 > a2
}

Proof. Since conditions at ∞ and singular conditions at finite points outside |z| > a
are satisfied by Wf (z), it is only necessary to check that [Wf (a

2/z∗)]∗ is analytic,
singularity free in |z| ≥ a, finite at z = ∞ and that (1.1) satisfies Im W = 0
on |z| = a. The latter condition is checked directly by substituting z = aeiθ and
noting that the resulting expression in (1.1) is purely real. It also seen that the
process of taking two complex conjugation in [Wf (a

2/z∗)]∗ results in an analytic
function. Also, since |z| > a is mapped to |z| < a by the mapping a2/z∗, the
only singularity of this function is inside the unit circle and not within the domain
of interest. Further, since Wf (0) is finite, it follows that [Wf (a

2/z∗)]∗ is finite as
z → ∞. Thus, W (z) is indeed the vector potential corresponding to the potential
flow outside the circle of radius a.

Example: Consider the problem of finding flow past a circular solid body when
u ∼ Ux̂1 as x = (x1, x2) → ∞. Assume we also have a vortex at (x1, x2) = (b, c)
with circulation κ where b2 + c2 > 1. We want to determine the flow.

In the absence of any body, we have from given condition

Wf (z) ∼ Uz as z → ∞

Near z = z0 = b+ ic, the condition on Wf (z) becomes

Wf (z) ∼
−iκ

2π
log(z − z0)

Therefore, in the absence of any body, we must have

Wf (z) = Uz −
iκ

2π
log(z − z0)

Therefore, from circle theorem:

W (z) = Uz −
iκ

2π
log(z − z0) + U/z +

iκ

2π
log(1/z − z∗0)

Remark 1.1. Circle Theorem together with conformal map allows one to explicitly
calculate potential flows past many geometries of interest.
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2. Euler Flow with Vorticity in Ω ⊂ R
3: Kelvin’s Circulation

Theorem

As mentioned earlier, potential flows are very special. Even when viscosity effects
are small, generally, we do expect vorticity ω to be important. An important
property of vorticity is given by Kelvin’s circulation theorem.

Theorem 2.1. Kelvin’s circulation Theorem Let u(x, t) is a smooth solution to the
Euler equation, with forcing b = −∇V . Let C(t) be a closed curve in Ω that moves
with the fluid, i.e. C(t) is the image of the map of some initially closed curve C0

under the flow: d
dtx = u(x(t), t). Then, the circulation Γ around the curve C(t), is

preserved in time, i.e.

d

dt
ΓC(t) = 0 , where ΓC(t) =

∮

C(t)

u · ds

Proof. Let x = X(ξ, t) denote the map generated by

d

dt
x = u(x(t), t), x(0) = ξ

Let ξ = Ξ(σ), σ ∈ [0, 1] denote the parametrized curve C0 in the anti-clockwise
sense. Then,

ΓC(t) =

∮

C(t)

u · ds =

∫ 1

σ=0

u(X(ξ, t), t) · [XξΞσ] dσ

Then,

(2.2)
d

dt
ΓC(t) =

∫ 1

0

{

D

Dt
u · [XξΞσ] + u · [uξΞσ]

}

dσ

= −

∮

Ct

∇(p+ V ) · ds+

∫ 1

0

d

dσ

1

2
u2(X(Ξ(σ), t), t)dσ = 0,

since ∇(p+ V ) · ds = d[p+ V ] on the curve.

Using the above and Stokes theorem:
∮

C u · ds =
∫

Σ
ω · ndx on a surface with

boundary C, where n is normal to the surface, we obtain the following result:

Corollary 2.1. Helmholtz Law of Vorticity Conservation: For a smooth solution
to Euler equation, with b = −∇V , the vorticity Flux FΣ(t) through a surface Σ(t)
moving with the fluid:

FΣ(t) =

∫

Σ(t)

ω · ndx

is constant in time.

Remark 2.2. Thus, we note that if the area of Σ(t) decreases in time, the magni-
tude of ω must increase. So, in the absence of external torque, if a rotating fluid
is brought closer to the center of the rotation, it speeds up. This is similar to an
ice-dancer rotating faster when the person brings his/her arms closer to the body.

Remark 2.3. The presence of viscosity ν does not preserve circulation since, we
can show that for viscous fluid

d

dt
ΓC(t) = ν

∮

C(t)

(∆u) · ds

Exercise: Show the above equality.
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3. 2-D vortex dynamics: stream function vorticity formulation

Consider now the special case of 2-D Euler flow with vorticity. In the context
of 3-D flow, the 2-D reduction corresponds to u = (u1, u2, 0) and pressure p not
depending at all on x3. In this case, calculation shows that vorticity

(3.3) ω = (0, 0, ω) = (0, 0, ∂x1
u2 − ∂x2

u1)

Thus, vorticity is characterized by the scalar ω; it is common to call ω itself as the
2-D vorticity. The expression (3.3) also implies that the term

(3.4) (ω · ∇)u = 0

since u does not depend on x3, which is the direction of ω. With this observation,
we have from the vorticity equation of the Euler equation the following reduction
in 2-D

(3.5) ωt + u · ∇ω = [∇× b]3 = ∂x1
b2 − ∂x2

b1 ≡ f

If f = 0, the above reduces to

(3.6)
Dω

Dt
= 0, implying ω(x(ξ, t), t) = ω(ξ, 0) = ω0(ξ),

which means that the vorticity is constant on a fluid particle even as it moves
around in time. This is unlike 3-D, where we can show that

(3.7) ω(x(ξ, t), t) = Xξ ω0(ξ)

Here Xξ(x, t) depends on time and and causes vorticity to be amplified or reduced.
We will see an explicit example of vortex stretching later.
Exercise: Prove the relation (3.7).

We return to more discussion of 2-D flows. First, we had from before that
∇ · u = 0

(3.8) u = ∇×A

Since u3 = 0, and u only depends on (x1, x2), there is no loss of generality in
choosing

(3.9) A = (0, 0,Ψ)

and (3.8) implies

(3.10) u1 = ∂x2
Ψ , u2 = −∂x1

Ψ

So, using (3.3), we obtain

(3.11) ω = −
[

∂2
x1
Ψ+ ∂2

x2
Ψ
]

= −∆Ψ

With relation (3.10), we can actually write (3.5) in the form

(3.12) ωt +Ψx2
ωx1

−Ψx1
ωx2

= f

For steady flow, with f = 0, the above reduces to

(3.13) ω = F (Ψ)

for essentially arbitrary differentiable function F and then (3.11) becomes a non-
linear equation for streamfunction

(3.14) −∆Ψ = F (Ψ)
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Remark 3.1. There exists a general class of exact solutions for a special choice
of F (Ψ) = e2Ψ, and for a few other choices of Ψ. Some of these are expressible in
complex variable formulation. However, without considering the effect of viscosity,
there is no way to determine which F (Ψ) is relevant.

In general, for unsteady flow, (3.13) is not valid. In that case, equations (3.11)
and (3.12) have to be satisfied simultaneously. It is sometimes convenient to use
the appropriate Green’s function G(x,x′) of −∆ for the Dirichlet problem (because
boundaries ∂Ω are streamlines) to invert the relation (3.11). If Ω = R

2, then

(3.15) Ψ(x) =
1

2π

∫

R2

ω(x′, t) log |x− x′| dx′

Velocities are given by

(3.16) u(x) =

∫

R2

ω(x′, t)K(x,x′)

where the Kernel

(3.17) K(x,x′) = (∂x2
,−∂x1

)G(x,x′)

Equation (3.16) is the 2-D version of Biot-Savart law.

4. Exact radial vorticity solution, with and without viscosity

A simple exact solution is possible when the initial vorticity distribution is radial,
i.e.

ω(x, 0) = ω0(|x|)

and f = 0 in (3.12). In that case, the solution we seek is ω = ω(r, t), where

r =
√

x2
1 + x2

2 = |x|. Because of radial distribution of vorticity, it is clear that we
can seek stream function Ψ satisfying (3.11) also has the form Ψ = Ψ(r, t). Then,
velocity in the polar coordinates

(4.18) u = (ur, uθ) =

(

1

r
∂θΨ,−∂rΨ

)

= (0,−∂rΨ)

So, the velocity u is orthogonal to ∇ω, the latter being directed radially. Thus,
(3.12) reduces simply to:

(4.19) ωt = 0 implying ω(r, t) = ω0(r)

meaning that there is no-time dependence. Solving for Ψ we obtain

(4.20) −Ψrr −
1

r
Ψr = ω0(r)

Therefore,

(4.21) − [rΨ′(r)]′ = rω0(r) , implying vθ = −Ψ′(r) =
1

r

∫ r

0

sω0(s)ds

Therefore, in cartesian coordinates,

(4.22) u =
1

|x|2
(−x2, x1)

∫ r

0

sω0(s)ds

In this problem because of the alignment of gradient of vorticity with respect
induced velocity, vorticity is not affected by the velocity at all. This is a rather
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exceptional situation. Indeed, if we included viscosity, the only change would be
that (4.19) would be replaced

(4.23) ωt = ν∆ω , with ω(x, 0) = ω0(|x|)

Since 2-D heat equation can be readily solved in terms of the Heat Kernel, we have

(4.24) ω(x, t) =
1

4πνt

∫

R2

exp

[

−
|x− x′|2

4νt

]

ω0(|x
′|)dx′

It is not difficult to argue from (4.24) that ω only depends on x through |x|, i.e.
the above is a radial solution. The relation (4.22) is affected only slightly in that
in this case, with viscosity, we have

(4.25) u(x, t) =
1

|x|2
(−x2, x1)

∫ r

0

sω(s, t)ds,

So, the fluid velocity u is again only in the θ-direction. We note that with viscosity,
the vorticity diffuses outwards and as t → ∞, vorticity tends to zero. Consequenty,
v given by (4.25) also goes to zero at t → ∞.

4.1. Explicit Example of Vortex Stretching in 3-D: Burger’s vortex. Con-
sider a 3-D flow with a 2-D radial vorticity field, in the form,
(4.26)

u(x, t) = (−
α

2
x1,−

α

2
x2, αx3)+

1
√

x2
1 + x2

2

(−x2, x1, 0)

∫ r

0

sω(s, t)ds, where r =
√

x2
1 + x2

2

Notice that on taking the curl operation, we have

(4.27) ∇× u = (0, 0, ω)

Indeed, the vorticity field depends only on r and t and the direction of vorticity is
x̂3. In this case, since the flow-field has a linear x3 component, (ω · ∇)u = 2αω.
Therefore, the vorticity equation becomes

(4.28) ωt −
α

2
x1∂x1

ω −
α

2
αx2∂x2

ω + αω = ν∆ω , ω(x, 0) = ω0(r)

A change in dependent and independent variables

(4.29) τ =
ν

α

(

eαt − 1
)

, y = eαt/2x , ω̃ = e−αtω

results in

(4.30) ω̂τ = ν∆ω̃ , ω̃(y, 0) = ω0(|y|).

So the solution is given by

(4.31) ω̂(y, τ) =
1

4πντ

∫

R2

exp

[

−
|y − y′|2

4ντ

]

ω0(|y
′|)dy′

So,
(4.32)

ω(x, t) = eαt
∫

R2

H
(

xeαt/2 − y′,
ν

α

[

eαt − 1
]

)

ω0(|y
′|)dy′ , whereH(x, t) =

1

4πt
exp

[

−
|x|2

4t

]

Exercise: Show that as t → ∞,

(4.33) ω(x, t) ∼
α

2ν
exp

[

−
νr2

4ν

]
∫

∞

0

sω0(s)ds
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Burger’s solution above shows the effect of straining flow on a single vortex col-
umn directed along the x3-axis. The straining flow defined by the linear part of u, is
given by (−αx1,−αx2, αx3). This is irrotational and divergence free. Nonetheless,
this straining flow squeezes the initial vorticity towards r = 0 and tries to intensify
it, while viscosity tries to spread it through diffusion. The steady state reached at
∞ in the exercise above shows the balance between these two effects.
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