Week 4 Notes, Math 8610, Tanveer

1. More Exact Solutions with Nonzero Vorticity

1.1. Flow in a pipe: Steady axisymmetric Poiseuille Flow. Consider the steady unidirectional flow in an infinitely long pipe of radius *a*. To solve this problem, it is convenient to consider the Navier-Stokes equation in the cylindrical coordinates (r, θ, z) in the absence of any external force $(\mathbf{b} = 0)$. In this coordinate system $\mathbf{u} = (u_r, u_\theta, u_z)$. The scalar components of the Navier-Stokes equation are given by⁽¹⁾:

(1.1)
$$\partial_t u_z + (\mathbf{u} \cdot \nabla) u_z = -\partial_z p + \nu \Delta u_z$$

(1.2)
$$\partial_t u_r + (\mathbf{u} \cdot \nabla) u_r - \frac{u_{\phi}^2}{r} = -\partial_r p + \nu \left(\Delta u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \partial_\theta u_\theta \right)$$

(1.3)
$$\partial_t u_\theta + (\mathbf{u} \cdot \nabla) u_\theta + \frac{u_r u_\theta}{r} = -\frac{1}{r} \partial_\theta p + \nu \left(\Delta u_\theta + \frac{2}{r^2} \partial_\theta u_r - \frac{u_\theta}{r^2} \right)$$

(1.4)
$$\partial_r u_r + \frac{1}{r} \partial_\theta u_\theta + \partial_z u_z + \frac{1}{r} u_r = 0$$

where in cylindrical coordinate system

(1.5)
$$\mathbf{u} \cdot \nabla = u_r \partial_r + u_\theta \frac{1}{r} \partial_\theta + u_z \partial_z$$

(1.6)
$$\Delta V = \partial_r^2 V + \frac{1}{r} \partial_r V + \frac{1}{r^2} \partial_\theta^2 V + \partial_z^2 V$$

For a steady pipe-flow, we orient the pipe axis along the z-axis. We are looking for a simple uni-directional solution $\mathbf{u}(\mathbf{x},t) = (0,0,u_z(r))$, with p = p(r,z). Then, from inspection, it is clear that the continuity equation (1.4) is immediately satisfied. Also, on inspection, the r and θ component of the momentum equations, given in (1.2) and (1.3), are also satisfied provided $\partial_r p = 0$. This implies p = p(z). In equation (1.1), we note $\mathbf{u} \cdot \nabla u_z = 0$, since $u_r = 0$ and u_z only depends on r. So, this equation reduces to:

(1.7)
$$0 = -\partial_z p + \nu \left(\partial_r^2 u_z + \frac{1}{r} \partial_r u_z\right)$$

Since u_z can only depend on r, $\partial_z p$ cannot depend on r. Earlier, we argued that the pressure p does not depend on r. So

(1.8)
$$-\partial_z p = G = \text{constant}$$

⁽¹⁾Note: p is not the actual pressure, but the scaled pressure pressure/density

From (1.7) on multiplying the equation by r/ν , we obtain

(1.9)
$$ru_z'' + u_z' = \frac{G}{\nu}r$$

 $\mathbf{2}$

where ' denotes derivative with respect to r. Since the left side of (1.9), is $(ru'_z)'$, on integration, we obtain a general solution in the form:

(1.10)
$$u_z(r) = \frac{G}{4\nu} \left(-r^2 + C_1 \log r + C_2 \right)$$

The solution $u_z(r)$ is singular at r = 0 if $C_1 \neq 0$ and hence does not conform to a physically acceptable solution, unless $C_1 = 0^{(2)}$

Further $C_2 = 1$ in order that the no-slip condition $\mathbf{u} = 0$ is satisfied at the walls r = a. Note that in this case, since only one component of velocity is nonzero, this corresponds in this case to $u_z(a) = 0$. Therefore, flow in a pipe is cylindrical coordinate system by

(1.11)
$$\mathbf{u} = \left(0, 0, \frac{G}{4\nu}[a^2 - r^2]\right)$$

where (1.8) determines pressure. Note that the velocity in (1.11) is given by a parabolic profile with maximum velocity at r = 0, at the center of the pipe.

There is nothing to determine scaled pressure gradient G; this is something that is specified. This is related to the flow rate Q (volume of fluid going through any section of the pipe per second) since

(1.12)
$$Q = \int_0^a u_z(r) 2\pi r dr = \frac{\pi G a^4}{8\nu}$$

We note that for a given pressure gradient G, the flow rate Q scales inversely with viscosity ν . The greater the viscosity, smaller the flow rate; this is physically sensible since friction is greater when viscosity is larger. Further, according to (1.12), the flow rate Q scales like the the fourth power of the radius. This is because the area grows like a^2 , where as the average velocity across the pipe determined from (1.11) also grows like a^2 .

Also, note that if the pipe length l is not infinite but large, then

(1.13)
$$G \approx \frac{p_0 - p_1}{L} \, ,$$

where p_0 and p_1 are the pressures at the left and right end of the pipes, say at z = -L/2 and z = L/2 respectively.

We note that instead of a pressure gradient, the flow may also be driven by gravity. For instance, for a vertically aligned pipe, the role

 $^{{}^{(2)}}C_1 \neq 0$ corresponds physically to a finite force per-unit-length exerted at r = 0. There is no such forcing at the center of a pipe.

of pressure p is replaced by the scaled *hydrostatic pressure* -gz, when positive z-axis is aligned vertically upwards. In that case G in (1.11) is replaced by -g, and flow moves downwards in the absence of pressure gradient.

Exercise: Determine the 2-D Pouisseuille flow; *i.e.* Steady unidirectional flow across two infinite parallel plates driven by a pressure gradient:

Exercise: Determine a steady uni-directional flow across two infinite parallel plates, where there is no pressure gradient but the upper-plate moves with velocity $U\hat{x}_1$. This is called the plane Coutte-flow.

2. An existence proof of N-S Initial value problem for $\Omega = \mathbb{R}^n \text{ in Fourier-Space}$

Recall the non-dimensional incompressible constant density Navier-Stokes equation

(2.14)
$$u_t + u \cdot \nabla u = -\nabla p + \nu \Delta u + f \text{, with } u(x,0) = u_0(x)$$

$$(2.15) \qquad \nabla \cdot u = 0$$

Here we are dropping the vector notation. It is understood that $u(\cdot, t), f(\cdot, t)$: $\mathbb{R}^n \to \mathbb{R}^n$ for n = 2, 3 and $p(\cdot, t) : \mathbb{R}^n \to \mathbb{R}$, and for a vector u, |u| refers to its Euclidean norm, unless stated otherwise. If $\nabla \cdot f \neq 0$, we transform

(2.16)
$$f = \tilde{f} - \nabla \Phi \text{ where } -\Delta \Phi = \nabla \cdot f$$

From construction, $\nabla \cdot \tilde{f} = 0$. We note that the transformation (2.16) in (2.14) has the effect of replacing (f, p) by $(\tilde{f}, p + \Phi)$. Thus, without any loss of generality, we may assume $\nabla \cdot f = 0$.

Formally a Fourier Transform of (2.14) in $x \in \mathbb{R}^n$, with $\hat{u}(k,t) = \mathcal{F}[u(.,t)](k)$, using $\mathcal{F}[\partial_{x_j}v](k) = ik_j\mathcal{F}[v]$, $\mathcal{F}[gh](k) = \mathcal{F}[g] * \mathcal{F}[h]$, we obtain

(2.17)
$$\hat{u}_t - \nu |k|^2 \hat{u} = -ik_j \hat{u}_j * \hat{u} - ik\hat{p} + \hat{f}_k$$
, with $\hat{u}(k,0) = \hat{u}_0(k)$

where * denotes the Fourier Convolution, *i.e.*

(2.18)
$$\left[\hat{g} * \hat{h}\right](k) = \int_{k' \in \mathbb{R}^n} \hat{g}(k') \hat{h}(k-k') dk'$$

Note that $k \in \mathbb{R}^n$ and k_j is the *j*-th component of and repeated index refers to summation. Further (2.15) implies in Fourier space:

$$\hat{k} \cdot \hat{u} = 0$$

Taking dot product of (2.17) with respect to \hat{k} , and using (2.18), we obtain

(2.20)
$$-k \cdot \hat{R} = |k|^2 \hat{p} \text{, where } \hat{R} = k_j \hat{u}_j * \hat{u}_j$$

Therefore, with the above relation, we can eliminate \hat{p} all together in (2.17) to obtain

(2.21)
$$\hat{u}_t - \nu |k|^2 \hat{u} = -iP_k \left[k_j \hat{u}_j * \hat{u} \right] + \hat{f}$$

where operator P_k is defined by

(2.22)
$$P_k\left[\hat{R}\right] = \left[I - \frac{k}{|k|^2} \left(k\cdot\right)\right] \hat{R} = \hat{R} - \frac{k}{|k|^2} \left(k\cdot\hat{R}\right),$$

Note from above the property that for any \hat{h} , $k \cdot P_k \left[\hat{h} \right] = 0$. P_k is the representation in Fouier-Space of the Hodge Projection \mathcal{P} of a vector to the space of divergence-free vector fields (more on it later). From geometric considerations, it is apparent that $\left| (I - P_k) \hat{h}(k) \right|^2 + \left| P_k \hat{h}(k) \right|^2 = \left| \hat{h}(k) \right|^2$. Thus $P_k : L^2 \to L^2$ and $\| P_k \hat{R}_k \|_2 \leq \| \hat{R}_k \|_2$, where $\| . \|_2$ refers to the L^2 norm. We also note the same property in the L^1 norm or L^∞ norm in Fourier space. Inverting the differential operator on the left of (2.21) for given initial condition, we obtain an equivalent nonlinear integral equation for \hat{u} : (2.23)

$$\hat{u}(k,t) = \hat{u}^{(0)}(k,t) + \int_0^t e^{-\nu^2(t-\tau)} \left[-ik_j\hat{u}_j * \hat{u}\right](k,\tau)d\tau =: \mathcal{N}\left[\hat{u}\right](k,t),$$

where

(2.24)
$$\hat{u}^{(0)}(k,t) = e^{-\nu|k|^2 t} \hat{u}_0(k) + \int_0^t e^{-\nu|k|^2 (t-\tau)} \hat{f}(k,\tau) d\tau$$

Using contraction mapping theorem, we will prove that (2.23) has a unique solution locally in time in some ball in a suitable function space consistent with a continuous solution in time. On inverse Fourier Transform, this generates a smooth solution of Navier Stokes (2.14) locally in time.

Definition 2.1. For $n = 2, 3, \beta \ge 0$ and $\mu > n$, we define norm $\|.\|_{\mu,\beta}$ so that

(2.25)
$$\|\hat{f}\|_{\mu,\beta} = M \sup_{k \in \mathbb{R}^n} (1+|k|)^{\mu} e^{\beta|k|} \left| \hat{f}(k) \right|,$$

4

where

$$M = \left\{ \sup_{k \in \mathbb{R}^n} \left(1 + |k| \right)^{\mu} \int_{k' \in \mathbb{R}^n} \frac{1}{\left(1 + |k - k'| \right)^{\mu} \left(1 + |k'| \right)^{\mu}} dk' \right\}^{1/2}$$

For a function \hat{v} of k and t, we define norm $\|.\|$ so that

(2.26)
$$\|\hat{v}\| = \sup_{t \in [0,T]} \|\hat{v}(\cdot,t)\|_{\mu,\beta} = \sup_{t \in [0,T], k \in \mathbb{R}^n} M \left(1 + |k|\right)^{\mu} e^{\beta|k|} |\hat{u}(k,t)|$$

We define S to be Banch space of continuous functions in k and t such that $\|.\| < \infty$.

Lemma 2.2. For any \hat{f} , \hat{g} ,

$$\|\hat{f} * \hat{g}\|_{\mu,\beta} \le \|\hat{f}\|_{\mu,\beta} \|\hat{g}\|_{\mu,\beta}$$

Proof. Using definition of $\|.\|_{\mu,\beta}$,

$$\left| \int_{k' \in \mathbb{R}^n} \hat{f}(k') \hat{g}(k-k') dk' \right| \le \frac{1}{M^2} \|\hat{f}\|_{\mu,\beta} \|\hat{g}\|_{\mu,\beta} \int_{k' \in \mathbb{R}^n} \frac{e^{-\beta(|k'|+|k-k'|)} dk'}{(1+|k'|)^{\mu}(1+|k-k'|)^{\mu}} dk'$$

Since $|k - k'| + |k'| \le |k|$, $e^{-\beta(|k'|+|k-k'|)} \le e^{-\beta|k|}$. From this and the definition of $\|.\|_{\mu,\beta}$, Lemma follows provided $M < \infty$ exists. To show M exists, we may decompose

$$\begin{split} \int_{k'\in\mathbb{R}^n} \frac{dk'}{(1+|k'|)^{\mu}(1+|k-k'|)^{\mu}} &= \left\{ \int_{|k'|<|k|/2} + \int_{|k'|\geq|k|/2} \right\} \frac{dk'}{(1+|k'|)^{\mu}(1+|k-k'|)^{\mu}} \\ &\leq \int_{|k'|\leq|k|/2} \frac{1}{(1+|k|/2)^{\mu}} \frac{dk'}{(1+|k'|)^{\mu}} + \int_{|k-k'|\leq|k|/2} \frac{1}{(1+|k|/2)^{\mu}} \frac{dk'}{(1+|k-k'|)^{\mu}} \\ &\leq \frac{2}{(1+|k|/2)^{\mu}} \int_{k'\in\mathbb{R}^n} \frac{dk'}{(1+|k'|)^{\mu}} \leq \frac{C(\mu)}{(1+|k|)^{\mu}}, \end{split}$$

We note that using spherical (polar) coordinates, we can reduce $\int_{k' \in \mathbb{R}^n} \frac{dk'}{(1+|k'|)^{\mu}}$ to a one dimensional integral which exists for $\mu > n$ and this implies M is finite.

Theorem 2.1. (Local Existence of NS) If $\|\hat{u}_0\|_{\mu,\beta}$, $\sup_t \|\hat{f}(\cdot,t)\|_{\mu,\beta} < \infty$, then for sufficiently small T (taken ≤ 1), there exists unique solution of (2.17) for $\hat{u} \in S$. For $\mu > n+2$, this corresponds to a classical solution of Navier Stokes (2.14)-(2.15).

Proof. We note that

(2.27)
$$\|\hat{u}_0(k)e^{-|k|^2t}\| \le \|\hat{u}_0\|_{\mu,\beta}$$

Further,

(2.28)
$$\left\| \int_0^t e^{-|k|^2(t-\tau)} \hat{f}(k,\tau) \right\|_{\mu,\beta} \le \sup_t \|\hat{f}(.,t)\|_{\mu,\beta} T$$

From (2.24)

$$(2.29) \|\hat{u}^{(0)}\| \le \|u_0\|_{\mu,\beta} + T \sup_{t \ge 0} \|\hat{f}(\cdot,t)\|_{\mu,\beta} \le \|\hat{u}_0\|_{\mu,\beta} + \sup_{t \ge 0} \|\hat{f}(\cdot,t)\|_{\mu,\beta}$$

Further, from Lemma 2.2 and definition of $\|.\|$ in (2.26),

$$(2.30) \quad \left| \int_{0}^{t} e^{-\nu|k|^{2}(t-\tau)} ik_{j} \left[\hat{u}_{j} * \hat{u} \right] (k,\tau) d\tau \right| \\ \leq \|u\|^{2} e^{-\beta|k|} \int_{0}^{t} e^{-\nu|k|^{2}(t-\tau)} \frac{|k|}{M(1+|k|)^{\mu}} d\tau \leq \|\hat{u}\|^{2} \frac{e^{-\beta|k|}}{M\nu|k|(1+|k|)^{\mu}} \left[1 - e^{-\nu|k|^{2}t} \right]$$

Therefore, it follows that

Therefore, it follows that (2.31)

$$\begin{aligned} \|\int_{0}^{t} e^{-\nu|k|^{2}(t-\tau)} ik_{j} \left[\hat{u}_{j} * \hat{u}\right](k,\tau) d\tau \| &\leq \|\hat{u}\|^{2} \sqrt{\frac{T}{\nu}} \left(\sup_{\gamma>0} \frac{1-e^{-\gamma}}{\sqrt{\gamma}}\right) \equiv c \sqrt{\frac{T}{\nu}} \|\hat{u}\|^{2} \\ \end{aligned}$$

$$(2.32) \qquad \qquad \|\mathcal{N}[\hat{u}]\| \leq \|\hat{u}^{(0)}\| + c \sqrt{\frac{T}{\nu}} \|u\|^{2}, \end{aligned}$$

In a similar manner,

(2.33)
$$\|\mathcal{N}[\hat{u}_1] - \mathcal{N}[\hat{u}_2]\| \le c\sqrt{\frac{T}{\nu}} \left(\|\hat{u}_1\| + \|\hat{u}_2\|\right) \|\hat{u}_1 - \hat{u}_2\|,$$

From the above equations, that if

(2.34)
$$T < \frac{\nu}{16c^2 \|\hat{u}^{(0)}\|^2} = \frac{\nu}{16c^2 \left[\|\hat{u}_0\|_{\mu,\beta} + \sup_{t \ge 0} \|\hat{f}\|_{\mu,\beta}\right]^2},$$

then $\mathcal{N}: B \to B$ contractively, where $B \in \mathcal{S}$ is a ball of size $2||u^{(0)}||$. Therefore, from contraction mapping theorem in a Banach space, there exists unique solution to the integral equation (2.23) and hence (2.17), T small enough to satisfy (2.34). On Fourier transforming (2.17), which exists for $\mu > n + 2$, we obtain a classical smooth solution of Navier-Stokes (2.14)-(2.15).

Remark 2.3. The existence time T depends on initial condition u_0 and forcing f in a bad way. Larger data gives smaller existence time. This prevents continuation of the local existence argument to get global existence results. Also, there is dependence on inverse Reynolds number, *i.e.* nondimensional viscosity ν in the proof. This is to be expected since the proof relies essentially on inversion of heat operator involving viscosity. For larger time the advection term $\mathbf{u} \cdot \nabla$ becomes more important. Later in the course, we will note energy methods which works both for N-S and Euler equations. Indeed, with help from potential theory, these methods help establish global existence in 2-D. Also note

6

 $\beta > 0$ implies that solution u(x,t) in the physical domain is a real analytic function of x, with analyticity width β remaining the same through out the existence time.

3. GLOBAL EXISTENCE FOR SMALL DATA OR LARGE ν FOR $x \in \mathbb{T}^n$, FOR n = 2, 3

We now consider Navier-Stokes equation in a $[0, 2\pi]^n$ periodic box, *i.e.* for n = 3, (3.35)

$$u(x_1+2\pi, x_2, x_3) = u(x_1, x_2+2\pi, x_3) = u(x_1, x_2, x_3+2\pi) = u(x_1, x_2, x_3)$$

with forcing f = 0 and initial condition u_0 periodic and divergence free. Then as before for $x \in \mathbb{R}^n$, we obtain in the Fourier Space the same equations (2.21) and (2.23), with $\hat{f} = 0$, except now $k \in \mathbb{Z}^n$ and Fourier convolution * now involves sum of $k' \in \mathbb{Z}^n$. From (2.21), for k = 0, we note

(3.36)
$$\partial_t \hat{u} = 0$$
, implying $\hat{u}(0, t) = \hat{u}_0(0)$

Therefore, by translating in a right frame of reference, we may choose, without any loss of generality,

$$(3.37) $\hat{u}(0,t) = 0,$$$

We define norm $\|.\|_{\mu,\beta}$ as before for $\mu > n$ and $\beta \ge 0$ in (2.25), except that $k \in \mathbb{Z}^n$ and

(3.38)
$$M^{2} = \sup_{k \in \mathbb{Z}^{n}} (1+|k|)^{\mu} \sum_{k' \in \mathbb{Z}^{n}} \frac{1}{(1+|k')^{\mu}(1+|k-k')^{\mu}}$$

Lemma 3.1. For the discrete convolution * operation

$$\|\hat{f} * \hat{g}\|_{\mu,\beta} \le \|\hat{f}\|_{\mu,\beta} \|\hat{g}\|_{\mu,\beta}$$

Proof. From definition of discrete convolution (3.39)

$$\left|\sum_{k'in\mathbb{Z}^n} \hat{f}(k')\hat{g}(k-k')\right| \le \frac{1}{M^2} \|\hat{f}\|_{\mu,\beta} \|\hat{g}\|_{\mu,\beta} \sum_{k'\in\mathbb{Z}^n} \frac{e^{-\beta|k'|-\beta|k-k'|}}{(1+|k'|)^{\mu}(1+|k-k'|)^{\mu}}$$

Since $e^{-\beta(|k'|+|k-k'|)} \leq e^{-\beta|k|}$ as before for the continuous case, the Lemma follows from definition of M in (3.38), provided $M^2 < \infty$. To show this, as before, with the integral, we break up k' into two sets: $S_1 = \{k': |k'| > |k|/2\}$ and $S_2 = \{k': |k'| \leq |k|/2\}$. Then (3.40) $\sum_{k' \in S_1} \frac{1}{(1+|k'|)^{\mu}(1+|k-k')^{\mu}} \leq \frac{1}{(1+|k|/2)^{\mu}} \sum_{k' \in \mathbb{Z}^n} \frac{1}{(1+|k-k'|)^{\mu}} = \frac{1}{(1+|k|/2)^{\mu}} \sum_{\tilde{k} \in \mathbb{Z}^n} \frac{1}{(1+|\tilde{k}|)^{\mu}}$

$$\sum_{k'\in S_2}^{(3.41)} \frac{1}{(1+|k'|)^{\mu}(1+|k-k')^{\mu}} \leq \sum_{k-k'\in S_1} \frac{1}{(1+|k'|)^{\mu}(1+|k-k')^{\mu}} \leq \frac{1}{(1+|k|/2)^{\mu}} \sum_{k'\in\mathbb{Z}^n} \frac{1}{(1+|k'|)^{\mu}}$$

where $\sum_{k'\in\mathbb{Z}^n} (1+|k'|)^{-\mu}$ converges from integral test. Therefore,

(3.42)
$$(1+|k|)^{\mu} \left(\sum_{k' \in S_1} \frac{1}{(1+|k'|)^{\mu} (1+|k-k')^{\mu}} \right) \le M^2 < \infty$$

for some M depending on μ but independent of k. We define M to be the smallest such M.

Definition 3.2. We now introduce a weighted space time norm

(3.43)
$$\|\hat{u}\|_{E} = \sup_{t \in [0,T]} e^{\nu t} \|\hat{u}(.,t)\|_{\mu,\beta}$$

We denote by S_E to be the Banach space of functions with $\|.\|_E < \infty$.

Theorem 3.1. Global existence for unforced case For n = 2, 3, if for $\mu > n, \ \beta \ge 0, \ \|\hat{u}_0\|_{\mu,\beta} < \frac{\nu}{4\sqrt{2}}$, then there exists globally unique solution to NS in \mathcal{S}_E .

Proof. We have in this case $\hat{u}^0(k,t) = \hat{u}_0 e^{-\nu|k|^2 t}$ and therefore, since $|k| \ge 0$ for all nonzero \hat{u} , we have

(3.44)
$$\|\hat{u}^{(0)}\|_E \le \|\hat{u}_0\|_{\mu,\beta}$$

Further, from definition of $\|.\|_E$ and Lemma 3.1,

$$(3.45) \left| -ik_j \int_0^t e^{-|k|^2(t-\tau)} \left[\hat{u}_j * \hat{u} \right](k,\tau) d\tau \right| \le \frac{e^{-\nu t} e^{-\beta|k|} \|\hat{u}\|_E^2}{M(1+|k|)^{\mu}} \int_0^t |k| e^{-\nu(|k|^2-1)(t-\tau)} e^{-\nu \tau} d\tau,$$

There are two cases, |k| = 1 and |k| > 1. For |k| = 1, we note that

(3.46)
$$\int_0^t |k| e^{-\nu(|k|^2 - 1)(t - \tau)} e^{-\nu\tau} d\tau \le \frac{1}{\nu}$$

We note $\inf_{k \in \mathbb{Z}^n, |k| > 1} |k| = \sqrt{2}$, and so for |k| > 1, (3.47)

$$\int_0^t |k| e^{-\nu(|k|^2 - 1)(t - \tau)} e^{-\nu\tau} d\tau \le \int_0^t |k| e^{-\nu(|k|^2 - 1)(t - \tau)} d\tau \le \frac{|k|}{\nu(|k|^2 - 1)} \le \frac{\sqrt{2}}{\nu}$$
we obtain

we obtain

(3.48)
$$\| -ik_j \int_0^t e^{-|k|^2(t-\tau)} \left[\hat{u}_j * \hat{u}\right](k,\tau) d\tau \|_E \le \frac{\sqrt{2}}{\nu} \|\hat{u}\|_E^2,$$

Therefore, with \mathcal{N} defined in (2.23), we obtain for $\hat{u}, \hat{u}_1, \hat{u}_2 \in \mathcal{S}_E$,

(3.49)
$$\|\mathcal{N}[\hat{u}]\| \le \|\hat{u}_0\|_{\mu,\beta} + \frac{\sqrt{2}}{\nu} \|\hat{u}\|_E^2,$$

8

and in a similar manner,

(3.50)
$$\|\mathcal{N}[\hat{u}_1] - \mathcal{N}[\hat{u}_2]\| \le \frac{\sqrt{2}}{\nu} (\|\hat{u}_1\| + \|\hat{u}_2\|_E) \|\hat{u}_1 - \hat{u}_2\|_E$$

From above, it is easily seen that $\mathcal{N}: B_E \to B_E$ in a ball $B_E \subset \mathcal{S}_E$ of size $2\|\hat{u}_0\|_{\mu,\beta}$ if

(3.51)
$$\frac{4\sqrt{2}}{\nu} \|\hat{u}_0\|_{\mu,\beta} < 1$$

From contraction mapping theorem, if initial data is small enough or ν large enough to satisfy (3.51), then there exists unique solution solution $\hat{u} \in B_E$. Since this argument is valid for any T, this is the solution is global in time.

Remark 3.3. Note that though we argued that there is a unique solution only in a Ball B_E , this can be the only solution in S_E . This is because from continuity in time, solution must be in a ball of size $2\|\hat{u}_0\|_{\mu,\beta}$, which it never escapes. Also, though the solution is shown only to be in the space S_E , it turns out that for t > 0, there is instantaneous smoothing in the sense that for t > 0, $\|u(.,t)\|_{\mu+2,\beta} < \infty$. We will show this property next time.