
Week 4 Notes, Math 8610, Tanveer

1. More Exact Solutions with nonzero Vorticity

1.1. Flow in a pipe: Steady axisymmetric Poiseuille Flow.

Consider the steady unidirectional flow in an infinitely long pipe of
radius a. To solve this problem, it is convenient to consider the Navier-
Stokes equation in the cylindrical coordinates (r, θ, z) in the absence of
any external force (b = 0). In this coordinate system u = (ur, uθ, uz).
The scalar components of the Navier-Stokes equation are given by(1):

(1.1) ∂tuz + (u · ∇)uz = −∂zp+ ν∆uz

(1.2) ∂tur + (u · ∇)ur −
u2
φ

r
= −∂rp+ ν

(

∆ur −
ur

r2
− 2

r2
∂θuθ

)

(1.3) ∂tuθ + (u · ∇)uθ +
uruθ

r
= −1

r
∂θp + ν

(

∆uθ +
2

r2
∂θur −

uθ

r2

)

(1.4) ∂rur +
1

r
∂θuθ + ∂zuz +

1

r
ur = 0

where in cylindrical coordinate system

(1.5) u · ∇ = ur∂r + uθ
1

r
∂θ + uz∂z

(1.6) ∆V = ∂2
rV +

1

r
∂rV +

1

r2
∂2
θV + ∂2

zV

For a steady pipe-flow, we orient the pipe axis along the z-axis. We
are looking for a simple uni-directional solution u(x, t) = (0, 0, uz(r)),
with p = p(r, z). Then, from inspection, it is clear that the continuity
equation (1.4) is immediately satisfied. Also, on inspection, the r and
θ component of the momentum equations, given in (1.2) and (1.3), are
also satisfied provided ∂rp = 0. This implies p = p(z). In equation
(1.1), we note u · ∇uz = 0, since ur = 0 and uz only depends on r. So,
this equation reduces to:

(1.7) 0 = −∂zp+ ν

(

∂2
ruz +

1

r
∂ruz

)

Since uz can only depend on r, ∂zp cannot depend on r. Earlier, we
argued that the pressure p does not depend on r. So

(1.8) − ∂zp = G = constant

(1)Note: p is not the actual pressure, but the scaled pressure pressure/density
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From (1.7) on multiplying the equation by r/ν, we obtain

(1.9) ru′′
z + u′

z =
G

ν
r

where ′ denotes derivative with respect to r. Since the left side of (1.9),
is (ru′

z)
′, on integration, we obtain a general solution in the form:

(1.10) uz(r) =
G

4ν

(

−r2 + C1 log r + C2

)

The solution uz(r) is singular at r = 0 if C1 6= 0 and hence does not
conform to a physically acceptable solution, unless C1 = 0(2)

Further C2 = 1 in order that the no-slip condition u = 0 is satisfied
at the walls r = a. Note that in this case, since only one compo-
nent of velocity is nonzero, this corresponds in this case to uz(a) = 0.
Therefore, flow in a pipe is cylindrical coordinate system by

(1.11) u =

(

0, 0,
G

4ν
[a2 − r2]

)

where (1.8) determines pressure. Note that the velocity in (1.11) is
given by a parabolic profile with maximum velocity at r = 0, at the
center of the pipe.
There is nothing to determine scaled pressure gradient G; this is

something that is specified. This is related to the flow rate Q (volume
of fluid going through any section of the pipe per second) since

(1.12) Q =

∫ a

0

uz(r)2πrdr =
πGa4

8ν

We note that for a given pressure gradient G, the flow rate Q scales
inversely with viscosity ν. The greater the viscosity, smaller the flow
rate; this is physically sensible since friction is greater when viscosity
is larger. Further, according to (1.12), the flow rate Q scales like the
the fourth power of the radius. This is because the area grows like a2,
where as the average velocity across the pipe determined from (1.11)
also grows like a2.
Also, note that if the pipe length l is not infinite but large, then

(1.13) G ≈ p0 − p1
L

,

where p0 and p1 are the pressures at the left and right end of the pipes,
say at z = −L/2 and z = L/2 respectively.
We note that instead of a pressure gradient, the flow may also be

driven by gravity. For instance, for a vertically aligned pipe, the role

(2)C1 6= 0 corresponds physically to a finite force per-unit-length exerted at r = 0. There is
no such forcing at the center of a pipe.
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of pressure p is replaced by the scaled hydrostatic pressure −gz, when
positive z-axis is aligned vertically upwards. In that case G in (1.11) is
replaced by −g, and flow moves downwards in the absence of pressure
gradient.
Exercise: Determine the 2-D Pouisseuille flow; i.e. Steady unidi-
rectional flow across two infinite parallel plates driven by a pressure
gradient:
Exercise: Determine a steady uni-directional flow across two infinite
parallel plates, where there is no pressure gradient but the upper-plate
moves with velocity Ux̂1. This is called the plane Coutte-flow.

2. An existence proof of N-S Initial value problem for

Ω = R
n in Fourier-Space

Recall the non-dimensional incompressible constant density Navier-
Stokes equation

(2.14) ut + u · ∇u = −∇p + ν∆u+ f ,with u(x, 0) = u0(x)

(2.15) ∇ · u = 0

Here we are dropping the vector notation. It is understood that u(·, t), f(·, t) :
R

n → R
n for n = 2, 3 and p(·, t) : Rn → R, and for a vector u, |u| refers

to its Euclidean norm, unless stated otherwise. If ∇ · f 6= 0, we trans-
form

(2.16) f = f̃ −∇Φ where −∆Φ = ∇ · f
From construction, ∇ · f̃ = 0. We note that the transformation (2.16)

in (2.14) has the effect of replacing (f, p) by (f̃ , p+Φ). Thus, without
any loss of generality, we may assume ∇ · f = 0.
Formally a Fourier Transform of (2.14) in x ∈ R

n, with û(k, t) =
F [u(., t)] (k), using F

[

∂xj
v
]

(k) = ikjF [v], F [gh] (k) = F [g] ∗ F [h],
we obtain

(2.17) ût − ν|k|2û = −ikj ûj ∗ û− ikp̂+ f̂k ,with û(k, 0) = û0(k)

where ∗ denotes the Fourier Convolution, i.e.

(2.18)
[

ĝ ∗ ĥ
]

(k) =

∫

k′∈Rn

ĝ(k′)ĥ(k − k′)dk′

Note that k ∈ R
n and kj is the j-th component of and repeated index

refers to summation. Further (2.15) implies in Fourier space:

(2.19) k̂ · û = 0
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Taking dot product of (2.17) with respect to k̂, and using (2.18), we
obtain

(2.20) − k · R̂ = |k|2p̂ ,where R̂ = kjûj ∗ û
Therefore, with the above relation, we can eliminate p̂ all together in
(2.17) to obtain

(2.21) ût − ν|k|2û = −iPk [kjûj ∗ û] + f̂

where operator Pk is defined by

(2.22) Pk

[

R̂
]

=

[

I − k

|k|2 (k·)
]

R̂ = R̂− k

|k|2
(

k · R̂
)

,

Note from above the property that for any ĥ, k · Pk

[

ĥ
]

= 0. Pk

is the representation in Fouier-Space of the Hodge Projection P of a
vector to the space of divergence-free vector fields (more on it later).

From geometric considerations, it is apparent that
∣

∣

∣
(I − Pk)ĥ(k)

∣

∣

∣

2

+
∣

∣

∣
Pkĥ(k)|2 =

∣

∣

∣
ĥ(k)

∣

∣

∣

2

. Thus Pk : L2 → L2 and ‖PkR̂k‖2 ≤ ‖R̂k‖2, where
‖.‖2 refers to the L2 norm. We also note the same property in the L1

norm or L∞ norm in Fourier space. Inverting the differential operator
on the left of (2.21) for given initial condition, we obtain an equivalent
nonlinear integral equation for û:
(2.23)

û(k, t) = û(0)(k, t) +

∫ t

0

e−ν2(t−τ) [−ikj ûj ∗ û] (k, τ)dτ =: N [û] (k, t),

where

(2.24) û(0)(k, t) = e−ν|k|2tû0(k) +

∫ t

0

e−ν|k|2(t−τ)f̂(k, τ)dτ

Using contraction mapping theorem, we will prove that (2.23) has a
unique solution locally in time in some ball in a suitable function space
consistent with a continuous solution in time. On inverse Fourier Trans-
form, this generates a smooth solution of Navier Stokes (2.14) locally
in time.

Definition 2.1. For n = 2, 3, β ≥ 0 and µ > n, we define norm ‖.‖µ,β
so that

(2.25) ‖f̂‖µ,β = M sup
k∈Rn

(1 + |k|)µ eβ|k|
∣

∣

∣
f̂(k)

∣

∣

∣
,
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where

M =

{

sup
k∈Rn

(1 + |k|)µ
∫

k′∈Rn

1

(1 + |k − k′|)µ (1 + |k′|)µdk
′
}1/2

For a function v̂ of k and t, we define norm ‖.‖ so that

(2.26) ‖v̂‖ = sup
t∈[0,T ]

‖v̂(·, t)‖µ,β = sup
t∈[0,T ],k∈Rn

M (1 + |k|)µ eβ|k| |û(k, t)|

We define S to be Banch space of continuous functions in k and t such
that ‖.‖ < ∞.

Lemma 2.2. For any f̂ , ĝ,

‖f̂ ∗ ĝ‖µ,β ≤ ‖f̂‖µ,β‖ĝ‖µ,β
Proof. Using definition of ‖.‖µ,β,
∣

∣

∣

∫

k′∈Rn

f̂(k′)ĝ(k−k′)dk′
∣

∣

∣
≤ 1

M2
‖f̂‖µ,β‖ĝ‖µ,β

∫

k′∈Rn

e−β(|k′|+|k−k′|)dk′

(1 + |k′|)µ(1 + |k − k′|)µ
Since |k − k′| + |k′| ≤ |k|, e−β(|k′|+|k−k′|) ≤ e−β|k| . From this and the
definition of ‖.‖µ,β, Lemma follows provided M < ∞ exists. To show
M exists, we may decompose
∫

k′∈Rn

dk′

(1 + |k′|)µ(1 + |k − k′|)µ =

{
∫

|k′|<|k|/2
+

∫

|k′|≥|k|/2

}

dk′

(1 + |k′|)µ(1 + |k − k′|)µ

≤
∫

|k′|≤|k|/2

1

(1 + |k|/2)µ
dk′

(1 + |k′|)µ+
∫

|k−k′|≤|k|/2

1

(1 + |k|/2)µ
dk′

(1 + |k − k′|)µ

≤ 2

(1 + |k|/2)µ
∫

k′∈Rn

dk′

(1 + |k′|)µ ≤ C(µ)

(1 + |k|)µ ,

We note that using spherical (polar) coordinates, we can reduce
∫

k′∈Rn
dk′

(1+|k′|)µ
to a one dimensional integral which exists for µ > n and this implies
M is finite.

Theorem 2.1. (Local Existence of NS) If ‖û0‖µ,β, supt ‖f̂(·, t)‖µ,β <
∞, then for sufficiently small T (taken ≤ 1), there exists unique solu-
tion of (2.17) for û ∈ S. For µ > n+2, this corresponds to a classical
solution of Navier Stokes (2.14)-(2.15).

Proof. We note that

(2.27) ‖û0(k)e
−|k|2t‖ ≤ ‖û0‖µ,β

Further,

(2.28) ‖
∫ t

0

e−|k|2(t−τ)f̂(k, τ)
∥

∥

∥

µ,β
≤ sup

t
‖f̂(., t)‖µ,βT
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From (2.24)

(2.29) ‖û(0)‖ ≤ ‖u0‖µ,β+T sup
t≥0

‖f̂(·, t)‖µ,β ≤ ‖û0‖µ,β+sup
t≥0

‖f̂(·, t)‖µ,β

Further, from Lemma 2.2 and definition of ‖.‖ in (2.26),

(2.30)
∣

∣

∣

∫ t

0

e−ν|k|2(t−τ)ikj [ûj ∗ û] (k, τ)dτ
∣

∣

∣

≤ ‖u‖2e−β|k|
∫ t

0

e−ν|k|2(t−τ) |k|
M(1 + |k|)µdτ ≤ ‖û‖2 e−β|k|

Mν|k|(1 + |k|)µ
[

1− e−ν|k|2t
]

Therefore, it follows that
(2.31)

‖
∫ t

0

e−ν|k|2(t−τ)ikj [ûj ∗ û] (k, τ)dτ‖ ≤ ‖û‖2
√

T

ν

(

sup
γ>0

1− e−γ

√
γ

)

≡ c

√

T

ν
‖û‖2

(2.32) ‖N [û]‖ ≤ ‖û(0)‖+ c

√

T

ν
‖u‖2,

In a similar manner,

(2.33) ‖N [û1]−N [û2]‖ ≤ c

√

T

ν
(‖û1‖+ ‖û2‖) ‖û1 − û2‖,

From the above equations, that if

(2.34) T <
ν

16c2‖û(0)‖2 =
ν

16c2
[

‖û0‖µ,β + supt≥0 ‖f̂‖µ,β
]2 ,

then N : B → B contractively, where B ∈ S is a ball of size 2‖u(0)‖.
Therefore, from contraction mapping theorem in a Banach space, there
exists unique solution to the integral equation (2.23) and hence (2.17),
T small enough to satisfy (2.34). On Fourier transforming (2.17), which
exists for µ > n + 2, we obtain a classical smooth solution of Navier-
Stokes (2.14)-(2.15).

Remark 2.3. The existence time T depends on initial condition u0 and
forcing f in a bad way. Larger data gives smaller existence time. This
prevents continuation of the local existence argument to get global ex-
istence results. Also, there is dependence on inverse Reynolds number,
i.e. nondimensional viscosity ν in the proof. This is to be expected
since the proof relies essentially on inversion of heat operator involving
viscosity. For larger time the advection term u · ∇ becomes more im-
portant. Later in the course, we will note energy methods which works
both for N-S and Euler equations. Indeed, with help from potential
theory, these methods help establish global existence in 2-D. Also note



7

β > 0 implies that solution u(x, t) in the physical domain is a real
analytic function of x, with analyticity width β remaining the same
through out the existence time.

3. Global existence for small data or large ν for x ∈ T
n,

for n = 2, 3

We now consider Navier-Stokes equation in a [0, 2π]n periodic box,
i.e. for n = 3,
(3.35)
u(x1+2π, x2, x3) = u(x1, x2+2π, x3) = u(x1, x2, x3+2π) = u(x1, x2, x3)

with forcing f = 0 and initial condition u0 periodic and divergence
free. Then as before for x ∈ R

n, we obtain in the Fourier Space the
same equations (2.21) and (2.23), with f̂ = 0, except now k ∈ Z

n and
Fourier convolution ∗ now involves sum of k′ ∈ Z

n. From (2.21), for
k = 0, we note

(3.36) ∂tû = 0 , implying û(0, t) = û0(0)

Therefore, by translating in a right frame of reference, we may choose,
without any loss of generality,

(3.37) û(0, t) = 0,

We define norm ‖.‖µ,β as before for µ > n and β ≥ 0 in (2.25), except
that k ∈ Z

n and

(3.38) M2 = sup
k∈Zn

(1 + |k|)µ
∑

k′∈Zn

1

(1 + |k′)µ(1 + |k − k′)µ

Lemma 3.1. For the discrete convolution ∗ operation

‖f̂ ∗ ĝ‖µ,β ≤ ‖f̂‖µ,β‖ĝ‖µ,β
Proof. From definition of discrete convolution
(3.39)
∣

∣

∣

∑

k′inZn

f̂(k′)ĝ(k− k′)
∣

∣

∣
≤ 1

M2
‖f̂‖µ,β‖ĝ‖µ,β

∑

k′∈Zn

e−β|k′|−β|k−k′|

(1 + |k′|)µ(1 + |k − k′|)µ

Since e−β(|k′|+|k−k′|) ≤ e−β|k| as before for the continuous case, the
Lemma follows from definition of M in (3.38), provided M2 < ∞.
To show this, as before, with the integral, we break up k′ into two sets:
S1 = {k′ : |k′| > |k|/2} and S2 = {k′ : |k′| ≤ |k|/2}. Then
(3.40)
∑

k′∈S1

1

(1 + |k′|)µ(1 + |k − k′)µ
≤

1

(1 + |k|/2)µ

∑

k′∈Zn

1

(1 + |k − k′|)µ
=

1

(1 + |k|/2)µ

∑

k̃∈Zn

1

(1 + |k̃|)µ
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(3.41)
∑

k′∈S2

1

(1 + |k′|)µ(1 + |k − k′)µ
≤

∑

k−k′∈S1

1

(1 + |k′|)µ(1 + |k − k′)µ
≤

1

(1 + |k|/2)µ

∑

k′∈Zn

1

(1 + |k′|)µ

where
∑

k′∈Zn(1 + |k′|)−µ converges from integral test. Therefore,

(3.42) (1 + |k|)µ
(

∑

k′∈S1

1

(1 + |k′|)µ(1 + |k − k′)µ

)

≤ M2 < ∞

for some M depending on µ but independent of k. We define M to be
the smallest such M .

Definition 3.2. We now introduce a weighted space time norm

(3.43) ‖û‖E = sup
t∈[0,T ]

eνt‖û(., t)‖µ,β

We denote by SE to be the Banach space of functions with ‖.‖E < ∞.

Theorem 3.1. Global existence for unforced case For n = 2, 3,
if for µ > n, β ≥ 0, ‖û0‖µ,β < ν

4
√
2
, then there exists globally unique

solution to NS in SE.

Proof. We have in this case û0(k, t) = û0e
−ν|k|2t and therefore, since

|k| ≥ 0 for all nonzero û, we have

(3.44) ‖û(0)‖E ≤ ‖û0‖µ,β
Further, from definition of ‖.‖E and Lemma 3.1,
(3.45)
∣

∣

∣
−ikj

∫ t

0

e−|k|2(t−τ) [ûj ∗ û] (k, τ)dτ
∣

∣

∣
≤ e−νte−β|k|‖û‖2E

M(1 + |k|)µ
∫ t

0

|k|e−ν(|k|2−1)(t−τ)e−ντdτ,

There are two cases, |k| = 1 and |k| > 1. For |k| = 1, we note that

(3.46)

∫ t

0

|k|e−ν(|k|2−1)(t−τ)e−ντdτ ≤ 1

ν

We note infk∈Zn,|k|>1 |k| =
√
2, and so for |k| > 1,

(3.47)
∫ t

0

|k|e−ν(|k|2−1)(t−τ)e−ντdτ ≤
∫ t

0

|k|e−ν(|k|2−1)(t−τ)dτ ≤ |k|
ν(|k|2 − 1)

≤
√
2

ν

we obtain

(3.48) ‖ − ikj

∫ t

0

e−|k|2(t−τ) [ûj ∗ û] (k, τ)dτ‖E ≤
√
2

ν
‖û‖2E,

Therefore, with N defined in (2.23), we obtain for û, û1, û2 ∈ SE ,

(3.49) ‖N [û] ‖ ≤ ‖û0‖µ,β +
√
2

ν
‖û‖2E ,
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and in a similar manner,

(3.50) ‖N [û1]−N [û2] ‖ ≤
√
2

ν
(‖û1‖+ ‖û2‖E) ‖û1 − û2‖E

From above, it is easily seen that N : BE → BE in a ball BE ⊂ SE of
size 2‖û0‖µ,β if

(3.51)
4
√
2

ν
‖û0‖µ,β < 1

From contraction mapping theorem, if initial data is small enough or ν
large enough to satisfy (3.51), then there exists unique solution solution
û ∈ BE. Since this argument is valid for any T , this is the solution is
global in time.

Remark 3.3. Note that though we argued that there is a unique so-
lution only in a Ball BE, this can be the only solution in SE. This
is because from continuity in time, solution must be in a ball of size
2‖û0‖µ,β, which it never escapes. Also, though the solution is shown
only to be in the space SE, it turns out that for t > 0, there is instan-
taneous smoothing in the sense that for t > 0, ‖u(., t)‖µ+2,β < ∞. We
will show this property next time.
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