
Week 5 Notes, Math 865, Tanveer

1. Instantaneous smoothing of unforced NS solutions for N = 2, 3

Recall last week we found solutions to
(1.1)

û(k, t) = û0(k)e
−ν|k|2t+

∫ t

0

−ikjPk [ûj ∗ û] (k, τ)e
−ν|k|2(t−τ)dτ =: N [û(k, t)]

either for k ∈ R
N or k ∈ Z

N for which ‖û(·, t)‖µ,β is finite for µ > n, β ≥
0. We now prove that the solution is instantaneously smoothed, i.e.
for t > 0, ‖û(·, t)‖µ+2,β < ∞, implying that u(x, t) = F−1 [û(·, t)] (x) is
a classical solution of NS equations.

Definition 1.1. For T > ǫ > 0, define Wǫ(k) = supt∈[ǫ,T ]

∣

∣

∣
û(k, t)

∣

∣

∣
,

where û(., t) is a solution of (1.1) for t ∈ [0, T ].

Lemma 1.2. The solution û(·, t) satisfying (1.1) satisfies ‖û(,̇t)‖µ+2,β <
∞ for any t ∈ (0, T ].

Proof. From (1.1), it immediately follows that
(1.2)

|k||û(k, t)| ≤ |k|û0(k)e
−ν|k|2t +

e−β|k|

M(1 + |k|)µ
‖û‖2

∫ t

0

|k|2e−ν|k|2(t−τ)dτ

It follows that

(1.3) ‖kWǫ(k)‖µ,β ≤

(

sup
γ>0

γe−γ2

)

ν−1/2ǫ−1/2‖û0‖µ,β +
1

ν
‖û‖2,

implying that ‖|k|û(., t)‖µ,β < ∞ for t ∈ [ǫ, T ]. We note that using the
NS equation is autonomous in time and starting the clock at t = ǫ, and
using Fourier transform of uj∂xj

u instead of ∂xj
[uju], we may rewrite

the integral form of NS equation in the following form for t ∈ [ǫ, T ]. in
the form
(1.4)

|k|2û(k, t) = |k|2û(k, ǫ)e−ν|k|2(t−ǫ)+

∫ t

ǫ

e−ν|k|2(t−τ)|k|2Pk [ûj ∗ (kjû)] (k, τ)dτ

Repeating the same argument as above for t ∈ [2ǫ, T ], we have
(1.5)

‖|k|2W2ǫ(k)‖µ,β ≤
1

νǫ

(

sup
γ>0

γ2e−γ

)

‖û(., ǫ)‖µ,β+
1

ν
‖kWǫ‖µ,β‖Wǫ(k)‖µ,β < ∞,

implying ‖|k|2û(., t)‖µ,β < ∞ for t ∈ [2ǫ, T ]. Since ǫ > 0 is arbitrary,
the Lemma follows.
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2. Energy Methods for Euler and Navier-Stokes

Equation

We will consider this week basic energy estimates. These are esti-
mates on the L2 spatial norms of the solution u(x, t) and its higher
deriviatives with respect to x. Like other PDE initial value problems,
these estimates are most useful in establishing existence and uniqueness
of solutions.
For simplicity, we will first take Ω = R

N , where N = 2 or 3. Later
in class, we will consider the case with boundaries. The exposition of
this topic is close to Bertozzi & Majda (See Reference), though with
some differences in notation.

2.1. Basic Definitions.

Definition 2.1. For v ∈ R
N ,

(2.6) |v| =

(

N
∑

j=1

v2j

)1/2

For a function f : RN → R
N ,

(2.7) Df = (∂x1
f, .., ∂xN

f) ,

with each component ∂xj
f ∈ R

N .

(2.8) |Df | =

(

N
∑

i,j=1

[∂xj
fi]

2

)1/2

Analogously, higher order tensors D2f , D3f and their absolute values
are defined. For a multi-index α = (α1, α2, α3, ..αN), each being non-
negative integers, we define

(2.9) Dαf = ∂α1

x1
∂α2

x2
..∂αN

xN
f

We define the norm of the multi-index α:

(2.10) |α| = α1 + α2 + .. + αN

We also consider norms

(2.11) ‖f‖0 ≡ ‖f‖L2(RN ) =

(
∫

RN

|f(x)|2dx

)1/2

The corresponding L2 inner product will be denoted by

(2.12) (f, g)0 =

∫

RN

f(x)g(x)dx
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We define higher order energy norms ‖.‖m
(1):

(2.13) ‖f‖m ≡ ‖f‖Hm(RN ) =





∑

|α|≤m

‖Dαf‖20





1/2

The corresponding inner-product in Hm will be denoted by (., .)m

2.2. Calculus Inequalties for Sobolev Spaces and Mollifiers.

We have already introduced the Sobolev space Hm(R
N) for integer

m ≥ 0. We now extend it to Hs(R
N) for any s ∈ R. In the Schwartz

space S(RN ) of smooth functions with rapid decay at ∞, we introduce
the norm

(2.14) ‖u‖s =

{
∫

RN

(1 + |k|)2sû(k)dk

}1/2

where û(k) = F [u](k), i.e. the Fourier-Transform of u. The completion
of S(RN ) with norem (2.14) will be referred to as Hs(R

N). You can
check that for s = m, that this is equivalent to the original definition
of Hm.
One of the most important Sobolev space property that we will use

is the Sobolev inequality below:

Lemma 2.2. Sobolev embedding Theorem
The space Hs+k(R

n), for s > N/2, k ∈ Z
+ ∪ {0} is continuously

embedded in the space Ck(RN), and there exists a constant c > 0 such
that

(2.15) |v|Ck ≤ c‖v‖s+k , for any v ∈ Hs+k(R
N)

Some other calculus inequalities in the following Lemma will be use-
ful for our purposes:

Lemma 2.3. i. For all m ∈ Z
+ ∪ {0}, there exists c > 0 such that for

all u, v ∈ L∞ ∩Hm(R
N),

‖uv‖m ≤ c {‖u‖∞‖Dmv‖0 + ‖Dmu‖0‖v‖∞}
∑

0≤|α|≤m

‖Dα(uv)− uDαv‖0 ≤ c
{

‖∇u‖∞‖Dm−1v‖0 + ‖Dmu‖0‖v‖∞
}

ii. For all s > N/2, Hs(R
N) is a Banach algebra, i.e. there exits a

constant c so that for all u, v ∈ Hs(R
N),

‖uv‖s ≤ c‖u‖s‖v‖s

(1) Note that through a Fourier-representation, ‖.‖m can be generalized to nonintegral or
negative m. We will use such generalizations later.
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We now introduce a mollifier. Suppose ρ = ρ(|x|) ∈ C∞
c (RN), i.e.

infinitely smooth function with compact support. Suppose also ρ ≥ 0,
and

∫

RN ρdx = 1. Then we define mollification of v, denoted by Iǫv to
be a function given by:

(2.16) (Iǫv) (x) = ǫ−N

∫

RN

ρ

(

x− y

ǫ

)

v(y)dy

Lemma 2.4. Properties of Mollifier
Let Iǫ be the mollifier defined in (2.16). Then Iǫv ∈ C∞(RN) and

i. for all v ∈ C0(RN), Iǫv → v uniformly on any compact set Ω ⊂ R
N

and

‖Iǫv‖∞ ≤ ‖v‖∞

ii. Mollifiers commute with distribution derivatives

DαIǫv = IǫD
αv for any |α| ≤ m, v ∈ Hm

iii. For all u ∈ Lp(R
N), v ∈ Lq(R

N ), 1/p+ 1/q = 1,
∫

RN

(Iǫu)vdx =

∫

RN

u(Iǫv)dx

iv. For all v ∈ Hs(R
N), Iǫv converges to v in Hs and the rate of

convergence in the Hs−1 norm is linear in ǫ, i.e.

lim
ǫ→0+

‖Iǫv − v‖s = 0

‖Iǫv − v‖s−1 ≤ Cǫ‖v‖s

v. For all v ∈ Hm(R
N), k ∈ Z

+ ∪ {0}, and ǫ > 0,

‖Iǫv‖m+k ≤
cmk

ǫk
‖v‖m

‖IǫD
kv‖∞ ≤

ck
ǫN/2+k

‖v‖0

3. Hodge Projection and Properties

Lemma 3.1. Any vector field v ∈ Hm(R
N) for m ∈ Z

+ ∪ {0} has a
unique orthogonal decomposition

v = ∇φ+ w , where ∇φ , w ∈ Hm ,∇ · w = 0

We define w = Pv as the Hodge projection of v onto the divergence
free vector field. Further,
i. (Pv,∇φ)m = 0 and ‖Pv‖2m + ‖∇φ‖2m = ‖v‖2m.
ii. P commutes with Dα in Hm for |α| ≤ m: PDαv = DαPv.
iii. PIǫv = IǫPv
iv. P is symmetric: (Pu, v)m = (u,Pv)m
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Proof. We only consider m = 0. Other cases follow simply by noting
property ii: that P commutes with D. We further consider only v ∈
C∞

c (RN). This space is dense inHm and hence all the results will follow
for more general v, except that derivatives have to be understood in
the sense of a distribution. Define φ by solving

∆φ = ∇ · v , with φ → 0 as x → ∞

Using Green’s function for Laplacian, we know

(3.17) φ(x) =
[

∆−1∇ · v
]

(x) =

∫

y∈RN

G(x− y)(∇ · v)(y)dy,

where

G(x) =
1

2π
log |x| for N = 2, G(x) = −

1

4π|x|
for N = 3

Then it is clear that

(3.18) ∇φ(x) =

∫

y∈RN

∇G(x− y)(∇ · v)(y) ≡
[

∇∆−1∇ · v
]

(x)

Now, notice that as x → ∞,

∇φ(x) ∼ [∇G](x)

∫

y∈RN

(∇ · v)(y)dy +O(|x|−N)

From applying Gauss’s theorem on the first term,

∇φ(x) = O(|x|−N) as |x| → ∞,

and hence ∇φ ∈ L2(R
N). Define

Pv = w = v −∇φ

Clearly since v,∇φ ∈ L2(R
N), so is w = Pv. It is clear that

∇ · w = ∇ · v −∆φ = 0

So, Pv is divergence free, and from the decay rate of ∇φ for large x, it
follows that

w ∼ O(|x|−N) as |x| → ∞

Now, property i. follows since

(w,∇φ)0 =

∫

RN

wj∂xj
φdx =

∫

RN

∂xj
(wjφ) = lim

R→∞

∫

|x|=R

φ(w·n)dx = 0

since for large x, φ = O(log |x|) for N = 2 and φ = O(|x|−N+2) for
N = 3, while w = O(|x|−N). Also,

‖v‖20 = (w +∇φ, w +∇φ)0 = (w,w) + (∇φ,∇φ)0 = ‖Pv‖20 + ‖∇φ‖20

because of the orthogonality property.
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Property ii. follows simply from the observation that

DαPv = Dαw = Dαv −Dα∇φ = Dαv −∇Dαφ = PDαv,

since
∆(Dαφ) = ∇ · (Dαv)

Property iii. follows from the commuting property of Iǫ with ∆−1 (
defined in (3.17)) and with any differential operator, since

IǫPv = Iǫv − Iǫ∇∆−1∇ · v = (Iǫv)−∇∆−1∇ · (Iǫv) = PIǫv

Property iv follows for m = 0 because

(Pv, u)0 =
(

u, v −∇∆−1∇ · v
)

0
= (u, v)0+

(

∇u,∆−1∇ · v
)

0
= (u, v)0+

(

∆−1∇u,∇ · v
)

0

= (u, v)0 −
(

∇ · (∆−1∇u), v
)

0
=
(

u−∇∆−1∇ · u, v
)

0
= (v,Pu)0

4. Energy dissipation and uniqueness arguments

Consider the incompressible constant density Navier-Stokes equation

(4.19) ∂tu+ u · ∇u = −∇p+ ν∆u + b

(4.20) ∇ · u = 0,

where ∇ · b = 0, without any loss of generality. Applying Hodge pro-
jection operator P on (4.19) to obtain

(4.21) ∂tu+ P [u · ∇u] = ν∆u+ b

We take inner product of (4.21) with u in (., )0 space and use (u, ut) =
d
dt

1
2
‖u(., t)‖20,

(4.22) (u,P [u · ∇u])0 =
(

u, uj∂xj

)

=

∫

x∈RN

∂xj

(

uj |u|
2/2
)

dx = 0,

for sufficiently rapidly decaying u (for e.g. u = o(|x|−(N−1)/3) as
|x| → ∞ or even u ∈ L3(R

N) will suffice. Note that from a Sobolev
embedding result H1/2(R

3) ⊂ L3(R
3)).

(4.23)
d

dt

1

2
‖u(., t)‖20 = −ν‖∇u(., t)‖20 + (u, b)0

The quantity E(t) = 1
2
‖u(., t)‖20 is the Kinetic energy of the fluid at

time t, while ǫ = ν‖∇u(., t)‖20 is the viscous dissipation rate of energy,
while (u, b)0 is the rate of work done by force b. Thus (4.23) is simply
a physical statement that the rate at which Kinetic energy changes is
due to loss of energy due to dissipation and the gain of energy due to
work done by force b. If the same argument is done with flow past
a finite solid body, there will be additional contribution due to work
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done by the body on the fluid, which can be calculated as an exercise.
The viscously dissipated energy is actually converted to heat. For com-
pressible fluid flow, we have to couple heat energy and thermodynamics
with momentum equation to get a complete set of equations. However,
this is not necessary for incompressible flow.
Time integration of (4.23) leads to

(4.24)
1

2
‖u(., t)‖20 + ν

∫ t

0

‖Du(., τ)‖20dτ =

∫ t

0

(b, u)0(τ)dτ

Exercise: Calculate the Energy balance equation equivalent to (4.24)
for a domain Ω exterior to to a stationary solid and identify the term
which is the rate of work done by the body on the fluid. It might be
better to use inner product of u with (4.19), since we are yet to discus
Hodge projection P for finite domain.

4.1. Energy Estimate, Uniqueness and ν dependence of Smooth

Solutions. Let u, w be two Navier-Stokes solution, corresponding to
forcing b and c respectively. We assume b and c to be smooth as well
and decaying sufficiently fast in x at ∞. We denote the corresponding
pressures by p and q. Then consider the difference v = u − w. It is
easy to check that v satisfies:
(4.25)
∂tv+v·∇v+w·∇v+v·∇w = −∇P+ν∆v+f ,where f = b−c, P = p−q

The i-th component of the above equation may be written as

(4.26) ∂tvi + vj∂xj
vi + wj∂xj

vi + vj∂xj
wi = −∂xi

P + ν∂2
xj
vi + fi

Multiplying above by vi and integrating we obtain that
(4.27)

∂t
1

2
v2i+

1

2
∂xj

[

(vj + wj)v
2
i

]

+vivj∂xj
wi = −∂xi

(uiP )+ν∂xj

(

vi∂xj
vi
)

−ν(∂xj
vi)(∂xj

vi)+vifi

So integrating over R
N with usual assumptions on decay of velocity

and pressure fields at ∞, we obtain by using

(4.28) |(v, f)0| ≤ ‖v‖0‖f‖0 , and |(v, v · ∇w)0| ≤ ‖Dw(., t)‖∞‖v‖20 ,

(4.29)
d

dt

1

2
‖v‖20 + ν‖Dv‖20 ≤ ‖Dw‖∞‖v‖20 + ‖v‖0‖f‖0

So, in particular,

(4.30)
d

dt
‖v‖0 ≤ ‖∇w‖∞‖v‖0 + ‖f‖0
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Also, on integrating (4.29) between t = 0 to t = T , we obtain
(4.31)
1

2
‖v(., T )‖20+ν

∫ T

0

‖Dv(., t)‖20dt ≤
1

2
‖v(., 0)‖20+

∫ T

0

‖Dw(., t)‖∞‖v(., t)‖20dt+

∫ T

0

‖v(., t)‖0‖f(., t)

Using well-known Gronwall’s inequality on (4.30) and the definition
of v, we obtain the following Lemma

Lemma 4.1. Let u and w be two smooth L2(R
N) solutions to the

Navier-Stokes equation for t ∈ [0, T ] for the same viscosity ν, but dif-
ferent forcing b and c respectively. Then,
(4.32)

sup
t∈[0,T ]

‖u(., t)−w(., t)‖0 ≤

{

‖u(., 0)− w(., 0)‖0 +

∫ T

0

‖b(., t)− c(., t)‖0dt

}

exp

[
∫ T

0

|∇w(., t)‖∞dt

Corollary 4.2. Uniqueness of smooth solutions
Let u(., t) and w(., t) be two smooth L2(R

N ) solutions to incompress-
ible constant density Navier-Stokes equation for t ∈ [0, T ] with same
initial data and forcing. Then, the solution is unique.

Proof. This simply follows from Lemma 2.11, since u(., 0)−w(., 0) = 0
and b− c = 0.

Remark 4.3. The energy estimate (4.32) does not explicitly depend
on ν and is equally valid for ν = 0, i.e. for the Euler equation.

The energy estimate (4.32) is also useful in estimating the difference
between smooth Euler and Navier-Stokes solution with the same initial
data and forcing. Let u[0] be a smooth solution to the Euler equation,
i.e. ν = 0, while u[ν] is a solution to Navier-Stokes equation with the
same initial data and forcing. Then, we can obtain an equation for
v = u[ν] − u[0]:

(4.33) ∂tv + v · ∇v + u[0] · ∇v + v · ∇u[0] = −∇P + ν∆v + f

where f = ν∆u[0], P = p− q is the difference of pressure

This is the same equation as for (4.25), with w replaced by u[0], and
a different meaning of f . Therefore, the energy estimate (4.32) in this
case becomes
(4.34)

sup
t∈[0,T ]

‖u[ν](., t)−u[0](., t)‖0 ≤ ν

(
∫ T

0

‖∆u[0](.t)‖0dt

)

exp

{
∫ T

0

‖Du[0](., t)‖∞dt

}

≤ νTC(u[0], T )
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Notice that (4.31) with w replaced by u[0], and with f = −ν∆u[0] gives
rise to
(4.35)

ν

∫ T

0

‖Dv(., t)‖20dt ≤

∫ T

0

‖Du[0](., t)‖∞‖v(., t)‖20dt+ν

∫ T

0

‖v(., t)‖0‖∆u[0](., t)‖0dt

Using estimate (4.34) estimate, we obtain,
(4.36)
∫ T

0

‖Dv(., t)‖20dt ≤ νTC

{

CT

∫ T

0

‖Du[0](., t)‖∞dt+ ν

∫ T

0

‖∆u[0](., t)‖0dt

}

≤ νT 2c2(u
[0], T )

So,
(4.37)
∫ T

0

‖Dv(., t)‖0dt ≤ T 1/2

(∫ T

0

‖Dv(., t)‖2dt

)1/2

≤ ν1/2T 3/2C2(u
[0], T )

This implies the following proposition:

Proposition 4.4. Comparison of smooth Euler and Navier-Stokes So-
lution
Given the same initial data and forcing, then the difference v between

smooth L2(R
N ) Navier-Stokes and Euler solution over a common in-

terval of existence [0, T ] satisfies (4.34) and (4.37). In particular for
any fixed T , as ν → 0, u[ν](., t) → u[0](., t), and Du[ν](., t) → Du[0](., t)
uniformly for t ∈ [0, T ].

4.2. Kinetic Energy of 2-D flow. The Theorems in the last section
hold for solutions to Navier-Stokes/Euler equation that decay suffi-
ciently rapidly as x → ∞ so that velocity u(., t) ∈ L2. This is a
reasonable physical assumption in R

3.
For 2-D flow, this is not necessarily the case, unless the integral of

vorticity in the flow is zero, as will be seen shortly. Suppose

supp ω ⊂
{

x : x ∈ R
2, |x| < R

}

Applying 2-D Biot-Savart Law:
(4.38)

u(x, t) =

∫

|y|≤R

K(x− y)ω(y, t)dy , where K(x) =
1

2π|x|2
[−x2, x1]

We first note that

(4.39)

We note that

(4.40) |x− y|−2 = |x|−2

(

1− 2
y · x

|x|2
+

|y|2

|x|2

)
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Now, if |x| ≥ 2R, then since |y| ≤ R, it follows that as |x| → ∞

|x− y|−2 = |x|−2 +O(|x|−3)

So, from (4.38),

(4.41) u(x, t) = K(x)

∫

y∈R2

ω(y, t) +O(|x|−3)

Since
∫

x∈R2

(1 + |x|)−ldx < ∞, iff l > N

It follows that

Lemma 4.5. A 2-D incompressible flow with compact vorticity ω has
finite energy iff

(4.42)

∫

R2

ω(x)dx = 0

Remark 4.6. Note that the vorticity ω(x, t) will satisfy (4.42) for t >
0, if

(4.43)

∫

R2

ω(x, 0)dx = 0,

since integration of 2-D Navier-Stokes equation in the vorticity form
gives

(4.44)
d

dt

∫

x∈R2

ω(x, t)dx = 0

Remark 4.7. The statement that finite energy is implied only iff (4.43)
is satisfied is not limited merely to flow with compact support. It is more
generally true for ω ∈ L1(R

2).

When (4.43) is violated, it is possible to decompose a solution to
Navier-Stokes equation to such that a part of it is in L2(R

2) (hence
finite energy), while the other part is generated by a radial distribution
of vorticity whose integral is the same as the integral of initial vorticity
over R2.
Consider an initial vorticity distribution ω0(x) ∈ L

1(R2). We chose
any compact radial vorticity distribution ω̃0(|x|) such that

∫

R2

ω̃0(|x|)dx =

∫

R2

ω0(x)dx

We determine radial vorticity solution ω̃(|x|, t) with initial value ω̃(|x|, 0) =
ω̃0(|x|) to Navier-Stokes equation without forcing. We know from
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worked out problems two weeks back, that ω̃(|x|, t) satisfies 2-D heat
equation with corresponding velocity

(4.45) ũ(x, t) =
(−x2, x1)

|x|2

∫ |x|

0

sω̃0(s, t)ds

Therefore, we now consider the decomposition

(4.46) u(x, t) = ũ(x, t) + v(x, t)

Since (∇× v)(x, 0) = ω0(x)− ω̃0(x), it follows that

(4.47)

∫

(∇× v)(x, 0)dx = 0

from construction of ω̃0. From (4.44) and the fact that heat solution
preserves

∫

R2 ω̃(x, t)dx, it follows that
(4.48)
d

dt

∫

R2

(∇×v)(x, t)dx = 0 , implying by above

∫

x∈R2

(∇×v)(x, t)dx = 0

This implies that v(x, t) has finite energy.
Thus, we have proved the following Lemma:

Lemma 4.8. Any smooth solution u(x, t) to 2-D Navier-Stokes equa-
tion with an initial L1(R

2) vorticity can be decomposed into

(4.49) u(x, t) = v(x, t) + ũ(x, t)

where v ∈ L2(R
2) and divergence free, while

(4.50) ũ(x) = (−x2, x1)|x|
−2

∫ |x|

0

sω̃(s, t)ds

for some smooth radial vorticity distribution ω̃(|x|, t) with an initial
compact support.

4.3. Energy Inequality for 2-D flow. Consider the radial-Energy
decomposition

(4.51) u(x, t) = ũ(x, t) + v(x, t)

of solution to the Navier-Stokes equation where v ∈ L2(R
2). v satisfies

(4.52) ∂tv + v · ∇v + ũ · ∇v + v · ∇ũ = −∇p + ν∆v + F

Consider two solutions to Navier-Stokes equation u1, u2 with radial
decompositions:

(4.53) u1 = ũ1 + v1 , u2 = ũ2 + v2

Then, if we denote

(4.54) w = v1 − v2 , ũ1 − ũ2 = û , F̂ = F1 − F2 , p̂ = p1 − p2 ,



12

then w satisfies

(4.55)

∂tw+v1·∇w+w·∇v2+ũ1·∇w+û·∇v2+v2·∇û+w·∇ũ1 = −∇p̂+ν∆w+F̂

Then using the same integration by parts procedure as in the last
section, we have

(4.56)
d

dt

1

2
‖w‖20 + ν‖∇w‖20 ≤ ‖w‖0 {‖w‖0 (‖∇v2‖∞ + ‖∇ũ1‖∞)

+‖∇(ũ1 − ũ2)‖∞‖v2‖0 + ‖F̂‖0 + |ũ1 − ũ2‖∞‖∇v2‖0
}

Using Gronwall’s inequality, as in previous section, we end up with the
following proposition

Proposition 4.9. 2-D Energy Estimate and Gradient Control Let u1

and u2 be two smooth divergence free solutions to the Navier-Stokes
equation with radial-energy decomposition uj(x, t) = vj(x, t) + ũj(x, t)
and with external forces F1 and F2. Then we have the following esti-
mates:

(4.57)

sup
t∈[0,T ]

‖v1−v2‖0 ≤ exp

[
∫ T

0

(‖∇v2‖∞ + ‖∇ũ1‖∞) dt

]

{‖v1(., 0)− v2(., 0)‖0

∫ T

0

[‖(F1 − F2)(., t)‖0 + ‖ũ1 − ũ2‖∞‖∇v2‖0 + ‖∇ũ1 −∇ũ2‖∞‖v2‖0] dt

}

(4.58) ν

∫ T

0

‖∇(v1(., t)− v2(., t))‖
2
0dt ≤ C(v2, ũ1, T )

{

‖(u1 − u2)(., 0)‖
2
0

+

[∫ T

0

(‖F1(., t)− F2(., t)‖0 + ‖ũ1 − ũ2‖∞‖∇v2(., t)‖0 + ‖∇ũ1 −∇ũ2‖∞‖v2(., t)‖0) dt

]2
}

Exercise: Derive (4.57) and (4.58) and use it to prove the above propo-
sition.
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