Week 6 Notes, Math 8610, Tanveer

1. GLOBAL EXISTENCE THEOREM FOR REGULARIZED NAVIER-STOKES

Instead of the usual Navier-Stokes equation, we consider the regu-
larized Navier-Stokes equation for u®(z,t):

(1.1)
us+Z ([Zeu® - V|ZeuS) = =Vp+vZ. I Au, V-u =0, u(x,0) = up(z)

Using Hodge Projection operator, we project (L) into the space
(1.2) Vi={v:ve HR"), V.-v=0}

It is easily proved that the subspace Vi of Hy is itself a Banach space.
Since P commutes with operators Z. and D, it follows from (1]) that

(1.3) us + P L, ([T - V] Tu)} = v, T, Au

This regularized Navier-Stokes equation reduces to an ODE in the Ba-
nach space V*® and can be written symbolically in the form

d

(1.4) %ue =F.(uf) , ui=0 = uo

where
(1.5) F.(u) = vI?Auf — P{Z. ([Z.u* - V]Zu)} = FNu) — F2(uf)

Lemma 1.1. Picard Theorem in Banach Space

Let O C B be an open set in a Banach space and F : O — B be a
mapping that satisfies the following properties:
i. F maps O to B,
ii. F' s locally Lipschitz continuous, i.e. for any X € O, there exists
L > 0 and on open neighborhood U C O containing X so that

||F(X1) — F(XQ)H S L||X1 — X2H s for all Xl,XQ elU
Then, for any Xy € O, there exists time T such that the ODE
dX
E :F(X) 5 X|t:0:X()
has a locally unique solution X € C*[(=T,T) : O].

Remark 1.2. In the preceding Lemma, ||.| denotes the norm in the
Banach space B.

Remark 1.3. The proof of Lemma L is just like the classical Picard
Theorem for ODEs in RY ; only that RN is replaced by Banach space B.
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Recall that the classical Picard Theorm is based on contraction mapping
theorem applied to the integral equation:

(1.6) X(t) =X+ /OtF(X(T))dT

Smallness of T together with Lipschitz property guarantees a unique
C°[(—T,T), O] solution. The differential equation immediately implies
that this solution is also in C*[(=T,T), O].

Remark 1.4. The Lemma above only guarantees local existence in t,
the existence time 7" depending on the Lipschitz constant in
a ball containing initial condition. This is deduced easily by
applying a contraction mapping argument on (LH). 7o get
global existence, the following Lemma is useful.

Remark 1.5. We will now show that each of F{ and F5 satisfies the
conditions for applying Lemma [L3 in the Banach space V*° for any
fired € > 0. By appropriately choosing an open set O C V™, we will
use Lemma [L3 to establish global existence as well.

Lemma 1.6. local existence for reqularized problem
For O ={u € V™ ||u||, < M}, the function F, defined in (I1) sat-
1sfies the requirement that for any uy,us € O,

| Fe(ur) — Fe(uz)|lm < car(e,m, N)|lur — ugl|m

where constant ¢y only depends on M, m, € and N. Thus, F€ is locally
Lipschitz in O.

Proof. Consider first F!(u;) — F(us):

(1.7)
cvV
[F () = (ug) [l = VIIZZA(ur—us) [l < V|22 (ur—us) iz < = (wr—uz)m,

where we used Lemma 2.4 of week 5 notes (parts iv and v). Now,

(1.8)
1F2 (u1)—F2(un) |m < P AZe ([Zeus - VIZ{u§ — us})} lm+ P {Ze ([Zefus — us} - VIZeus) } m
< NNZeui | | Ze{ Du§ — Dus}lm + [|[Ze{u] — ub}H|ool| Ze Dus||m

< e (e M uglloflus — whllm + € NEHfug = ublollus]lo)

C
< v (uillo + llugflo) llug — uzllm
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Remark 1.7. Note that {I.]) and (Z3) implies that the Lipschitz
constant C' only depends on N, m and Ly norm of initial [|u|o,
but otherwise independent of ||u‘||,,. In the ensuing, we will
show |[u¢(.,%)||o < ||uollo, and hence Lipschitz constant is inde-
pendent of solution. Also, note that using uy =0 and uj = u*:

(1.9) () [l < C([[ulo, € N, m)[[u[m

Proposition 1.8. Consider any initial condition ug € V™, m € Z+ U
{0}. Then for any e > 0, there exists a unique solution u® € C* ([0, T,]; V™)
to (I.4), where T, = T'(||uo||m,€). On any time interval [0,T] for which
the solution belongs to C* ([0,T];V?),

sup [[u‘llo < [Juollo
<t<T

Proof. Choose O C V'™ a ball of radius M that contains © = ugy. From
Lemma [[6], it follows that F, is locally Lipschitz in M, and therefore
from Picard Theorem Lemma [[LT], there exists sufficiently small 7, > 0,
depending on ||ugl|,, and €, so that there exists a unique solution u¢ €
C' ([0, T.],O) to (CA). This is the only solution in C* ([0, T,], V™) since
for sufficiently small T, continuity implies that ||u® — ugl|,, is small.

To show the second part of the Theorem, we note that on taking
the Ly inner product of ((LAl) with u¢, we obtain on using properties of
mollifiers and projections (see Lemma 1.13 of week 5 notes)

DLz = v (u, 2000),, — (uf, PLL (T} - V) (T,

dt 2
= —v (ZVu*, Z.Vu) — (Z°°, {Zu} - V)(ZVu)),
Now since v = Zu¢ is divergence free, it follows that
(v, (v - V)ue), =0
just as in the usual Navier-Stokes equation. So,
dl, . .
Sl + vz = 0
Therefore,
Jlc[f5 < fluoll3
and the second Lemma statement follows. |
Theorem 1.1. Global Existence for reqularized N-S equation

For any T > 0 and initial condition ug € V,,, the reqularized Navier
Stokes equation (I.) has a solution u¢ € C' ([0,T], Vy).
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Proof. First, we note from (C4)), () that

d 1 € € € € € € €
23l Il = (u, Ou)m = (u, F<(u)),,, < C(lluollo, e)lluc]l5,

Therefore,
(s )l < Nluole®
For any T" > 0, choose

O = {u 1 u € V™, ||ulm < 2[|uolme’™}

We know local C! ([0, 7.], O) solution exists from previous proposition
(LX), where T. only depends on ¢, m and ||ugl/p, but otherwise
independent of ||uyl/,,. This is because the Lipschitz constant
as pointed out in Remark [[L7 is only dependent on |jug|o, €
and m. Since |u(.,7¢)]|o < ||ugllo, we may restart the clock at 7,
and continue in steps of 7. until we get tot=7T. 1

Remark 1.9. Though the solution to the reqularized Navier-Stokes
equation (I4) exists for all time, going to the limit € — 0 is not pos-
sible with the energy bounds obtained so far because they depend badly
on €. So, now we seek energy bounds independent of €; this will be
possible only locally in time, as shall be seen shortly., Nonetheless, this
allows us one to take e — 0 and obtain actual solution of Navier-Stokes
equation locally in time.

Lemma 1.10. € independent Energy bounds for reqularized problem.:
Let ug € V™. Then the unique solution u € C*([0,00); V™) to the
reqularized Navier-Stokes equation guaranteed by Theorem [Ll satisfies
the following inequality
d1

ol + IZV e, < enl VI oo [ull,

Further, for m > N/2 + 1, we obtain for sufficiently small T,

[wollm ol cmT

te[0,7 - CmTHUOHm

= HUOHm + 1 — CmTHuOHm

Proof. We note that for any «a, with |a| < m,
(1.10)
(D*uf, 9, D), = (Du", DQISAuE)O—(DauE, DP{Z. ([Zcu® - V]Zuo)}),

However, it is clear from properties of Z, that

(Dus, DT Auf) = — (D*VIu, D*VI?uf),



Further, on defining v = Z.u¢, we get
(1.11)
(D, D*P {Z. ([Zeu® - V|Zu)}), = (D*Zeus, D* [(Zeu® - V)Zeu),
= (D™, D* [(v° - V)ve] — (v° - V) D), ,
since for any divergence free vector field v, (w, v - Vw) = 0. However,

taking w® = D*v¢, we obtain from using Lemma 1.12, week 5 lecture
notes:

| (D%, D [(v° - V)u] — (v - V) D0 )y | < [ Dv|oo | D"l

for m > N/2+1. Therefore, it follows from ([LI0)-([CIIl) summing over
a, with |a| < m, we obtain
d1
dt 2
Now, for m > N/2 + 1,

luel7, + VIZVU7, < emll VZeu o[l

IVtloo < clfot]lm < cllu]im

Therefore,

Al _
. —

Integration gives rise to the desired energy bounds. |

e

2. LocAL EXISTENCE FOR NAVIER-STOKES EQUATION

We now use the e-independent energy bounds for solutions to molli-
fied Navier-Stokes equation to prove local existence of solution for the
actual Navier-Stokes equation. First, we show that it forms a Cauchy
sequence in an appropriate space:

Lemma 2.1. Form > N/242, consider the family {u}, of solution to
the regularized N-S equation with same initial condition u(.,0) = ug €
V™(RY) over time interval [0,T], where T < m Note that we
have e-independent energy bounds on this time interval. This forms a
Cauchy sequence in C{[0,T], L*(R®)}. Further, there exists a constant
C only depending on ||ugl|,m and time T so that for all e > € >0,

sup |[u€ —u€ o < Ce
t€[0,T
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Proof. Using 4u¢ = F,(u¢) for € = € and € = ¢, subtracting the equa-
tion and taking the inner-product in L?, we obtain

d1

(212) =’ —ufff = v (If,AuE' ~T2Au u)

_ (PL [Iu VT — Tt - vzeuﬂ e — u) =71+ 72
We first estimate T;:
(2.13) Th =v ({If, ~- 17} Auc u — uel) +v (IfA[uE, —u],uf — u€>
Using part (iv) of Lemma 1.13 of week 5 notes, and taking w = Auc,
we obtain
|1 ZZ2w—TZ2w| < | ZZw—Tow||+||Zow—w|+|Z2w-Tw|+||Zow-wlo < Cel|lw]

Therefore, using above and integration by parts on the latter term in
T1, we obtain

(2.14) T3] < Cvellu|sllu” = ullo — | ZV (u — w3
Now, with respect to T, it is convenient to decompose
T, = (P(L ~7) [Iu : vze,uﬂ e — u€)+<771€ [(IE, ~Toue vze,uﬂ e — u) +

+(PL T = u) - VI | w =)+ (PL [Tt - V(To = T | u = o)
+ (PL [T VI = w)] w0 = ) = Tor+ Top 4 Tog+ T4+ T
Now, we note that for some C', independent of ¢,

[ To] < Cellu [ |u = u ol ZeVu oo < Celfu |17, [1u = lo

[ To,o] < Cellu |l Ju = ol Ze Vi lloo < Celfu’|[2Ju = u o

[ To,3] < Cllu” = u|§l1Ze Voo < Cllu[lmllu = u[I3
[ To4| < Cellu 1 flu = wlol| Za Va oo < Cellu|[2lu —ulo

For Ty 5, it is useful to subsitute v = Zu¢, w = Z.(u¢ — u). Note that
w and v is divergence free. Then we note that

T = (v-Vw,w) = / W;iv;0p,w; =0

z€RN

Therefore, from (ZIZ) and previous e independent bound on ||u|.,
over an interval [0, 7], (in last week’s notes), it follows that

d ! !
= ullo < Cn(T) (e + [l =)
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Using Gronwall’s inequality, it follows that there exists some constant
C' depending on T so that for any t € [0, 7],

Juc'(.,t) — us(.,t)]|o < eC
|

Proposition 2.2. If initial condition ug € V™ for m > N/2 + 2,
then for T < ———— there exists a solution to Navier-Stokes equation

cml[uollm
u € C([0,T],V™(RN)), while u € C ([0,T],V™2(RN)) for any
N/2+2 <m' < m. More over, this solution is classical in the sense
that u € C° ([0,T], C*(RY)), dyu € C°([0,T], C(RY)).

Proof. Assume without loss of generality that ¢ < e. We note that for
t € 10,7, ||[v°|l < C, independent of e. From interpolation inquality
for Sobolev norms and Lemma (I2), for any ¢ € [0, T,

€ € € € 1-m//my| ¢ € m'/m —m'/m
()= () o < ellu(t)—u ()l ™™ ™ () —u (L) /™ < Con(T)e ™

Thus, u¢ forms a Cauchy sequence in C° ([0, 7], V™ (R")) and hence
converges to a function u in the same space. Since m' > N/2 + 2, it
follows that u € C° ([0, T], C*(R")). Further, by taking the limit of
e — 0 it follows that

lim v (Z?Au — PZ, [Zu® - VIu]) = vAu — Plu - Vu

e—0F
Therefore,
limuj = vAu — Plu - Vu]

e—0
and the limiting function satisfies Navier-Stokes equation. Since lim,_qu¢ =
win C° ([0, T, V™ (RN)), it follows that at least in the sense of distri-
bution, we have lim._o+ uf = u;. Therefore, the limiting function u sat-
isfies the Navier-Stokes equation and satisfies initial condition ug. From
the equation itself, it follows that we have u, € C° ([0, 7], V™' ~%(R")).
|

Remark 2.3. The above proposition is not completely satisfactory
since it suggests that if ug € V™, then it only assures u(.,t) € V™,
form/ < m. In reality u(.,t) € V™ as well. However, to show this we
need to work a bit harder.

Definition 2.4. A sequence {v,}, in a Hilbert Space 'H is said to
converge weakly to v if for any w € H, lim,_(w,v,) = (w,v).

A property of weakly convergent sequence that will be important for
us is that they are also bounded. Also, the following Theorem proved
in any standard text in analysis is useful:
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Theorem 2.1. (Banach-Alogou Theorem) Any bounded sequence in a
Hilbert Spac has a subsequence that converges weakly.

Remark 2.5. In our context, the Hilbert Space H = V™.

Definition 2.6. A function v(.,t) € B, a reflexive Banach Space, is
said to be weakly continuous for t € [0,T] if for any w € B*, the
dual Banach space, we have < w,v(.,t) > a continuous function of
te[0,7].

Theorem 2.2. Local Existence of N-S solutions Let u be the solution
described by the previous proposition. Then

v e C(0,7],V™)uC ([0,T], V™2

Proof. We know from prior energy estimates on the regularized Navier-
Stokes equation that

sup [[uf||m < M
te[0,T

and from the regularized N-S equation itself, it follows that
sup_|[u|[m-2 < M
te[0,T]
for some constants M and M;. Since {u‘} _, /n 15 @ bounded sequence
in the Hilbert Space L?([0,7],V™). Theorem Bl implies that there
exists a subsequence which converges to u € L? ([0, T],V™), as n — oo
(¢ — 0). This must be the same u as in Proposition EZZsince V™ c V™
and lim,_ou® = u in C ([0, 7], Vm’). Further, for each t € [0,T7], since
u® is a bounded sequence in the Hilbert Space V'™, there is a subsquence
that converges to u(.,t) € V™. Thus, it follows that

uwe L*®([0,T],V™)
Further, we claim

ue Cw ([0,T],V™)
First, we note that for 0 < m’ < m, the space V=™ is dense in V™.
Hence we take arbitrary ¢ € V=" and note that < ¢,u(.,t) > is
continuous in ¢ for ¢ € [0,7], because u € C ([0,T],V™). Therefore,

the claim follows.
In view of weak continuity, we note that

lim (u(., t+0)—u(., £), u(., t+0)=u(, £))m = lim ([fu(.,t + 0) 5 = [lu(-, D))
Thus to show u € C([0,7],V™), it is enough to show ||u(.,t)||m is
continuous.

(1)More generally a reflexive Banach Space, in which case the definition of weak convergence
involves the dual space
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We first prove the right continuity at ¢ = 0. We choose ¢ € V™™
so that for any v € V,,,, < ¢p,v >= (ug,v),,. In particular, this
implies |[ug||* =< ¢o,uo >. Then from weak continuity,

Tim < g0, u(. 1) >= ol
Therefore, since ||ug||m||w||m >< ¢o,u >

liminf; g+ ||w(e, €)|[m > ||tol|m
Now, from energy bounds,

[uoll7cmT

sup [|u(., t)lm = fluollm = 7

t€[0,T) - CmT||U0||m

Therefore,

limsup; g+ [[u(., t)|| < [Juo|lm
So, right continuity of ||u(.,?),, has been proved at ¢t = 0. It is clear
that for any ¢ € [0,7], we can repeat the same argument to show the
right continuity.

To show left continuity, we have to deal differently for v = 0 (Euler
Equation) and v > 0.

For v = 0, the equations are time reversible, meaning that if we
replace t by —t and u by —u, we get back the same (Euler) equation.
So, left continuity follows from the same argument as the one above
for right continuity.

For v > 0, we recall the energy inequality for ¢ € [0,7]:

t
[l )15, + V/O IZeVus( 7)l[mdr = [[u(, 0)]l5,

implying that there exists C' independent of € so that
T
,,/ |V (D) |2dt < C
0

Since [|Zev[lmt1 = [|[v[m+1 as € — 07, it follows that {u‘},_,,, is a
bounded sequence in the Hilbert space L? ([0,T], V™). Tt follows
that there is a subsequence that converges to v as € — 0. This implies
that for almost any t € [0,7], u(.,t) € V™. Suppose we want to
show left continuity at ¢ = T € [0,7]. We choose T} > T > 0 so that
solution u(.,Ty) € V™. Then, starting at T' = Ty, we continue. We
can apply Proposition 22 with initial condition u(.,Ty) This ensures
solution in C ([T, T"],V™) for m < m + 1 for some 7" > Ty. How-
ever, from uniqueness of classical solution, it follows that this is the
same solution u € C ([O, T, Vm/) for m’ < m guaranteed by Proposi-
tion Z2. Therefore, u € C ([TO,T’], Vm) can be continued past T" if
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|u(., T")||me1 < oo Indeed, T" can be extended to be as large as we like
so long as [|u(.,t)||m+1 remains finite for ¢ € [Ty, T"].

However, in the process of derivation of € independent energy bounds
(see Lemma LT first statement), we notice that as long as ||Z. Vu|| s <
C, where C is independent of €, then so is ||u®(.,t)|[ms+1. However,
1ZVus (., t)]lo < cllu‘(.,t)]lm < C, independent of € for ¢ € [0,T].
Therefore, ||u(.,t)|ms1 < oo for t € [Ty, T'] for any T < T'. Therefore
ueC ([TO,T], V’h) for any m < m 4 1 and in particular for m = m.
Hence the left continuity of ||u(.,t)||,, at T =T} follows. 1

3. SUFFICIENT CONDITION FOR GLOBAL EXISTENCE FOR N-S
SOLUTION

First, we show that local unique NS solution in C ([0,7],V,,) for
m > % + 2 that was proved in the last section may be extended beyond
T (Recall T < —=+——) as long as |lu(.,t)]|,, remains finite.

em||uollm

Lemma 3.1. Assume [0, T) 18 the largest interval for which NS solution
ueC <[0,T),Vm> for m > 5 4+ 2 eists. If T < oo, then ||Ju(.,t)||m

blows up ast — T~ .

Proof. Assume otherwise; therefore, sup,co 7y [u(.,t)[lm < M < oo.

We know that if we restart the clock at any t, € [0,7), solution will
exist over a time interval [to,to + T] for any T < ——. In particular,

emM”
if we choose tg = T — m, the interval [0,ty + T of existence of

NS solution will exceed [0,7) contradicting the definition of T. Hence
|u(.,t)||m cannot remain finite as t — 7~. |}

Corollary 3.2. If for finite T, [0,T) is the mazimal time for existence
of NS solution in V,, form > 5 +2, then fot IVu(., 7)||codT must blow
up ast — T~.

Proof. This simply follows from energy inequality, which follows from
the first statement of Lemma as € — 0:

—=lu(, )17, < CullVul., ) |lsollul., )17,
and use of Gronwall and previous Lemmas. |

We will now prove a sufficient condition for global existence of clas-
sical solutions to Navier-Stokes equation is the existence of L! in time
bounds of the L* space norm of the vorticity.
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For that purpose we need some properties of the Biot Savart Kernel
K (x) that occurs in the relation between velocity and vorticity. Recall
that in 2-D,

1
(3.15) Ks(z) = W (—x2,71),
where as in 3-D, K3 is an operator defined by
1 xxh

1 Ki(x)h = ———
(3 6) 3(5(7) A ‘SL’|3
It is to be noted from (BIX) and (BI6) that
(3.17) Ky(x) = X" VKy(x), for A\>0, 0# 2 ¢ RY

and hence Ky is homogeneous of degree (1 — N).

Definition 3.3. The principal value integral PV fRN will be defined
such that
PV f(x)dx = lim f(z)dx
RN e—0t+ |z|>e
Lemma 3.4. Let K(z) be a function smooth outside x = 0 and homo-

geneous of degree 1 — N. Then 0., K in the sense of distribution is a
linear functional defined by

(02, K, 0)0 = — (K, 0p,0)0 = PV/ Or, Kpdr—c;(6, $)o , for all ¢ € C,
RN
where 6 is the Dirac distribution and ¢; = f|m|:1 ;K (x)dx

Proof. We note that since K € L} (RY), from use of dominated con-

l
vergence theorem, it follows that *

(K, 8s,0)0 = lim K8y, ¢de = lim {—/ . 82, K¢ d + " K¢ﬁdx}

=0t Jig|ze e—0T ||

The first term on the right hand side gives PV f In the second term changing variable
x — ex and use of homogeneous property of K gives rise to

lim Ké¢Ldy = lim ENK(2)p(ex)

e—0t

% N e = ¢(0)¢y

|| =e || e—0F Jiz|=1 ||

Hence the Lemma follows. ||

Lemma 3.5. Potential Theory Results
Let u be a smooth, L?> N L> divergence free velocity field and w =
V xu. Then

IVullo < ¢ (1+ ™ fJufls + In™ [lwllo) (1 + [[w]l) .

where InT v =Inv if v > 1 and 0 otherwise.
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Remark 3.6. The proof relies on the expression
(3.18) Vu(z) = PV/ V.EKn(z —y)w(y)dy + cw(z)
RN
Details given in Proposition 3.8 and Lemma 4.6 in Bertozzi & Majda

book. This is a result from potential theory and has nothing to do with
the evolution of u(x,t) in Navier-Stokes equation.

Theorem 3.1. Beale-Kato-Majda sufficient condition for global regu-
larity

Let initial ug € V™, m > N/2 4 2 so that there exists a classical
solution u to Navier-Stokes or Euler equation, locally in time. Then,
if for any T > 0, if there exists constant C' so that

T
/ lw(., t)|lecdt < C,
0

then, the solution to Navier-Stokes equation exists globally in time, i.e.
u € C°([0,00), V™) N C ([0, 00), V™=2). Also, if the mazimal time for
existence T < 0o, then

T
lim lw(., t)]|ccdt = 00
=T~ Jo

Proof. We have shown that

T
/ |Vu(.,t)||dt < C,
0

is enough to guarantee a classical solution in [0, T since
T
[ Tl < Nluollm exp {/ Cm|| V(. )| oodt
0

So, we only need to show that fOT |Vu(.,t)||oodt is controlled by similar
integral over w.
Since vorticity w satisfies

wi +u-Vw=w-Vu+rAw
by taking the inner product with w it follows that

——||lwl(. < [|[Vu(. wi.

implying

(Bl < Ilebllo exp [ / ' ||Vu<.,t>||oodt]
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Using above estimate on ||u(.,t)||,, for m = 3 and above estimate for
|lw(., t)||o, it follows from the potential theory estimates of B that

|Vu(.,t)]e < C [1 +/0 VU(.,’T)CZ’T] (14 |lw(-st)]e0)

Therefore, using Gronwall’s Lemma

IVu(, e < [Vuolloo exp {C/O (1+ IIW(-,T)Iloo)dT}
|

Corollary 3.7. For N =2, NS solution u(.,t) € V,, exists globally in
time.

Proof. Assume otherwise, i.e. there exists maximal time interval [0, T'),
for T' < co. Recall in 2-D scalar w satisfies
Wy +u-w=rAw,
using maximum principle, [|w(.,t)|loo < ||wolloo, implying that fOT |lw (-, t)]|codt
is finite and hence from BKM, solution exists in [0, T']. Since ||u(.,T)||m

is finite, the solution may be extended beyond T, contradicting defini-
tionof T. 1

Remark 3.8. Note that the above Corollary holds for forced NS equa-
tion as well using similar arguments.
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