Week 6 Notes, Math 8610, Tanveer

1. GLOBAL EXISTENCE THEOREM FOR REGULARIZED NAVIER-STOKES

Instead of the usual Navier-Stokes equation, we consider the *regularized* Navier-Stokes equation for $u^{\epsilon}(x, t)$:

(1.1)
$$u_t^{\epsilon} + \mathcal{I}_{\epsilon} \left([\mathcal{I}_{\epsilon} u^{\epsilon} \cdot \nabla] \mathcal{I}_{\epsilon} u^{\epsilon} \right) = -\nabla p^{\epsilon} + \nu \mathcal{I}_{\epsilon} \mathcal{I}_{\epsilon} \Delta u^{\epsilon} , \ \nabla \cdot u^{\epsilon} = 0 , \ u^{\epsilon}(x,0) = u_0(x)$$

Using Hodge Projection operator, we project (1.1) into the space

(1.2)
$$V_s \equiv \left\{ v : v \in H_s(\mathbb{R}^N) , \ \nabla \cdot v = 0 \right\}$$

It is easily proved that the subspace V_s of H_s is itself a Banach space. Since \mathcal{P} commutes with operators \mathcal{I}_{ϵ} and D, it follows from (1.1) that

(1.3)
$$u_t^{\epsilon} + \mathcal{P}\left\{\mathcal{I}_{\epsilon}\left(\left[\mathcal{I}_{\epsilon}u^{\epsilon}\cdot\nabla\right]\mathcal{I}_{\epsilon}u^{\epsilon}\right)\right\} = \nu\mathcal{I}_{\epsilon}\mathcal{I}_{\epsilon}\Delta u^{\epsilon}$$

This regularized Navier-Stokes equation reduces to an ODE in the Banach space V^s and can be written symbolically in the form

(1.4)
$$\frac{d}{dt}u^{\epsilon} = F_{\epsilon}\left(u^{\epsilon}\right) \ , \ u^{\epsilon}|_{t=0} = u_{0}$$

where

(1.5)
$$F_{\epsilon}(u^{\epsilon}) = \nu \mathcal{I}_{\epsilon}^{2} \Delta u^{\epsilon} - \mathcal{P} \left\{ \mathcal{I}_{\epsilon} \left(\left[\mathcal{I}_{\epsilon} u^{\epsilon} \cdot \nabla \right] \mathcal{I}_{\epsilon} u^{\epsilon} \right) \right\} \equiv F_{\epsilon}^{1}(u^{\epsilon}) - F_{\epsilon}^{2}(u^{\epsilon})$$

Lemma 1.1. Picard Theorem in Banach Space

Let $\mathbf{O} \subset \mathbf{B}$ be an open set in a Banach space and $F : \mathbf{O} \to \mathbf{B}$ be a mapping that satisfies the following properties:

i. F maps **O** to **B**,

ii. F is locally Lipschitz continuous, i.e. for any $X \in \mathbf{O}$, there exists L > 0 and on open neighborhood $U \subset \mathbf{O}$ containing X so that

$$||F(X_1) - F(X_2)|| \le L ||X_1 - X_2||$$
, for all $X_1, X_2 \in U$

Then, for any $X_0 \in \mathbf{O}$, there exists time T such that the ODE

$$\frac{dX}{dt} = F(X) \ , \ X|_{t=0} = X_0$$

has a locally unique solution $X \in \mathbf{C}^1[(-T, T) : \mathbf{O}].$

Remark 1.2. In the preceding Lemma, $\|.\|$ denotes the norm in the Banach space **B**.

Remark 1.3. The proof of Lemma 1.1 is just like the classical Picard Theorem for ODEs in \mathbb{R}^N ; only that \mathbb{R}^N is replaced by Banach space **B**.

Recall that the classical Picard Theorem is based on contraction mapping theorem applied to the integral equation:

(1.6)
$$X(t) = X_0 + \int_0^t F(X(\tau)) d\tau$$

Smallness of T together with Lipschitz property guarantees a unique $\mathbf{C}^{0}[(-T,T),\mathbf{O}]$ solution. The differential equation immediately implies that this solution is also in $\mathbf{C}^{1}[(-T,T),\mathbf{O}]$.

Remark 1.4. The Lemma above only guarantees local existence in t, the existence time T depending on the Lipschitz constant in a ball containing initial condition. This is deduced easily by applying a contraction mapping argument on (1.6). To get global existence, the following Lemma is useful.

Remark 1.5. We will now show that each of F_1^{ϵ} and F_2^{ϵ} satisfies the conditions for applying Lemma 1.2 in the Banach space V^s for any fixed $\epsilon > 0$. By appropriately choosing an open set $\mathbf{O} \subset V^m$, we will use Lemma 1.3 to establish global existence as well.

Lemma 1.6. local existence for regularized problem

For $\mathbf{O} \equiv \{u \in V^m, \|u\|_m < M\}$, the function F_{ϵ} defined in (1.5) satisfies the requirement that for any $u_1, u_2 \in \mathbf{O}$,

$$||F_{\epsilon}(u_1) - F_{\epsilon}(u_2)||_m \le c_M(\epsilon, m, N)||u_1 - u_2||_m$$

where constant c_M only depends on M, m, ϵ and N. Thus, F^{ϵ} is locally Lipschitz in \mathbf{O} .

Proof. Consider first $F_{\epsilon}^{1}(u_{1}) - F_{\epsilon}^{1}(u_{2})$:

$$\|F_{\epsilon}^{1}(u_{1}) - F_{\epsilon}^{1}(u_{2})\|_{m} = \nu \|\mathcal{I}_{\epsilon}^{2}\Delta(u_{1} - u_{2})\|_{m} \le \nu \|\mathcal{I}_{\epsilon}^{2}(u_{1} - u_{2})\|_{m+2} \le \frac{c\nu}{\epsilon^{2}} \|(u_{1} - u_{2})\|_{m},$$

where we used Lemma 2.4 of week 5 notes (parts iv and v). Now,

$$\begin{aligned} (1.8) \\ \|F_{\epsilon}^{2}(u_{1}) - F_{\epsilon}^{2}(u_{2})\|_{m} &\leq \|\mathcal{P}\left\{\mathcal{I}_{\epsilon}\left([\mathcal{I}_{\epsilon}u_{1}^{\epsilon} \cdot \nabla]\mathcal{I}_{\epsilon}\{u_{1}^{\epsilon} - u_{2}^{\epsilon}\}\right)\right\}\|_{m} + \|\mathcal{P}\left\{\mathcal{I}_{\epsilon}\left([\mathcal{I}_{\epsilon}\{u_{1}^{\epsilon} - u_{2}^{\epsilon}\} \cdot \nabla]\mathcal{I}_{\epsilon}u_{2}^{\epsilon}\right)\right\}\|_{m} \\ &\leq \|\mathcal{I}_{\epsilon}u_{1}^{\epsilon}\|_{\infty}\|\mathcal{I}_{\epsilon}\{Du_{1}^{\epsilon} - Du_{2}^{\epsilon}\}\|_{m} + \|\mathcal{I}_{\epsilon}\{u_{1}^{\epsilon} - u_{2}^{\epsilon}\}\|_{\infty}\|\mathcal{I}_{\epsilon}Du_{2}^{\epsilon}\|_{m} \\ &\leq c\left(\epsilon^{-N/2-1}\|u_{1}^{\epsilon}\|_{0}\|u_{1}^{\epsilon} - u_{2}^{\epsilon}\|_{m} + \epsilon^{-N/2-m-1}\|u_{1}^{\epsilon} - u_{2}^{\epsilon}\|_{0}\|u_{2}^{\epsilon}\|_{0}\right) \\ &\leq \frac{c}{\epsilon^{N/2+1+m}}\left(\|u_{1}^{\epsilon}\|_{0} + \|u_{2}^{\epsilon}\|_{0}\right)\|u_{1}^{\epsilon} - u_{2}^{\epsilon}\|_{m} \end{aligned}$$

 $\mathbf{2}$

Remark 1.7. Note that (1.7) and (1.8) implies that the Lipschitz constant C only depends on N, m and L_2 norm of initial $||u^{\epsilon}||_0$, but otherwise independent of $||u^{\epsilon}||_m$. In the ensuing, we will show $||u^{\epsilon}(.,t)||_0 \leq ||u_0||_0$, and hence Lipschitz constant is independent of solution. Also, note that using $u_2^{\epsilon} = 0$ and $u_1^{\epsilon} = u^{\epsilon}$:

(1.9)
$$\|F^{\epsilon}(u^{\epsilon})\|_{m} \leq C(\|u^{\epsilon}\|_{0}, \epsilon, N, m)\|u^{\epsilon}\|_{m}$$

Proposition 1.8. Consider any initial condition $u_0 \in V^m$, $m \in \mathbb{Z}^+ \cup \{0\}$. Then for any $\epsilon > 0$, there exists a unique solution $u^{\epsilon} \in \mathbb{C}^1([0, T_{\epsilon}]; V^m)$ to (1.4), where $T_{\epsilon} = T(||u_0||_m, \epsilon)$. On any time interval [0, T] for which the solution belongs to $\mathbb{C}^1([0, T]; V^0)$,

$$\sup_{0 \le t \le T} \|u^{\epsilon}\|_{0} \le \|u_{0}\|_{0}$$

Proof. Choose $\mathbf{O} \subset V^m$ a ball of radius M that contains $u = u_0$. From Lemma 1.6, it follows that F_{ϵ} is locally Lipschitz in M, and therefore from Picard Theorem Lemma 1.1, there exists sufficiently small $T_{\epsilon} > 0$, depending on $||u_0||_m$ and ϵ , so that there exists a unique solution $u^{\epsilon} \in$ $\mathbf{C}^1([0, T_{\epsilon}], \mathbf{O})$ to (1.4). This is the only solution in $\mathbf{C}^1([0, T_{\epsilon}], V^m)$ since for sufficiently small T_{ϵ} continuity implies that $||u^{\epsilon} - u_0||_m$ is small.

To show the second part of the Theorem, we note that on taking the L_2 inner product of (1.4) with u^{ϵ} , we obtain on using properties of mollifiers and projections (see Lemma 1.13 of week 5 notes)

$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon}\|_{0}^{2} = \nu\left(u^{\epsilon}, \mathcal{I}_{\epsilon}^{2}\Delta u^{\epsilon}\right)_{0} - \left(u^{\epsilon}, \mathcal{PI}_{\epsilon}\left[\left(\{\mathcal{I}_{\epsilon}u^{\epsilon}\}\cdot\nabla\right)(\mathcal{I}_{\epsilon}u^{\epsilon})\right]\right)_{0} \\ = -\nu\left(\mathcal{I}_{\epsilon}\nabla u^{\epsilon}, \mathcal{I}_{\epsilon}\nabla u^{\epsilon}\right) - \left(\mathcal{I}^{\epsilon}u^{\epsilon}, \left(\{\mathcal{I}_{\epsilon}u^{\epsilon}\}\cdot\nabla\right)(\mathcal{I}_{\epsilon}\nabla u^{\epsilon})\right)_{0}$$

Now since $v^{\epsilon} \equiv \mathcal{I}^{\epsilon} u^{\epsilon}$ is divergence free, it follows that

$$(v^{\epsilon}, (v^{\epsilon} \cdot \nabla)v^{\epsilon})_0 = 0$$

just as in the usual Navier-Stokes equation. So,

$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon}\|_{0}^{2} + \nu\|\mathcal{I}_{\epsilon}Du^{\epsilon}\|_{0}^{2} = 0$$

Therefore,

$$||u^{\epsilon}||_{0}^{2} \le ||u_{0}||_{0}^{2}$$

and the second Lemma statement follows.

Theorem 1.1. Global Existence for regularized N-S equation For any T > 0 and initial condition $u_0 \in V_m$, the regularized Navier Stokes equation (1.4) has a solution $u^{\epsilon} \in \mathbf{C}^1([0, T], V_m)$. *Proof.* First, we note from (1.4), (1.9) that

$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon}\|_{m}^{2} = (u^{\epsilon}, \partial_{t}u^{\epsilon})_{m} = (u^{\epsilon}, F^{\epsilon}(u^{\epsilon}))_{m} \le C(\|u_{0}\|_{0}, \epsilon)\|u^{\epsilon}\|_{m}^{2}$$

Therefore,

4

$$||u^{\epsilon}(.,t)||_{m} \le ||u_{0}||_{m}e^{Ct}$$

For any T > 0, choose

$$\mathbf{O} \equiv \left\{ u^{\epsilon} : u^{\epsilon} \in V^m, \|u^{\epsilon}\|_m < 2\|u_0\|_m e^{CT} \right\}$$

We know local $\mathbf{C}^1([0, T_{\epsilon}], \mathbf{O})$ solution exists from previous proposition (1.8), where T_{ϵ} only depends on ϵ , m and $||u_0||_0$, but otherwise independent of $||u_0||_m$. This is because the Lipschitz constant as pointed out in Remark 1.7 is only dependent on $||u_0||_0$, ϵ and m. Since $||u(., T_{\epsilon})||_0 \leq ||u_0||_0$, we may restart the clock at T_{ϵ} and continue in steps of T_{ϵ} until we get to t = T.

Remark 1.9. Though the solution to the regularized Navier-Stokes equation (1.4) exists for all time, going to the limit $\epsilon \to 0$ is not possible with the energy bounds obtained so far because they depend badly on ϵ . So, now we seek energy bounds independent of ϵ ; this will be possible only locally in time, as shall be seen shortly., Nonetheless, this allows us one to take $\epsilon \to 0$ and obtain actual solution of Navier-Stokes equation locally in time.

Lemma 1.10. ϵ independent Energy bounds for regularized problem:

Let $u_0 \in V^m$. Then the unique solution $u^{\epsilon} \in \mathbf{C}^1([0,\infty); V^m)$ to the regularized Navier-Stokes equation guaranteed by Theorem 1.1 satisfies the following inequality

$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon}\|_{m}^{2}+\nu\|\mathcal{I}_{\epsilon}\nabla u^{\epsilon}\|_{m}^{2}\leq c_{m}\|\nabla\mathcal{I}_{\epsilon}u^{\epsilon}\|_{\infty}\|u^{\epsilon}\|_{m}^{2}$$

Further, for m > N/2 + 1, we obtain for sufficiently small T,

$$\sup_{t \in [0,T]} \|u^{\epsilon}\|_{m} \le \frac{\|u_{0}\|_{m}}{1 - c_{m}T\|u_{0}\|_{m}} = \|u_{0}\|_{m} + \frac{\|u_{0}\|_{m}^{2}c_{m}T}{1 - c_{m}T\|u_{0}\|_{m}}$$

Proof. We note that for any α , with $|\alpha| \leq m$, (1.10) $(D^{\alpha}u^{\epsilon}, \partial_{t}D^{\alpha}u^{\epsilon})_{0} = (D^{\alpha}u^{\epsilon}, D^{\alpha}\mathcal{I}_{\epsilon}^{2}\Delta u^{\epsilon})_{0} - (D^{\alpha}u^{\epsilon}, D^{\alpha}\mathcal{P} \{\mathcal{I}_{\epsilon}([\mathcal{I}_{\epsilon}u^{\epsilon} \cdot \nabla]\mathcal{I}_{\epsilon}u^{\epsilon})\})_{0}$

However, it is clear from properties of \mathcal{I}_{ϵ} that

$$\left(D^{\alpha}u^{\epsilon}, D^{\alpha}\mathcal{I}_{\epsilon}^{2}\Delta u^{\epsilon}\right)_{0} = -\left(D^{\alpha}\nabla\mathcal{I}^{\epsilon}u^{\epsilon}, D^{\alpha}\nabla\mathcal{I}_{\epsilon}^{2}u^{\epsilon}\right)_{0}$$

Further, on defining $v^{\epsilon} = \mathcal{I}_{\epsilon} u^{\epsilon}$, we get

$$\begin{aligned} &(1.11)\\ &(D^{\alpha}u^{\epsilon}, D^{\alpha}\mathcal{P}\left\{\mathcal{I}_{\epsilon}\left(\left[\mathcal{I}_{\epsilon}u^{\epsilon}\cdot\nabla\right]\mathcal{I}_{\epsilon}u^{\epsilon}\right)\right\}\right)_{0} = \left(D^{\alpha}\mathcal{I}_{\epsilon}u^{\epsilon}, D^{\alpha}\left[\left(\mathcal{I}_{\epsilon}u^{\epsilon}\cdot\nabla\right)\mathcal{I}_{\epsilon}u^{\epsilon}\right]\right)_{0} \\ &= \left(D^{\alpha}v^{\epsilon}, D^{\alpha}\left[\left(v^{\epsilon}\cdot\nabla\right)v^{\epsilon}\right] - \left(v^{\epsilon}\cdot\nabla\right)D^{\alpha}v^{\epsilon}\right)_{0}, \end{aligned}$$

since for any divergence free vector field v^{ϵ} , $(w, v^{\epsilon} \cdot \nabla w) = 0$. However, taking $w^{\epsilon} = D^{\alpha}v^{\epsilon}$, we obtain from using Lemma 1.12, week 5 lecture notes:

$$|(D^{\alpha}v^{\epsilon}, D^{\alpha}[(v^{\epsilon}\cdot\nabla)v^{\epsilon}] - (v^{\epsilon}\cdot\nabla)D^{\alpha}v^{\epsilon})_{0}| \leq ||Dv^{\epsilon}||_{\infty}||D^{\alpha}v^{\epsilon}||_{0}^{2}$$

for m > N/2+1. Therefore, it follows from (1.10)-(1.11) summing over α , with $|\alpha| \leq m$, we obtain

$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon}\|_{m}^{2}+\nu\|\mathcal{I}_{\epsilon}\nabla u^{\epsilon}\|_{m}^{2}\leq c_{m}\|\nabla\mathcal{I}_{\epsilon}u^{\epsilon}\|_{\infty}\|u^{\epsilon}\|_{m}^{2}$$

Now, for m > N/2 + 1,

$$\|\nabla v^{\epsilon}\|_{\infty} \le c \|v^{\epsilon}\|_m \le c \|u^{\epsilon}\|_m$$

Therefore,

$$\frac{d\|u^{\epsilon}\|_m}{dt} \le c_m \|u^{\epsilon}\|_m^2$$

Integration gives rise to the desired energy bounds.

2. Local Existence for Navier-Stokes equation

We now use the ϵ -independent energy bounds for solutions to mollified Navier-Stokes equation to prove local existence of solution for the actual Navier-Stokes equation. First, we show that it forms a Cauchy sequence in an appropriate space:

Lemma 2.1. For m > N/2+2, consider the family $\{u^{\epsilon}\}_{\epsilon}$ of solution to the regularized N-S equation with same initial condition $u^{\epsilon}(.,0) = u_0 \in V^m(\mathbb{R}^N)$ over time interval [0,T], where $T < \frac{1}{c_m ||u_0||_m}$. Note that we have ϵ -independent energy bounds on this time interval. This forms a Cauchy sequence in $\mathbb{C}\{[0,T], \mathbb{L}^2(\mathbb{R}^3)\}$. Further, there exists a constant C only depending on $||u_0||_m$ and time T so that for all $\epsilon \geq \epsilon' > 0$,

$$\sup_{t \in [0,T]} \|u^{\epsilon} - u^{\epsilon'}\|_0 \le C\epsilon$$

Proof. Using $\frac{d}{dt}u^{\epsilon} = F_{\epsilon}(u^{\epsilon})$ for $\epsilon = \epsilon$ and $\epsilon = \epsilon'$, subtracting the equation and taking the inner-product in L^2 , we obtain

(2.12)
$$\frac{d}{dt}\frac{1}{2}\|u^{\epsilon'} - u^{\epsilon}\|_{0}^{2} = \nu \left(\mathcal{I}_{\epsilon'}^{2}\Delta u^{\epsilon'} - \mathcal{I}_{\epsilon}^{2}\Delta u^{\epsilon}, u^{\epsilon'} - u^{\epsilon}\right) - \left(\mathcal{P}\mathcal{I}_{\epsilon'}\left[\mathcal{I}_{\epsilon'}u^{\epsilon'} \cdot \nabla\mathcal{I}_{\epsilon'}u^{\epsilon'} - \mathcal{I}_{\epsilon}u^{\epsilon} \cdot \nabla\mathcal{I}_{\epsilon}u^{\epsilon}\right], u^{\epsilon'} - u^{\epsilon}\right) \equiv T1 + T2$$

We first estimate T_1 :

6

(2.13)
$$T_1 = \nu \left(\left\{ \mathcal{I}^2_{\epsilon'} - \mathcal{I}^2_{\epsilon} \right\} \Delta u^{\epsilon'}, u^{\epsilon} - u^{\epsilon'} \right) + \nu \left(\mathcal{I}^2_{\epsilon} \Delta [u^{\epsilon'} - u^{\epsilon}], u^{\epsilon'} - u^{\epsilon} \right)$$

Using part (iv) of Lemma 1.13 of week 5 notes, and taking $w = \Delta u^{\epsilon'}$, we obtain

$$\|\mathcal{I}_{\epsilon'}^2 w - \mathcal{I}_{\epsilon}^2 w\| \le \|\mathcal{I}_{\epsilon'}^2 w - \mathcal{I}_{\epsilon'} w\| + \|\mathcal{I}_{\epsilon'} w - w\| + \|\mathcal{I}_{\epsilon}^2 w - \mathcal{I}_{\epsilon} w\| + \|\mathcal{I}_{\epsilon'} w - w\|_0 \le C\epsilon \|w\|_1$$

Therefore, using above and integration by parts on the latter term in T_1 , we obtain

(2.14)
$$|T_1| \le C\nu\epsilon \|u^{\epsilon}\|_3 \|u^{\epsilon'} - u^{\epsilon}\|_0 - \nu \|\mathcal{I}_{\epsilon}\nabla(u^{\epsilon'} - u^{\epsilon})\|_0^2$$

Now, with respect to T_2 , it is convenient to decompose

$$T_{2} = \left(\mathcal{P}(\mathcal{I}_{\epsilon'} - \mathcal{I}_{\epsilon})\left[\mathcal{I}_{\epsilon'}u^{\epsilon'} \cdot \nabla\mathcal{I}_{\epsilon'}u^{\epsilon'}\right], u^{\epsilon'} - u^{\epsilon}\right) + \left(\mathcal{P}\mathcal{I}_{\epsilon}\left[(\mathcal{I}_{\epsilon'} - \mathcal{I}_{\epsilon})u^{\epsilon'} \cdot \nabla\mathcal{I}_{\epsilon'}u^{\epsilon'}\right], u^{\epsilon'} - u^{\epsilon}\right) + \left(\mathcal{P}\mathcal{I}_{\epsilon}\left[\mathcal{I}_{\epsilon}(u^{\epsilon'} - u^{\epsilon}) \cdot \nabla\mathcal{I}_{\epsilon'}u^{\epsilon'}\right], u^{\epsilon'} - u^{\epsilon}\right) + \left(\mathcal{P}\mathcal{I}_{\epsilon}\left[\mathcal{I}_{\epsilon}u^{\epsilon} \cdot \nabla(\mathcal{I}_{\epsilon'} - \mathcal{I}_{\epsilon})u^{\epsilon'}\right], u^{\epsilon'} - u^{\epsilon}\right) + \left(\mathcal{P}\mathcal{I}_{\epsilon}\left[\mathcal{I}_{\epsilon}u^{\epsilon} \cdot \nabla\mathcal{I}_{\epsilon}(u^{\epsilon'} - u^{\epsilon})\right], u^{\epsilon'} - u^{\epsilon}\right) = T_{2,1} + T_{2,2} + T_{2,3} + T_{2,4} + T_{2,5}$$

Now, we note that for some C, independent of ϵ ,

$$|T_{2,1}| \le C\epsilon ||u^{\epsilon'}||_1 ||u^{\epsilon'} - u^{\epsilon}||_0 ||\mathcal{I}_{\epsilon}' \nabla u^{\epsilon'}||_{\infty} \le C\epsilon ||u^{\epsilon'}||_m^2 ||u^{\epsilon} - u^{\epsilon'}||_0$$

$$|T_{2,2}| \le C\epsilon ||u^{\epsilon'}||_1 ||u^{\epsilon'} - u^{\epsilon}||_0 ||\mathcal{I}_{\epsilon'} \nabla u^{\epsilon'}||_{\infty} \le C\epsilon ||u^{\epsilon'}||_m^2 ||u^{\epsilon} - u^{\epsilon'}||_0$$

$$|T_{2,3}| \le C ||u^{\epsilon'} - u^{\epsilon}||_0^2 ||\mathcal{I}_{\epsilon'} \nabla u^{\epsilon'}||_{\infty} \le C ||u^{\epsilon'}||_m ||u^{\epsilon} - u^{\epsilon'}||_0^2$$

$$|T_{2,4}| \le C\epsilon ||u^{\epsilon'}||_1 ||u^{\epsilon'} - u^{\epsilon}||_0 ||\mathcal{I}_{\epsilon'} \nabla u^{\epsilon'}||_{\infty} \le C\epsilon ||u^{\epsilon'}||_m^2 ||u^{\epsilon} - u^{\epsilon'}||_0$$

For $T_{2,5}$, it is useful to substitute $v = \mathcal{I}_{\epsilon} u^{\epsilon}$, $w = \mathcal{I}_{\epsilon} (u^{\epsilon'} - u^{\epsilon})$. Note that w and v is divergence free. Then we note that

$$T_{2,5} = (v \cdot \nabla w, w) = \int_{x \in \mathbb{R}^N} w_i v_j \partial_{x_j} w_i = 0$$

Therefore, from (2.12) and previous ϵ independent bound on $||u^{\epsilon}||_m$ over an interval [0, T], (in last week's notes), it follows that

$$\frac{d}{dt} \| u^{\epsilon'} - u^{\epsilon} \|_0 \le C_m(T) \left(\epsilon + \| u^{\epsilon'} - u^{\epsilon} \|_0 \right)$$

Using Gronwall's inequality, it follows that there exists some constant C depending on T so that for any $t \in [0, T]$,

$$\|u^{\epsilon'}(.,t) - u^{\epsilon}(.,t)\|_0 \le \epsilon C$$

Proposition 2.2. If initial condition $u_0 \in V^m$ for m > N/2 + 2, then for $T < \frac{1}{c_m ||u_0||_m}$, there exists a solution to Navier-Stokes equation $u \in \mathbf{C}([0,T], V^{m'}(\mathbb{R}^N))$, while $\partial_t u \in \mathbf{C}([0,T], V^{m'-2}(\mathbb{R}^N))$ for any N/2 + 2 < m' < m. More over, this solution is classical in the sense that $u \in \mathbf{C}^0([0,T], \mathbf{C}^2(\mathbb{R}^N))$, $\partial_t u \in \mathbf{C}^0([0,T], \mathbf{C}(\mathbb{R}^N))$.

Proof. Assume without loss of generality that $\epsilon' \leq \epsilon$. We note that for $t \in [0, T]$, $||v^{\epsilon}||_m \leq C$, independent of ϵ . From interpolation inquality for Sobolev norms and Lemma (2.12), for any $t \in [0, T]$,

$$\|u^{\epsilon}(.,t) - u^{\epsilon'}(.,t)\|_{m'} \le c \|u^{\epsilon}(.,t) - u^{\epsilon'}(.,t)\|_{0}^{1-m'/m} \|u^{\epsilon}(.,t) - u^{\epsilon'}(.,t)\|_{m}^{m'/m} \le C_{m}(T)\epsilon^{1-m'/m}$$

Thus u^{ϵ} forms a Cauchy sequence in $\mathbf{C}^{0}([0,T], V^{m'}(\mathbb{R}^{N}))$ and hence

Thus, u^{ϵ} forms a Cauchy sequence in $\mathbf{C}^{0}([0,T], V^{m}(\mathbb{R}^{n}))$ and hence converges to a function u in the same space. Since m' > N/2 + 2, it follows that $u \in \mathbf{C}^{0}([0,T], \mathbf{C}^{2}(\mathbb{R}^{N}))$. Further, by taking the limit of $\epsilon \to 0$ it follows that

$$\lim_{\epsilon \to 0^+} \nu \left(\mathcal{I}_{\epsilon}^2 \Delta u^{\epsilon} - \mathcal{P} \mathcal{I}_{\epsilon} \left[\mathcal{I}_{\epsilon} u^{\epsilon} \cdot \nabla \mathcal{I}_{\epsilon} u^{\epsilon} \right] \right) = \nu \Delta u - \mathcal{P} [u \cdot \nabla u]$$

Therefore,

$$\lim_{\epsilon \to 0} u_t^{\epsilon} = \nu \Delta u - \mathcal{P}[u \cdot \nabla u]$$

and the limiting function satisfies Navier-Stokes equation. Since $\lim_{\epsilon \to 0} u^{\epsilon} = u$ in $\mathbf{C}^0([0,T], V^{m'}(\mathbb{R}^N))$, it follows that at least in the sense of distribution, we have $\lim_{\epsilon \to 0^+} u_t^{\epsilon} = u_t$. Therefore, the limiting function u satisfies the Navier-Stokes equation and satisfies initial condition u_0 . From the equation itself, it follows that we have $u_t \in \mathbf{C}^0([0,T], V^{m'-2}(\mathbb{R}^N))$.

Remark 2.3. The above proposition is not completely satisfactory since it suggests that if $u_0 \in V^m$, then it only assures $u(.,t) \in V^{m'}$, for m' < m. In reality $u(.,t) \in V^m$ as well. However, to show this we need to work a bit harder.

Definition 2.4. A sequence $\{v_n\}_n$ in a Hilbert Space \mathcal{H} is said to converge weakly to v if for any $w \in \mathcal{H}$, $\lim_{n\to\infty} (w, v_n) = (w, v)$.

A property of weakly convergent sequence that will be important for us is that they are also bounded. Also, the following Theorem proved in any standard text in analysis is useful: **Theorem 2.1.** (Banach-Alogou Theorem) Any bounded sequence in a Hilbert $Space^{(1)}$ has a subsequence that converges weakly.

Remark 2.5. In our context, the Hilbert Space $\mathcal{H} = V^m$.

Definition 2.6. A function $v(.,t) \in \mathcal{B}$, a reflexive Banach Space, is said to be weakly continuous for $t \in [0,T]$ if for any $w \in \mathcal{B}^*$, the dual Banach space, we have $\langle w, v(.,t) \rangle$ a continuous function of $t \in [0,T]$.

Theorem 2.2. Local Existence of N-S solutions Let u be the solution described by the previous proposition. Then

$$v \in \mathbf{C}([0,T], V^m) \cup \mathbf{C}^1([0,T], V^{m-2})$$

Proof. We know from prior energy estimates on the regularized Navier-Stokes equation that

$$\sup_{t \in [0,T]} \|u^{\epsilon}\|_m \le M$$

and from the regularized N-S equation itself, it follows that

$$\sup_{t\in[0,T]} \|u^{\epsilon}\|_{m-2} \le M_{2}$$

for some constants M and M_1 . Since $\{u^{\epsilon}\}_{\epsilon=1/n}$ is a bounded sequence in the Hilbert Space $L^2([0,T], V^m)$. Theorem 2.1 implies that there exists a subsequence which converges to $u \in L^2([0,T], V^m)$, as $n \to \infty$ $(\epsilon \to 0)$. This must be the same u as in Proposition 2.2 since $V^{m'} \subset V^m$ and $\lim_{\epsilon\to 0} u^{\epsilon} = u$ in $\mathbb{C}([0,T], V^{m'})$. Further, for each $t \in [0,T]$, since u^{ϵ} is a bounded sequence in the Hilbert Space V^m , there is a subsquence that converges to $u(.,t) \in V^m$. Thus, it follows that

$$u \in \mathbf{L}^{\infty}\left([0,T], V^m\right)$$

Further, we claim

$$u \in \mathbf{C}_W([0,T], V^m)$$

First, we note that for 0 < m' < m, the space $V^{-m'}$ is dense in V^{-m} . Hence we take arbitrary $\phi \in V^{-m'}$ and note that $< \phi, u(.,t) >$ is continuous in t for $t \in [0,T]$, because $u \in \mathbf{C}([0,T], V^{m'})$. Therefore, the claim follows.

In view of weak continuity, we note that

 $\lim_{\delta \to 0} (u(.,t+\delta) - u(.,t), u(.,t+\delta) - u(.,t))_m = \lim_{\delta \to 0} (\|u(.,t+\delta)\|_m^2 - \|u(.,t)\|_m^2)$ Thus to show $u \in \mathbf{C}([0,T], V^m)$, it is enough to show $\|u(.,t)\|_m$ is continuous.

8

 $^{^{(1)}}$ More generally a reflexive Banach Space, in which case the definition of weak convergence involves the dual space

We first prove the right continuity at t = 0. We choose $\phi_0 \in V^{-m}$ so that for any $v \in V_m$, $\langle \phi_0, v \rangle = (u_0, v)_m$. In particular, this implies $||u_0||^2 = \langle \phi_0, u_0 \rangle$. Then from weak continuity,

$$\lim_{t \to 0^+} <\phi_0, u(.,t) >= \|u_0\|_m^2$$

Therefore, since $||u_0||_m ||u||_m \ge \langle \phi_0, u \rangle$

$$\liminf_{t \to 0^+} \|u(.,t)\|_m \ge \|u_0\|_m$$

Now, from energy bounds,

$$\sup_{t \in [0,T]} \|u(.,t)\|_m - \|u_0\|_m \le \frac{\|u_0\|_m^2 c_m T}{1 - c_m T \|u_0\|_m}$$

Therefore,

$$\mathrm{limsup}_{t \to 0^+} \| u(.,t) \| \le \| u_0 \|_m$$

So, right continuity of $||u(.,t)||_m$ has been proved at t = 0. It is clear that for any $t \in [0,T]$, we can repeat the same argument to show the right continuity.

To show left continuity, we have to deal differently for $\nu = 0$ (Euler Equation) and $\nu > 0$.

For $\nu = 0$, the equations are time reversible, meaning that if we replace t by -t and u by -u, we get back the same (Euler) equation. So, left continuity follows from the same argument as the one above for right continuity.

For $\nu > 0$, we recall the energy inequality for $t \in [0, T]$:

$$\|u^{\epsilon}(.,t)\|_{m}^{2} + \nu \int_{0}^{t} \|\mathcal{I}_{\epsilon}\nabla u^{\epsilon}(.,\tau)\|_{m}^{2}d\tau = \|u^{\epsilon}(.,0)\|_{m}^{2}$$

implying that there exists C independent of ϵ so that

$$\nu \int_0^T \|\mathcal{I}_{\epsilon} \nabla u^{\epsilon}(.,t)\|_m^2 dt \le C$$

Since $\|\mathcal{I}_{\epsilon}v\|_{m+1} \to \|v\|_{m+1}$ as $\epsilon \to 0^+$, it follows that $\{u^{\epsilon}\}_{\epsilon=1/n}$ is a bounded sequence in the Hilbert space $L^2([0,T], V^{m+1})$. It follows that there is a subsequence that converges to u as $\epsilon \to 0$. This implies that for almost any $t \in [0,T]$, $u(.,t) \in V^{m+1}$. Suppose we want to show left continuity at $t = T_1 \in [0,T]$. We choose $T_1 > T_0 > 0$ so that solution $u(.,T_0) \in V^{m+1}$. Then, starting at $T = T_0$, we continue. We can apply Proposition 2.2, with initial condition $u(.,T_0)$ This ensures solution in $\mathbf{C}\left([T_0,T'],V^{\tilde{m}}\right)$ for $\tilde{m} < m+1$ for some $T' > T_0$. However, from uniqueness of classical solution, it follows that this is the same solution $u \in \mathbf{C}\left([0,T],V^{m'}\right)$ for m' < m guaranteed by Proposition 2.2. Therefore, $u \in \mathbf{C}\left([T_0,T'],V^{\tilde{m}}\right)$ can be continued past T' if $||u(.,T')||_{m+1} < \infty$ Indeed, T' can be extended to be as large as we like so long as $||u(.,t)||_{m+1}$ remains finite for $t \in [T_0,T']$.

However, in the process of derivation of ϵ independent energy bounds (see Lemma 1.10 first statement), we notice that as long as $\|\mathcal{I}_{\epsilon} \nabla u^{\epsilon}\|_{\infty} < C$, where C is independent of ϵ , then so is $\|u^{\epsilon}(.,t)\|_{m+1}$. However, $\|\mathcal{I}_{\epsilon} \nabla u^{\epsilon}(.,t)\|_{\infty} \leq c \|u^{\epsilon}(.,t)\|_{m} < C$, independent of ϵ for $t \in [0,T]$. Therefore, $\|u(.,t)\|_{m+1} < \infty$ for $t \in [T_{0},T']$ for any $T' \leq T$. Therefore $u \in \mathbf{C}([T_{0},T],V^{\tilde{m}})$ for any $\tilde{m} < m+1$ and in particular for $\tilde{m} = m$. Hence the left continuity of $\|u(.,t)\|_{m}$ at $T = T_{1}$ follows.

3. Sufficient Condition for Global Existence for N-S solution

First, we show that local unique NS solution in $C([0,T], V_m)$ for $m > \frac{N}{2} + 2$ that was proved in the last section may be extended beyond T (Recall $T < \frac{1}{c_m \|u_0\|_m}$) as long as $\|u(.,t)\|_m$ remains finite.

Lemma 3.1. Assume $[0, \tilde{T})$ is the largest interval for which NS solution $u \in C\left([0, \tilde{T}), V_m\right)$ for $m > \frac{N}{2} + 2$ exists. If $\tilde{T} < \infty$, then $||u(., t)||_m$ blows up as $t \to \tilde{T}^-$.

Proof. Assume otherwise; therefore, $\sup_{t \in [0,\tilde{T})} \|u(.,t)\|_m \leq M < \infty$. We know that if we restart the clock at any $t_0 \in [0,\tilde{T})$, solution will exist over a time interval $[t_0, t_0 + T]$ for any $T < \frac{1}{c_m M}$. In particular, if we choose $t_0 = \tilde{T} - \frac{1}{2c_m M}$, the interval $[0, t_0 + T]$ of existence of NS solution will exceed $[0,\tilde{T})$ contradicting the definition of \tilde{T} . Hence $\|u(.,t)\|_m$ cannot remain finite as $t \to \tilde{T}^-$.

Corollary 3.2. If for finite \tilde{T} , $[0, \tilde{T})$ is the maximal time for existence of NS solution in V_m for $m > \frac{N}{2} + 2$, then $\int_0^t ||\nabla u(., \tau)||_{\infty} d\tau$ must blow up as $t \to \tilde{T}^-$.

Proof. This simply follows from energy inequality, which follows from the first statement of Lemma 1.10 as $\epsilon \to 0$:

$$\frac{d}{dt}\frac{1}{2}\|u(.,t)\|_{m}^{2} \leq C_{m}\|\nabla u(.,t)\|_{\infty}\|u(.,t)\|_{m}^{2}$$

and use of Gronwall and previous Lemmas.

We will now prove a sufficient condition for global existence of classical solutions to Navier-Stokes equation is the existence of L^1 in time bounds of the L^{∞} space norm of the vorticity.

10

For that purpose we need some properties of the Biot Savart Kernel $K_N(x)$ that occurs in the relation between velocity and vorticity. Recall that in 2-D,

(3.15)
$$K_2(x) = \frac{1}{2\pi |x|^2} \left(-x_2, x_1 \right),$$

where as in 3-D, K_3 is an operator defined by

(3.16)
$$K_3(x)h = \frac{1}{4\pi} \frac{x \times h}{|x|^3}$$

It is to be noted from (3.18) and (3.16) that

(3.17)
$$K_N(\lambda x) = \lambda^{1-N} K_N(x) , \text{ for } \lambda > 0 , 0 \neq x \notin \mathbb{R}^N$$

and hence K_N is homogeneous of degree (1 - N).

Definition 3.3. The principal value integral $PV \int_{\mathbb{R}^N}$ will be defined such that

$$PV \int_{\mathbb{R}^N} f(x) dx = \lim_{\epsilon \to 0^+} \int_{|x| > \epsilon} f(x) dx$$

Lemma 3.4. Let K(x) be a function smooth outside x = 0 and homogeneous of degree 1 - N. Then $\partial_{x_j} K$ in the sense of distribution is a linear functional defined by

$$(\partial_{x_j} K, \phi)_0 = -(K, \partial_{x_j} \phi)_0 = PV \int_{\mathbb{R}^N} \partial_{x_j} K \phi dx - c_j(\delta, \phi)_0 , \text{ for all } \phi \in \mathbf{C}_c^{\infty},$$

where δ is the Dirac distribution and $c_j = \int_{|x|=1} x_j K(x) dx$

Proof. We note that since $K \in L^1_{loc}(\mathbb{R}^N)$, from use of dominated convergence theorem, it follows that

$$(K,\partial_{x_j}\phi)_0 = \lim_{\epsilon \to 0^+} \int_{|x| \ge \epsilon} K \partial_{x_j} \phi dx = \lim_{\epsilon \to 0^+} \left\{ -\int_{|x| \ge \epsilon} \partial_{x_j} K \phi \, dx + \int_{|x| = \epsilon} K \phi \frac{x_j}{|x|} dx \right\}$$

The first term on the right hand side gives $PV \int$. In the second term changing variable $x \to \epsilon x$ and use of homogeneous property of K gives rise to

$$\lim_{\epsilon \to 0^+} \int_{|x|=\epsilon} K\phi \frac{x_j}{|x|} dx = \lim_{\epsilon \to 0^+} \int_{|x|=1} \epsilon^{1-N} K(x)\phi(\epsilon x) \frac{x_j}{|x|} \epsilon^{N-1} dx = \phi(0)c_j$$

Hence the Lemma follows.

Lemma 3.5. Potential Theory Results

Let u be a smooth, $L^2 \cap L^{\infty}$ divergence free velocity field and $\omega = \nabla \times u$. Then

$$\|\nabla u\|_{\infty} \le c \left(1 + \ln^{+} \|u\|_{3} + \ln^{+} \|\omega\|_{0}\right) \left(1 + \|\omega\|_{\infty}\right),$$

where $\ln^+ v = \ln v$ if v > 1 and 0 otherwise.

Remark 3.6. The proof relies on the expression

(3.18)
$$\nabla u(x) = PV \int_{\mathbb{R}^N} \nabla_x K_N(x-y)\omega(y)dy + c\omega(x)$$

Details given in Proposition 3.8 and Lemma 4.6 in Bertozzi & Majda book. This is a result from potential theory and has nothing to do with the evolution of u(x, t) in Navier-Stokes equation.

Theorem 3.1. Beale-Kato-Majda sufficient condition for global regularity

Let initial $u_0 \in V^m$, m > N/2 + 2 so that there exists a classical solution u to Navier-Stokes or Euler equation, locally in time. Then, if for any T > 0, if there exists constant C so that

$$\int_0^T \|\omega(.,t)\|_\infty dt \le C$$

then, the solution to Navier-Stokes equation exists globally in time, i.e. $u \in C^0([0,\infty), V^m) \cap C^1([0,\infty), V^{m-2})$. Also, if the maximal time for existence $T < \infty$, then

$$\lim_{t \to T^-} \int_0^T \|\omega(.,t)\|_\infty dt = \infty$$

Proof. We have shown that

$$\int_0^T \|\nabla u(.,t)\|_\infty dt \le C,$$

is enough to guarantee a classical solution in [0, T] since

$$||u(.,T)||_m \le ||u_0||_m \exp\left[\int_0^T c_m ||\nabla u(.,t)||_\infty dt\right]$$

So, we only need to show that $\int_0^T \|\nabla u(.,t)\|_{\infty} dt$ is controlled by similar integral over ω .

Since vorticity ω satisfies

$$\omega_t + u \cdot \nabla \omega = \omega \cdot \nabla u + \nu \Delta \omega$$

by taking the inner product with ω it follows that

$$\frac{d}{dt}\frac{1}{2}\|\omega(.,t)\|_{0}^{2} \leq \|\nabla u(.,t)\|_{\infty}\|\omega(.,t)\|_{0}^{2},$$

implying

$$\|\omega(.,t)\|_0 \le \|\omega_0\|_0 \exp\left[\int_0^T \|\nabla u(.,t)\|_\infty dt\right]$$

Using above estimate on $||u(.,t)||_m$ for m = 3 and above estimate for $||\omega(.,t)||_0$, it follows from the potential theory estimates of 3.5 that

$$\|\nabla u(.,t)\|_{\infty} \le C \left[1 + \int_0^t \nabla u(.,\tau) d\tau \right] (1 + \|\omega(.,t)\|_{\infty})$$

Therefore, using Gronwall's Lemma

$$\|\nabla u(.,t)\|_{\infty} \le \|\nabla u_0\|_{\infty} \exp\left[C \int_0^t (1+\|\omega(.,\tau)\|_{\infty}) \, d\tau\right]$$

Corollary 3.7. For N = 2, NS solution $u(.,t) \in V_m$ exists globally in time.

Proof. Assume otherwise, *i.e.* there exists maximal time interval [0, T), for $T < \infty$. Recall in 2-D scalar ω satisfies

$$\omega_t + u \cdot \omega = \nu \Delta \omega,$$

using maximum principle, $\|\omega(.,t)\|_{\infty} \leq \|\omega_0\|_{\infty}$, implying that $\int_0^T \|\omega(.,t)\|_{\infty} dt$ is finite and hence from BKM, solution exists in [0,T]. Since $\|u(.,T)\|_m$ is finite, the solution may be extended beyond T, contradicting definition of T.

Remark 3.8. Note that the above Corollary holds for forced NS equation as well using similar arguments.