
Week 6 Notes, Math 8610, Tanveer

1. Global Existence Theorem for regularized Navier-Stokes

Instead of the usual Navier-Stokes equation, we consider the regu-
larized Navier-Stokes equation for uǫ(x, t):

(1.1)
uǫ

t+Iǫ ([Iǫu
ǫ · ∇]Iǫu

ǫ) = −∇pǫ+νIǫIǫ∆uǫ , ∇·uǫ = 0 , uǫ(x, 0) = u0(x)

Using Hodge Projection operator, we project (1.1) into the space

(1.2) Vs ≡
{

v : v ∈ Hs(R
N) , ∇ · v = 0

}

It is easily proved that the subspace Vs of Hs is itself a Banach space.
Since P commutes with operators Iǫ and D, it follows from (1.1) that

(1.3) uǫ
t + P {Iǫ ([Iǫu

ǫ · ∇]Iǫu
ǫ)} = νIǫIǫ∆uǫ

This regularized Navier-Stokes equation reduces to an ODE in the Ba-
nach space V s and can be written symbolically in the form

(1.4)
d

dt
uǫ = Fǫ (uǫ) , uǫ|t=0 = u0

where

(1.5) Fǫ (uǫ) = νI2
ǫ ∆uǫ − P {Iǫ ([Iǫu

ǫ · ∇]Iǫu
ǫ)} ≡ F 1

ǫ (uǫ) − F 2
ǫ (uǫ)

Lemma 1.1. Picard Theorem in Banach Space
Let O ⊂ B be an open set in a Banach space and F : O → B be a

mapping that satisfies the following properties:
i. F maps O to B,
ii. F is locally Lipschitz continuous, i.e. for any X ∈ O, there exists
L > 0 and on open neighborhood U ⊂ O containing X so that

‖F (X1) − F (X2)‖ ≤ L‖X1 − X2‖ , for all X1, X2 ∈ U

Then, for any X0 ∈ O, there exists time T such that the ODE

dX

dt
= F (X) , X|t=0 = X0

has a locally unique solution X ∈ C1 [(−T, T ) : O].

Remark 1.2. In the preceding Lemma, ‖.‖ denotes the norm in the
Banach space B.

Remark 1.3. The proof of Lemma 1.1 is just like the classical Picard
Theorem for ODEs in R

N ; only that R
N is replaced by Banach space B.
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Recall that the classical Picard Theorm is based on contraction mapping
theorem applied to the integral equation:

(1.6) X(t) = X0 +

∫ t

0

F (X(τ))dτ

Smallness of T together with Lipschitz property guarantees a unique
C0 [(−T, T ),O] solution. The differential equation immediately implies
that this solution is also in C1[(−T, T ),O].

Remark 1.4. The Lemma above only guarantees local existence in t,
the existence time T depending on the Lipschitz constant in
a ball containing initial condition. This is deduced easily by
applying a contraction mapping argument on (1.6). To get
global existence, the following Lemma is useful.

Remark 1.5. We will now show that each of F ǫ
1 and F ǫ

2 satisfies the
conditions for applying Lemma 1.2 in the Banach space V s for any
fixed ǫ > 0. By appropriately choosing an open set O ⊂ V m, we will
use Lemma 1.3 to establish global existence as well.

Lemma 1.6. local existence for regularized problem
For O ≡ {u ∈ V m, ‖u‖m < M}, the function Fǫ defined in (1.5) sat-

isfies the requirement that for any u1, u2 ∈ O,

‖Fǫ(u1) − Fǫ(u2)‖m ≤ cM(ǫ, m, N)‖u1 − u2‖m

where constant cM only depends on M , m, ǫ and N . Thus, F ǫ is locally
Lipschitz in O.

Proof. Consider first F 1
ǫ (u1) − F 1

ǫ (u2):

(1.7)

‖F 1
ǫ (u1)−F 1

ǫ (u2)‖m = ν‖I2
ǫ ∆(u1−u2)‖m ≤ ν‖Iǫ

2(u1−u2)‖m+2 ≤
cν

ǫ2
‖(u1−u2)‖m,

where we used Lemma 2.4 of week 5 notes (parts iv and v). Now,

(1.8)

‖F 2
ǫ (u1)−F 2

ǫ (u2)‖m ≤ ‖P {Iǫ ([Iǫu
ǫ
1 · ∇]Iǫ{u

ǫ
1 − uǫ

2})} ‖m+‖P {Iǫ ([Iǫ{u
ǫ
1 − uǫ

2} · ∇]Iǫu
ǫ
2)} ‖m

≤ ‖Iǫu
ǫ
1‖∞‖Iǫ{Duǫ

1 − Duǫ
2}‖m + ‖Iǫ{u

ǫ
1 − uǫ

2}‖∞‖IǫDuǫ
2‖m

≤ c
(

ǫ−N/2−1‖uǫ
1‖0‖u

ǫ
1 − uǫ

2‖m + ǫ−N/2−m−1‖uǫ
1 − uǫ

2‖0‖u
ǫ
2‖0

)

≤
c

ǫN/2+1+m
(‖uǫ

1‖0 + ‖uǫ
2‖0) ‖u

ǫ
1 − uǫ

2‖m
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Remark 1.7. Note that (1.7) and (1.8) implies that the Lipschitz
constant C only depends on N , m and L2 norm of initial ‖uǫ‖0,
but otherwise independent of ‖uǫ‖m. In the ensuing, we will
show ‖uǫ(., t)‖0 ≤ ‖u0‖0, and hence Lipschitz constant is inde-
pendent of solution. Also, note that using uǫ

2 = 0 and uǫ
1 = uǫ:

(1.9) ‖F ǫ(uǫ)‖m ≤ C(‖uǫ‖0, ǫ, N, m)‖uǫ‖m

Proposition 1.8. Consider any initial condition u0 ∈ V m, m ∈ Z
+ ∪

{0}. Then for any ǫ > 0, there exists a unique solution uǫ ∈ C1 ([0, Tǫ]; V
m)

to (1.4), where Tǫ = T (‖u0‖m, ǫ). On any time interval [0, T ] for which
the solution belongs to C1 ([0, T ]; V 0),

sup
0≤t≤T

‖uǫ‖0 ≤ ‖u0‖0

Proof. Choose O ⊂ V m a ball of radius M that contains u = u0. From
Lemma 1.6, it follows that Fǫ is locally Lipschitz in M , and therefore
from Picard Theorem Lemma 1.1, there exists sufficiently small Tǫ > 0,
depending on ‖u0‖m and ǫ, so that there exists a unique solution uǫ ∈
C1 ([0, Tǫ],O) to (1.4). This is the only solution in C1 ([0, Tǫ], V

m) since
for sufficiently small Tǫ continuity implies that ‖uǫ − u0‖m is small.

To show the second part of the Theorem, we note that on taking
the L2 inner product of (1.4) with uǫ, we obtain on using properties of
mollifiers and projections (see Lemma 1.13 of week 5 notes)

d

dt

1

2
‖uǫ‖2

0 = ν
(

uǫ, I2
ǫ ∆uǫ

)

0
− (uǫ,PIǫ [({Iǫu

ǫ} · ∇)(Iǫu
ǫ)])0

= −ν (Iǫ∇uǫ, Iǫ∇uǫ) − (Iǫuǫ, ({Iǫu
ǫ} · ∇)(Iǫ∇uǫ))0

Now since vǫ ≡ Iǫuǫ is divergence free, it follows that

(vǫ, (vǫ · ∇)vǫ)0 = 0

just as in the usual Navier-Stokes equation. So,

d

dt

1

2
‖uǫ‖2

0 + ν‖IǫDuǫ‖2
0 = 0

Therefore,

‖uǫ‖2
0 ≤ ‖u0‖

2
0

and the second Lemma statement follows.

Theorem 1.1. Global Existence for regularized N-S equation
For any T > 0 and initial condition u0 ∈ Vm, the regularized Navier

Stokes equation (1.4) has a solution uǫ ∈ C1 ([0, T ], Vm).
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Proof. First, we note from (1.4), (1.9) that

d

dt

1

2
‖uǫ‖2

m = (uǫ, ∂tu
ǫ)m = (uǫ, F ǫ(uǫ))m ≤ C(‖u0‖0, ǫ)‖u

ǫ‖2
m

Therefore,

‖uǫ(., t)‖m ≤ ‖u0‖meCt

For any T > 0, choose

O ≡
{

uǫ : uǫ ∈ V m, ‖uǫ‖m < 2‖u0‖meCT
}

We know local C1 ([0, Tǫ],O) solution exists from previous proposition
(1.8), where Tǫ only depends on ǫ, m and ‖u0‖0, but otherwise
independent of ‖u0‖m. This is because the Lipschitz constant
as pointed out in Remark 1.7 is only dependent on ‖u0‖0, ǫ
and m. Since ‖u(., Tǫ)‖0 ≤ ‖u0‖0, we may restart the clock at Tǫ

and continue in steps of Tǫ until we get to t = T .

Remark 1.9. Though the solution to the regularized Navier-Stokes
equation (1.4) exists for all time, going to the limit ǫ → 0 is not pos-
sible with the energy bounds obtained so far because they depend badly
on ǫ. So, now we seek energy bounds independent of ǫ; this will be
possible only locally in time, as shall be seen shortly., Nonetheless, this
allows us one to take ǫ → 0 and obtain actual solution of Navier-Stokes
equation locally in time.

Lemma 1.10. ǫ independent Energy bounds for regularized problem:
Let u0 ∈ V m. Then the unique solution uǫ ∈ C1 ([0,∞); V m) to the

regularized Navier-Stokes equation guaranteed by Theorem 1.1 satisfies
the following inequality

d

dt

1

2
‖uǫ‖2

m + ν‖Iǫ∇uǫ‖2
m ≤ cm‖∇Iǫu

ǫ‖∞‖uǫ‖2
m

Further, for m > N/2 + 1, we obtain for sufficiently small T ,

sup
t∈[0,T ]

‖uǫ‖m ≤
‖u0‖m

1 − cmT‖u0‖m
= ‖u0‖m +

‖u0‖
2
mcmT

1 − cmT‖u0‖m

Proof. We note that for any α, with |α| ≤ m,
(1.10)
(Dαuǫ, ∂tD

αuǫ)0 =
(

Dαuǫ, DαI2
ǫ ∆uǫ

)

0
−(Dαuǫ, DαP {Iǫ ([Iǫu

ǫ · ∇]Iǫu
ǫ)})0

However, it is clear from properties of Iǫ that
(

Dαuǫ, DαI2
ǫ ∆uǫ

)

0
= −

(

Dα∇Iǫuǫ, Dα∇I2
ǫ uǫ

)

0
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Further, on defining vǫ = Iǫu
ǫ, we get

(1.11)
(Dαuǫ, DαP {Iǫ ([Iǫu

ǫ · ∇]Iǫu
ǫ)})0 = (DαIǫu

ǫ, Dα [(Iǫu
ǫ · ∇)Iǫu

ǫ])0

= (Dαvǫ, Dα [(vǫ · ∇)vǫ] − (vǫ · ∇)Dαvǫ)0 ,

since for any divergence free vector field vǫ, (w, vǫ ·∇w) = 0. However,
taking wǫ = Dαvǫ, we obtain from using Lemma 1.12, week 5 lecture
notes:

| (Dαvǫ, Dα [(vǫ · ∇)vǫ] − (vǫ · ∇)Dαvǫ)0 | ≤ ‖Dvǫ‖∞‖Dαvǫ‖2
0

for m > N/2+1. Therefore, it follows from (1.10)-(1.11) summing over
α, with |α| ≤ m, we obtain

d

dt

1

2
‖uǫ‖2

m + ν‖Iǫ∇uǫ‖2
m ≤ cm‖∇Iǫu

ǫ‖∞‖uǫ‖2
m

Now, for m > N/2 + 1,

‖∇vǫ‖∞ ≤ c‖vǫ‖m ≤ c‖uǫ‖m

Therefore,

d‖uǫ‖m

dt
≤ cm‖u

ǫ‖2
m

Integration gives rise to the desired energy bounds.

2. Local Existence for Navier-Stokes equation

We now use the ǫ-independent energy bounds for solutions to molli-
fied Navier-Stokes equation to prove local existence of solution for the
actual Navier-Stokes equation. First, we show that it forms a Cauchy
sequence in an appropriate space:

Lemma 2.1. For m > N/2+2, consider the family {uǫ}ǫ of solution to
the regularized N-S equation with same initial condition uǫ(., 0) = u0 ∈
V m(RN) over time interval [0, T ], where T < 1

cm‖u0‖m
. Note that we

have ǫ-independent energy bounds on this time interval. This forms a
Cauchy sequence in C {[0, T ],L2(R3)}. Further, there exists a constant
C only depending on ‖u0‖m and time T so that for all ǫ ≥ ǫ′ > 0,

sup
t∈[0,T ]

‖uǫ − uǫ′‖0 ≤ Cǫ
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Proof. Using d
dt

uǫ = Fǫ(u
ǫ) for ǫ = ǫ and ǫ = ǫ′, subtracting the equa-

tion and taking the inner-product in L2, we obtain

(2.12)
d

dt

1

2
‖uǫ′ − uǫ‖2

0 = ν
(

I2
ǫ′∆uǫ′ − I2

ǫ ∆uǫ, uǫ′ − uǫ
)

−
(

PIǫ′

[

Iǫ′u
ǫ′ · ∇Iǫ′u

ǫ′ − Iǫu
ǫ · ∇Iǫu

ǫ
]

, uǫ′ − uǫ
)

≡ T1 + T2

We first estimate T1:

(2.13) T1 = ν
(

{

I2
ǫ′ − I2

ǫ

}

∆uǫ′, uǫ − uǫ′
)

+ν
(

I2
ǫ ∆[uǫ′ − uǫ], uǫ′ − uǫ

)

Using part (iv) of Lemma 1.13 of week 5 notes, and taking w = ∆uǫ′,
we obtain

‖I2
ǫ′w−I2

ǫ w‖ ≤ ‖I2
ǫ′w−Iǫ′w‖+‖Iǫ′w−w‖+‖I2

ǫ w−Iǫw‖+‖Iǫ′w−w‖0 ≤ Cǫ‖w‖1

Therefore, using above and integration by parts on the latter term in
T1, we obtain

(2.14) |T1| ≤ Cνǫ‖uǫ‖3‖u
ǫ′ − uǫ‖0 − ν‖Iǫ∇(uǫ′ − uǫ)‖2

0

Now, with respect to T2, it is convenient to decompose

T2 =
(

P(Iǫ′ − Iǫ)
[

Iǫ′u
ǫ′ · ∇Iǫ′u

ǫ′
]

, uǫ′ − uǫ
)

+
(

PIǫ

[

(Iǫ′ − Iǫ)u
ǫ′ · ∇Iǫ′u

ǫ′
]

, uǫ′ − uǫ
)

+

+
(

PIǫ

[

Iǫ(u
ǫ′ − uǫ) · ∇Iǫ′u

ǫ′
]

, uǫ′ − uǫ
)

+
(

PIǫ

[

Iǫu
ǫ · ∇(Iǫ′ − Iǫ)u

ǫ′
]

, uǫ′ − uǫ
)

+
(

PIǫ

[

Iǫu
ǫ · ∇Iǫ(u

ǫ′ − uǫ)
]

, uǫ′ − uǫ
)

≡ T2,1+T2,2+T2,3+T2,4+T2,5

Now, we note that for some C, independent of ǫ,

|T2,1| ≤ Cǫ‖uǫ′‖1‖u
ǫ′ − uǫ‖0‖I

′
ǫ∇uǫ′‖∞ ≤ Cǫ‖uǫ′‖2

m‖u
ǫ − uǫ′‖0

|T2,2| ≤ Cǫ‖uǫ′‖1‖u
ǫ′ − uǫ‖0‖Iǫ′∇uǫ′‖∞ ≤ Cǫ‖uǫ′‖2

m‖u
ǫ − uǫ′‖0

|T2,3| ≤ C‖uǫ′ − uǫ‖2
0‖Iǫ′∇uǫ′‖∞ ≤ C‖uǫ′‖m‖u

ǫ − uǫ′‖2
0

|T2,4| ≤ Cǫ‖uǫ′‖1‖u
ǫ′ − uǫ‖0‖Iǫ′∇uǫ′‖∞ ≤ Cǫ‖uǫ′‖2

m‖u
ǫ − uǫ′‖0

For T2,5, it is useful to subsitute v = Iǫu
ǫ, w = Iǫ(u

ǫ′ − uǫ). Note that
w and v is divergence free. Then we note that

T2,5 = (v · ∇w, w) =

∫

x∈RN

wivj∂xj
wi = 0

Therefore, from (2.12) and previous ǫ independent bound on ‖uǫ‖m

over an interval [0, T ], (in last week’s notes), it follows that

d

dt
‖uǫ′ − uǫ‖0 ≤ Cm(T )

(

ǫ + ‖uǫ′ − uǫ‖0

)
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Using Gronwall’s inequality, it follows that there exists some constant
C depending on T so that for any t ∈ [0, T ],

‖uǫ′(., t) − uǫ(., t)‖0 ≤ ǫC

Proposition 2.2. If initial condition u0 ∈ V m for m > N/2 + 2,
then for T < 1

cm‖u0‖m
, there exists a solution to Navier-Stokes equation

u ∈ C
(

[0, T ], V m′
(RN)

)

, while ∂tu ∈ C
(

[0, T ], V m′−2(RN)
)

for any
N/2 + 2 < m′ < m. More over, this solution is classical in the sense
that u ∈ C0

(

[0, T ],C2(RN)
)

, ∂tu ∈ C0
(

[0, T ],C(RN)
)

.

Proof. Assume without loss of generality that ǫ′ ≤ ǫ. We note that for
t ∈ [0, T ], ‖vǫ‖m ≤ C, independent of ǫ. From interpolation inquality
for Sobolev norms and Lemma (2.12), for any t ∈ [0, T ],

‖uǫ(., t)−uǫ′(., t)‖m′ ≤ c‖uǫ(., t)−uǫ′(., t)‖
1−m′/m
0 ‖uǫ(., t)−uǫ′(., t)‖m′/m

m ≤ Cm(T )ǫ1−m′/m

Thus, uǫ forms a Cauchy sequence in C0
(

[0, T ], V m′
(RN)

)

and hence
converges to a function u in the same space. Since m′ > N/2 + 2, it
follows that u ∈ C0

(

[0, T ],C2(RN )
)

. Further, by taking the limit of
ǫ → 0 it follows that

lim
ǫ→0+

ν
(

I2
ǫ ∆uǫ −PIǫ [Iǫu

ǫ · ∇Iǫu
ǫ]
)

= ν∆u − P[u · ∇u]

Therefore,
lim
ǫ→0

uǫ
t = ν∆u −P[u · ∇u]

and the limiting function satisfies Navier-Stokes equation. Since limǫ→0 uǫ =
u in C0

(

[0, T ], V m′
(RN)

)

, it follows that at least in the sense of distri-
bution, we have limǫ→0+ uǫ

t = ut. Therefore, the limiting function u sat-
isfies the Navier-Stokes equation and satisfies initial condition u0. From
the equation itself, it follows that we have ut ∈ C0

(

[0, T ], V m′−2(RN)
)

.

Remark 2.3. The above proposition is not completely satisfactory
since it suggests that if u0 ∈ V m, then it only assures u(., t) ∈ V m′

,
for m′ < m. In reality u(., t) ∈ V m as well. However, to show this we
need to work a bit harder.

Definition 2.4. A sequence {vn}n in a Hilbert Space H is said to
converge weakly to v if for any w ∈ H, limn→∞(w, vn) = (w, v).

A property of weakly convergent sequence that will be important for
us is that they are also bounded. Also, the following Theorem proved
in any standard text in analysis is useful:
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Theorem 2.1. (Banach-Alogou Theorem) Any bounded sequence in a
Hilbert Space(1) has a subsequence that converges weakly.

Remark 2.5. In our context, the Hilbert Space H = V m.

Definition 2.6. A function v(., t) ∈ B, a reflexive Banach Space, is
said to be weakly continuous for t ∈ [0, T ] if for any w ∈ B∗, the
dual Banach space, we have < w, v(., t) > a continuous function of
t ∈ [0, T ].

Theorem 2.2. Local Existence of N-S solutions Let u be the solution
described by the previous proposition. Then

v ∈ C ([0, T ], V m) ∪C1
(

[0, T ], V m−2
)

Proof. We know from prior energy estimates on the regularized Navier-
Stokes equation that

sup
t∈[0,T ]

‖uǫ‖m ≤ M

and from the regularized N-S equation itself, it follows that

sup
t∈[0,T ]

‖uǫ‖m−2 ≤ M1

for some constants M and M1. Since {uǫ}ǫ=1/n is a bounded sequence

in the Hilbert Space L2 ([0, T ], V m). Theorem 2.1 implies that there
exists a subsequence which converges to u ∈ L2 ([0, T ], V m), as n → ∞
(ǫ → 0). This must be the same u as in Proposition 2.2 since V m′

⊂ V m

and limǫ→0 uǫ = u in C
(

[0, T ], V m′)

. Further, for each t ∈ [0, T ], since
uǫ is a bounded sequence in the Hilbert Space V m, there is a subsquence
that converges to u(., t) ∈ V m. Thus, it follows that

u ∈ L∞ ([0, T ], V m)

Further, we claim
u ∈ CW ([0, T ], V m)

First, we note that for 0 < m′ < m, the space V −m′
is dense in V −m.

Hence we take arbitrary φ ∈ V −m′
and note that < φ, u(., t) > is

continuous in t for t ∈ [0, T ], because u ∈ C
(

[0, T ], V m′)

. Therefore,
the claim follows.

In view of weak continuity, we note that

lim
δ→0

(u(., t+δ)−u(., t), u(., t+δ)−u(., t))m = lim
δ→0

(

‖u(., t + δ)‖2
m − ‖u(., t)‖2

m

)

Thus to show u ∈ C ([0, T ], V m), it is enough to show ‖u(., t)‖m is
continuous.

(1)More generally a reflexive Banach Space, in which case the definition of weak convergence
involves the dual space
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We first prove the right continuity at t = 0. We choose φ0 ∈ V −m

so that for any v ∈ Vm, < φ0, v >= (u0, v)m. In particular, this
implies ‖u0‖

2 =< φ0, u0 >. Then from weak continuity,

lim
t→0+

< φ0, u(., t) >= ‖u0‖
2
m

Therefore, since ‖u0‖m‖u‖m ≥< φ0, u >

liminft→0+‖u(., t)‖m ≥ ‖u0‖m

Now, from energy bounds,

sup
t∈[0,T ]

‖u(., t)‖m − ‖u0‖m ≤
‖u0‖

2
mcmT

1 − cmT‖u0‖m

Therefore,
limsupt→0+‖u(., t)‖ ≤ ‖u0‖m

So, right continuity of ‖u(., t)‖m has been proved at t = 0. It is clear
that for any t ∈ [0, T ], we can repeat the same argument to show the
right continuity.

To show left continuity, we have to deal differently for ν = 0 (Euler
Equation) and ν > 0.

For ν = 0, the equations are time reversible, meaning that if we
replace t by −t and u by −u, we get back the same (Euler) equation.
So, left continuity follows from the same argument as the one above
for right continuity.

For ν > 0, we recall the energy inequality for t ∈ [0, T ]:

‖uǫ(., t)‖2
m + ν

∫ t

0

‖Iǫ∇uǫ(., τ)‖2
mdτ = ‖uǫ(., 0)‖2

m,

implying that there exists C independent of ǫ so that

ν

∫ T

0

‖Iǫ∇uǫ(., t)‖2
mdt ≤ C

Since ‖Iǫv‖m+1 → ‖v‖m+1 as ǫ → 0+, it follows that {uǫ}ǫ=1/n is a

bounded sequence in the Hilbert space L2 ([0, T ], V m+1). It follows
that there is a subsequence that converges to u as ǫ → 0. This implies
that for almost any t ∈ [0, T ], u(., t) ∈ V m+1. Suppose we want to
show left continuity at t = T1 ∈ [0, T ]. We choose T1 > T0 > 0 so that
solution u(., T0) ∈ V m+1. Then, starting at T = T0, we continue. We
can apply Proposition 2.2, with initial condition u(., T0) This ensures
solution in C

(

[T0, T
′], V m̃

)

for m̃ < m + 1 for some T ′ > T0. How-
ever, from uniqueness of classical solution, it follows that this is the
same solution u ∈ C

(

[0, T ], V m′)

for m′ < m guaranteed by Proposi-

tion 2.2. Therefore, u ∈ C
(

[T0, T
′], V m̃

)

can be continued past T ′ if
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‖u(., T ′)‖m+1 < ∞ Indeed, T ′ can be extended to be as large as we like
so long as ‖u(., t)‖m+1 remains finite for t ∈ [T0, T

′].
However, in the process of derivation of ǫ independent energy bounds

(see Lemma 1.10 first statement), we notice that as long as ‖Iǫ∇uǫ‖∞ <
C, where C is independent of ǫ, then so is ‖uǫ(., t)‖m+1. However,
‖Iǫ∇uǫ(., t)‖∞ ≤ c‖uǫ(., t)‖m < C, independent of ǫ for t ∈ [0, T ].
Therefore, ‖u(., t)‖m+1 < ∞ for t ∈ [T0, T

′] for any T ′ ≤ T . Therefore
u ∈ C

(

[T0, T ], V m̃
)

for any m̃ < m + 1 and in particular for m̃ = m.
Hence the left continuity of ‖u(., t)‖m at T = T1 follows.

3. Sufficient Condition for Global Existence for N-S

solution

First, we show that local unique NS solution in C ([0, T ], Vm) for
m > N

2
+2 that was proved in the last section may be extended beyond

T (Recall T < 1
cm‖u0‖m

) as long as ‖u(., t)‖m remains finite.

Lemma 3.1. Assume [0, T̃ ) is the largest interval for which NS solution

u ∈ C
(

[0, T̃ ), Vm

)

for m > N
2

+ 2 exists. If T̃ < ∞, then ‖u(., t)‖m

blows up as t → T̃−.

Proof. Assume otherwise; therefore, supt∈[0,T̃ ) ‖u(., t)‖m ≤ M < ∞.

We know that if we restart the clock at any t0 ∈ [0, T̃ ), solution will
exist over a time interval [t0, t0 + T ] for any T < 1

cmM
. In particular,

if we choose t0 = T̃ − 1
2cmM

, the interval [0, t0 + T ] of existence of

NS solution will exceed [0, T̃ ) contradicting the definition of T̃ . Hence
‖u(., t)‖m cannot remain finite as t → T̃−.

Corollary 3.2. If for finite T̃ , [0, T̃ ) is the maximal time for existence

of NS solution in Vm for m > N
2

+ 2, then
∫ t

0
‖∇u(., τ)‖∞dτ must blow

up as t → T̃−.

Proof. This simply follows from energy inequality, which follows from
the first statement of Lemma 1.10 as ǫ → 0:

d

dt

1

2
‖u(., t)‖2

m ≤ Cm‖∇u(., t)‖∞‖u(., t)‖2
m

and use of Gronwall and previous Lemmas.

We will now prove a sufficient condition for global existence of clas-
sical solutions to Navier-Stokes equation is the existence of L1 in time
bounds of the L∞ space norm of the vorticity.
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For that purpose we need some properties of the Biot Savart Kernel
KN(x) that occurs in the relation between velocity and vorticity. Recall
that in 2-D,

(3.15) K2(x) =
1

2π|x|2
(−x2, x1) ,

where as in 3-D, K3 is an operator defined by

(3.16) K3(x)h =
1

4π

x × h

|x|3

It is to be noted from (3.18) and (3.16) that

(3.17) KN(λx) = λ1−NKN(x) , for λ > 0 , 0 6= x /∈ R
N

and hence KN is homogeneous of degree (1 − N).

Definition 3.3. The principal value integral PV
∫

RN will be defined
such that

PV

∫

RN

f(x)dx = lim
ǫ→0+

∫

|x|>ǫ

f(x)dx

Lemma 3.4. Let K(x) be a function smooth outside x = 0 and homo-
geneous of degree 1 − N . Then ∂xj

K in the sense of distribution is a
linear functional defined by

(∂xj
K, φ)0 = −(K, ∂xj

φ)0 = PV

∫

RN

∂xj
Kφdx−cj(δ, φ)0 , for all φ ∈ C∞

c ,

where δ is the Dirac distribution and cj =
∫

|x|=1
xjK(x)dx

Proof. We note that since K ∈ L1
loc(R

N), from use of dominated con-
vergence theorem, it follows that

(K, ∂xj
φ)0 = lim

ǫ→0+

Z

|x|≥ǫ

K∂xj
φdx = lim

ǫ→0+

(

−

Z

|x|≥ǫ

∂xj
Kφ dx +

Z

|x|=ǫ

Kφ
xj

|x|
dx

)

The first term on the right hand side gives PV
R

. In the second term changing variable
x → ǫx and use of homogeneous property of K gives rise to

lim
ǫ→0+

Z

|x|=ǫ

Kφ
xj

|x|
dx = lim

ǫ→0+

Z

|x|=1

ǫ
1−N

K(x)φ(ǫx)
xj

|x|
ǫ
N−1

dx = φ(0)cj

Hence the Lemma follows.

Lemma 3.5. Potential Theory Results
Let u be a smooth, L2 ∩ L∞ divergence free velocity field and ω =

∇× u. Then

‖∇u‖∞ ≤ c
(

1 + ln+ ‖u‖3 + ln+ ‖ω‖0

)

(1 + ‖ω‖∞) ,

where ln+ v = ln v if v > 1 and 0 otherwise.
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Remark 3.6. The proof relies on the expression

(3.18) ∇u(x) = PV

∫

RN

∇xKN(x − y)ω(y)dy + cω(x)

Details given in Proposition 3.8 and Lemma 4.6 in Bertozzi & Majda
book. This is a result from potential theory and has nothing to do with
the evolution of u(x, t) in Navier-Stokes equation.

Theorem 3.1. Beale-Kato-Majda sufficient condition for global regu-
larity

Let initial u0 ∈ V m, m > N/2 + 2 so that there exists a classical
solution u to Navier-Stokes or Euler equation, locally in time. Then,
if for any T > 0, if there exists constant C so that

∫ T

0

‖ω(., t)‖∞dt ≤ C,

then, the solution to Navier-Stokes equation exists globally in time, i.e.
u ∈ C0 ([0,∞), V m) ∩ C1 ([0,∞), V m−2). Also, if the maximal time for
existence T < ∞, then

lim
t→T−

∫ T

0

‖ω(., t)‖∞dt = ∞

Proof. We have shown that
∫ T

0

‖∇u(., t)‖∞dt ≤ C,

is enough to guarantee a classical solution in [0, T ] since

‖u(., T )‖m ≤ ‖u0‖m exp

[
∫ T

0

cm‖∇u(., t)‖∞dt

]

So, we only need to show that
∫ T

0
‖∇u(., t)‖∞dt is controlled by similar

integral over ω.
Since vorticity ω satisfies

ωt + u · ∇ω = ω · ∇u + ν∆ω

by taking the inner product with ω it follows that

d

dt

1

2
‖ω(., t)‖2

0 ≤ ‖∇u(., t)‖∞‖ω(., t)‖2
0,

implying

‖ω(., t)‖0 ≤ ‖ω0‖0 exp

[
∫ T

0

‖∇u(., t)‖∞dt

]
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Using above estimate on ‖u(., t)‖m for m = 3 and above estimate for
‖ω(., t)‖0, it follows from the potential theory estimates of 3.5 that

‖∇u(., t)‖∞ ≤ C

[

1 +

∫ t

0

∇u(., τ)dτ

]

(1 + ‖ω(., t)‖∞)

Therefore, using Gronwall’s Lemma

‖∇u(., t)‖∞ ≤ ‖∇u0‖∞ exp

[

C

∫ t

0

(1 + ‖ω(., τ)‖∞) dτ

]

Corollary 3.7. For N = 2, NS solution u(., t) ∈ Vm exists globally in
time.

Proof. Assume otherwise, i.e. there exists maximal time interval [0, T ),
for T < ∞. Recall in 2-D scalar ω satisfies

ωt + u · ω = ν∆ω,

using maximum principle, ‖ω(., t)‖∞ ≤ ‖ω0‖∞, implying that
∫ T

0
‖ω(., t)‖∞dt

is finite and hence from BKM, solution exists in [0, T ]. Since ‖u(., T )‖m

is finite, the solution may be extended beyond T , contradicting defini-
tion of T .

Remark 3.8. Note that the above Corollary holds for forced NS equa-
tion as well using similar arguments.
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