
Week 7 Notes, Math 8610, Tanveer

1. Stokes Flow

We now turn to flow for large viscosity ν. In this case, we have shown that at
least in some geometry, we have shown that the solution to the Navier-Stokes initial
value problem approaches solutions to Stokes equation, where nonlinear momentum
terms in Navier-Stokes equations are neglected. This is more generally true. In the
Stokes limit, we have the following equation:

(1.1) ut = −∇p + ν∆u + b , ∇ · u = 0

We will spend a few lectures discussion some explicit solution to this linear equa-
tion. First, we note that if the domain Ω = R

N , then the initial value problem
corresponding to (1.1) has explicit solution in the Fourier-Space

(1.2) û(k, t) = û0(k)e−|k|2t +

∫ t

0

e−|k|2(t−τ)b̂(k, τ)dτ

We can verify in (1.2) that the divergence condition, which is equivalent in Fourier-

Space to k · û = 0 since k · û0 = 0 = k · b̂.

1.1. Steady Exact Solution in R
3: (Stokeslet Solution). First, we look at

solutions in R
3 for the steady case, where ut = 0; in this case we have

(1.3) 0 = −∇p + ν∆u + b , ∇ · u = 0

Since we can rescale u and x, there is no loss of generality in choosing ν = 1. This
equation has an explicit solution representation when domain Ω = R

3. Indeed,
since the equation is linear, there is particular interest in the Fundamental solution
for which the force b = Aδ(x) where A ∈ R3.

(1.4) 0 = −∇p + ∆u + Aδ(x) , ∇ · u = 0

There are two ways of solving this: one involves use of Fourier Transform in R
3,

solving for û(k) followed by inverse Fourier-Transform. The other is to introduce a
spherical coordinate system, look for appropriate singular solution at |x| = 0, cor-
responding to a delta function forcing as given in (1.4). Fourier-Transform is easier
in this case, but we need to understand how to solve in otherways as preparation
for more complicated domains Ω 6= R

3:
We denote by û(k) the generalized Fourier-transform, in the sense of distribution,

of u(x). Recall that F [∆u] = −|k|2û and that the Hodge Projection P in the
Fourier-Space has the following representation:

F {Pv} (k) = v̂(k) −
k(k · v̂)

|k|2

Therefore, (1.4) implies:

(1.5) û(k) =
1

(2π)3|k|2

[

A − (k · A)
k

|k|2

]

Therefore,

(1.6) u(x) =
1

8π3

∫

k∈R3

eik·x

[

A − (k · A)
k

|k|2

]

dk

|k|2

This can be explicitly evaluated by using spherical coordinates for k, appropriately
aligned. We will not compute this here.
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Instead, we seek particular solution to (1.4) that reflects the 1
|x| scaling depen-

dence manifest in (1.6) for velocity u. Because of high degree of symmetry, it is
convenient to introduce spherical coordinates (r, θ, φ) for Navier-Stokes equation,
where θ is the angle from the vector A, aligned along x3-axis. We look for solutions
where spherical velocity components and pressure have the form:

(1.7) (ur, uθ, uφ, p) =

(

U(θ)

r
,
V (θ)

r
, 0,

P (θ)

r2

)

The steady Stokes equation in spherical co-ordinates with azimuthal symmetry (i.e.
no φ dependence) is given by

(1.8)

0 = −
∂p

∂r
+

(

∂2ur

∂r2
+

2

r

∂ur

∂r
−

2ur

r2
+

1

r2

∂2ur

∂θ2
+

cot θ

r2

∂ur

∂θ
−

2

r2

∂uθ

∂θ
−

2

r2
cot θ uθ

)

(1.9) 0 = −
1

r

∂p

∂θ
+

(

∂2uθ

∂r2
+

2

r

∂uθ

∂r
−

uθ

r2 sin2 θ
+

1

r2

∂2uθ

∂θ2
+

cot θ

r2

∂uθ

∂θ
+

2

r2

∂ur

∂θ

)

(1.10)
∂ur

∂r
+

2

r
ur +

1

r

∂uθ

∂θ
+

cot θ uθ

r
= 0

Using the form (1.7), we obtain

(1.11) 0 = 2P + {−2U + U ′′ + cot θU ′ − 2V ′ − 2V cot θ}

(1.12) 0 = −P ′ +

{

−
V

sin2 θ
+ V ′′ + cot θV ′ + 2U ′

}

(1.13) U + V ′ + V cot θ = 0

Eliminating U and P in (1.12) by using (1.11) and (1.12), we find:

(1.14) LθV = 0

where the linear operator Lθ is defined to be
(1.15)

LθV ≡ V (iv) + 2 cot θV ′′′ − [2 + 3 cot2 θ]V ′′ + [5 cot θ + 3 cot3 θ]V ′ − 3(1 + cot2 θ)2V

It is to be noted that four linearly independent solutions to LθV = 0 are given by

(1.16) sin θ , cot θ ,
1 + cos2 θ

sin θ
, log

(

1 + cos θ

1 − cos θ

)

sin θ

The only acceptable solution (without singularities in θ or multi-valuedness) is a
multiple of sin θ. Therefore,

(1.17) uθ(r, θ) =
C1

r
sin θ

Using (1.13) the radial velocity component

(1.18) ur(r, θ) = −
2C1

r
cos θ

We can determine P from (1.11) and obtain pressure

(1.19) p(r, θ) = −
2C1

r2
cos θ
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Using the transformation between spherical and cartesian coordinates, it follows
that

(1.20)

(u1, u2, u3) = {(uθ cos θ + ur sin θ) cos φ, (uθ cos θ + ur sin θ) sin φ, (−vθ sin θ + vr cos θ)}

It follows from the relation between spherical and cartesian coordinates that

(1.21) u1 = −
C1x3x1

|x|3
, u2 = −

C1x3x2

|x|3
, u3 = −

C1(x
2
3 + |x|2)

|x|3

and the pressure is given by

(1.22) p = −
2C1x3

|x|3

Noting that A is aligned along x3 axis, we may write the velocity u given in (1.21)
in a coordinate free manner:

(1.23) u = −C1

(

I +
x(x· )

|x|2

)

A

|A||x|

while

(1.24) p = −
2C1(A · x)

|x|3|A|

To determine C1, we go back to (1.4) and integrate the equation over a small
sphere of radius ǫ; this gives rise to the relation for the j component of Aj

Aj =

∫

|x|=ǫ

{pnj − nk∂xk
u} dx

Using (1.23) and (1.24) gives rise to to C1 = − |A|
8π

. So,

(1.25) u =
1

8π|x|

(

I +
x(x· )

|x|2

)

· A = GS · A

GS is a tensor of rank 2, and is called the Stokeslet. Physically, GS
ij is the i-

component of velocity due to a delta function force at the origin oriented along the
xj-axis. More generally, if singular forcing is at x = y instead of the origin, then

(1.26) u(x) =
1

8π|x − y|

(

I +
(x − y)((x − y)· )

|x − y|2

)

· A = GS(x − y) · A

For arbitrary force b(x), we have

(1.27) u(x) =

∫

y∈R3

GS(x − y) · b(y)dy,

where it is implicitly assumed that b decays fast enough at ∞ for the integral in
(1.27) to exist. Notice the slow 1/r decay rate of a Stokeslet solution.
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1.1.1. Other Singular Solutions. Since Stokes equation is linear, other singular so-
lutions are useful as a linear combination is also useful. Instead of a delta-function
force, we may consider the force dipole of strength p at x = y. This corresponds to
the solution when force is given by b(x) = (p∇y) δ(x − y). This singular solution,
is easily obtained from Stokeslet solution

(1.28) u(x) = p ·
[

∇yGS(x − y)
]

· A

The third-order tensor

(1.29) Gsd(x − y) ≡ ∇yGS(x − y)

is called a Stokeslet doublet. Similarly, more singular Stokeslet multiplet solutions
can be found by applying ∇y. It is to be noted that, while these are more singular
at x = y, they decay faster at ∞.

Another physically important solution is the point Source and dipole solutions
for b = 0. It is to be noted from applying the curl operator on (1.3) that any
potential flow solution, i.e. u = ∇φ is a solution to (1.3). For potential flow, a
flow of particular importance is the source solution. We saw earlier that in 2-D,
this source solution of strength m at the origin is given by u = ∇ m

2π
log |x|. Not

surprisingly, the source solution in 3-D is given by

(1.30) u(x) = ∇
−m

4π|x|
=

mx

4π|x|3
= mGp(x)

To show that this corresponds to fluid flowing out from the origin at rate m we
calculate

(1.31)

∫

|x|=ǫ

(u · n)dx = 4πǫ2
m

4πǫ2
= m

More generally, Gp(x − y) is the point source solution, corresponding to a physical
source spewing out fluid at x = y at unit rate.

Another singular solution that is physically relevant is the source dipole solution

(1.32) Gd(x − y) ≡ ∇yGS(x − y) =
1

4π|x − y|3

(

−I + 3
(x − y)([x − y] · .)

|x − y|2

)

The velocity generated by a point dipole at y of strength p is given by

(1.33) u(x) = [Gd(x − y)] · p

The dipole can be thought of a source and sink of equal and opposite strength
brought together so that in the limit of small separation, the line joining the sink
to the source is oriented in the direction of p, and the product of source strength
and source-sink-separation is |p|.

1.2. Steady Stokes Flow past a Sphere. By taking an appropriate linear com-
bination of singular solution to Stokes equation, just discussed, we can arrive at
the problem of finding flow past a moving sphere of radius a, moving with velocity
U0. Indeed, we can check directly that

(1.34) u(x) =

[

GS(x) −
a2

6
Gd(x)

]

· A

satisfies the equation and the boundary condition on |x| = a:

(1.35) u = U0
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when

(1.36) A = 6πaU0

In dimensional form, this says that the drag force on the sphere is 6πaµU0, a result
that is sometimes taught in high school.

It is to be noted that in this case, there is no singularity in the flow region |x| ≥ a.
Superposition of singular solutions at x = 0 allowed us to solve this problem. A
direct method of solving this problem will be to use spherical coordinates in the
domain r > a, in the same manner as we obtained the Stokeslet solution GS .

Also, since GS = O(1
r
), while Gd = O( 1

r3 ), for large distances r from the origin,
the flow is essentially the same as for a Stokeslet. Bodies of more complicated shapes
give rise to higher order multipoles; nonetheless, as x → ∞, the flow approaches
once again a Stokeslet. This observation has important consequences when we
are trying to model the flow past many spheres. We can think of the presence
of far-away spheres as Stokeslet of appropriate strength. This makes computation
manageable.

1.3. Solid Wall effect on Stokeslet Flow. Consider a Stokeslet in the presence
of a wall that is either parallel or perpendicular to the force A. In this case, we
have a Stokeslet at y in the domain

Ω =
{

x ∈ R
3, x3 > 0

}

We need to satisfy the no-slip condition at x3 = 0. We can check directly that the
solution in this case is
(1.37)

u =
[

GS(x − y) + GW (x − y′)
]

· A, where y = (y1, y2, y3) , y′ = (y1, y2,−y3) ;

and

(1.38) GW (x − x′) = −GS(x − y′) ±
[

y2
3G

d(x − y′) − (0, 0, 2y3) · G
SD(x − y′)

]

The plus sign is if the Stokeslet is oriented parallel to the wall, and negative if it is
oriented perpendicular to the wall.
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