
Week 8 lectures

1. Equations for motion of fluid without incompressible

assumptions

Recall from week 1 notes, the equations for conservation of mass and
momentum, derived generally without any incompressibility assump-
tion leads to

(1.1)
∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0

(1.2) ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+∇ ·T+ ρb,

where T is the second order Stress Tensor. For Newtonian fluids,

(1.3) T = 2µ

(

S−
1

3
(∇ · u)I

)

+

[

λ+
2

3
µ

]

(∇ · u)I,

where µ and λ are viscosity and second viscosity coefficients, respec-
tively and S is the strain tensor:

(1.4) Sij =
1

2
(ui,j + uj,i) ≡

1

2

(

∂xj
ui + ∂xi

uj

)

Using (1.3) and (1.4), (1.2) becomes

(1.5) ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∆u+ (λ+ µ)∇(∇ · u) + ρb

In general, (1.1) and (1.5) are not enough to determine the flow since
these constitute four scalar equations for five scalar unknowns u, ρ, p.
Additional equations are needed, which come from energy conservation
and thermo-dynamics as in the ensuing.

2. Energetic Considerations

Consider an arbitary but fixed volume W ⊂ Ω ⊂ R
3 with smooth

boundary having outwards normal n. Consider rate of change of energy
contained in W :

(2.6)
d

dt

∫

W

(

1

2
ρ|u|2 + ρE

)

dx =

∫

W

∂t

(

1

2
ρ|u|2 + ρE

)

, dx

where E(x, t) is the internal energy perunit mass at a location x at
time t. The inwards flux of energy through ∂W , which includes heat
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flux as well(1), is given by

(2.7) −

∫

∂W

(

1

2
ρ|u|2 + ρE

)

u · ndx+

∫

∂W

n · (k∇T ) dx

= −

∫

W

{

∇ ·

(

u

[

1

2
ρ|u|2 + ρE

])

−∇ · (k∇T )

}

dx,

where T (x, t) is the temperature at position x at time t and k is the
thermal conductivity. Now consider the work done by forces in the
system. It is convenient to define the total Stress tensor Σ so that

(2.8) Σij = −pδi,j + Tij

The work done on the fluid inside W in unit time, including body and
surface forces, is given by

(2.9)

∫

W

ρu ·bdx+

∫

∂W

uiΣijnjdx =

∫

W

(ρuibi + ui,jΣij + uiΣij,j) dx

From conservation of energy, the sum of rate of change of energy given
by (2.6) equals the sum of inwards energy flux (2.7) and the work done
by forces per unit time given by (2.9). This is true for arbitrary W and
so
(2.10)

∂t

(

1

2
ρ|u|2 + ρE

)

+∇·

[

ρu

(

1

2
ρ|u|2 + ρE

)]

−∇·(k∇T ) = uibi+ui,jΣij+uiΣij,j

Using (1.1) and (1.2), noting that Σij = −pnj + Tij , we obtain

(2.11)
DE

Dt
=

1

ρ
ui,jΣij +

1

ρ
∇ · (k∇T ) ,

where we recall operator D
Dt

= ∂t + u · ∇.

3. Thermodynamic consideration

We now recall some facts from equilibrium Thermodynamics(2). The
intensive quantities used include internal energy per unit mass E , tem-
perature T , pressure p, specific volume v = 1

ρ
, i.e. volume of fluid per

unit mass, entropy per unit mass S, which is a characteristic of disorder
in the system(3) The fundamental ansatz in thermodynamics, which is
supported by latter theoretical developments in statistical mechanics as

(1)This is because according to first law of thermodynamics, heat inputted into the system is
transferred to work done by the system and change of internal energy.

(2) For most purposes it is good enough to ignore non-equilibrium effects since the thermo-
dynamic time-scale is far shorter than the time scale in which fluid moves

(3)Using statistical mechanics, entropy can be quantified to be proportional to the log of the
number of states in the system consistent with a given thermodynamic state.
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well as experiment, is that any two of these variables completely charac-
terize a system. For instance, if T and v are considered as independent
variables, the rest of the variables p, S, E , etc., are each functions of T
and v. Choice of different independent variables is suitable for different
purposes.
The first law of thermodynamics states that at each location occupied

by a gas or fluid,

(3.12) dE = TdS − pdv,

where dq = TdS denotes the infinitesimal heat generated, dw = −pdv
is the infinitesimal work done on the system, per unit time. What is
important about the relation (3.12) is that E is a state variable, which
mathematically means that dE is an exact differential, where in (3.12)
we hae used S and v as the two independent variables. Therefore, it
follows from (3.12) that ∂E

∂S
= T and ∂E

∂v
= −p. From equality of mixed

second partials, where we assume E to be smooth enough function of
S and v, it follows that

(3.13)

(

∂T

∂v

)

S

= −

(

∂p

∂S

)

v

E is not the only state variable. I = E + pv called enthalpy per unit
mass is another state variable. If we consider instead S and p to be
two independent variables, it follows from (3.12) that

(3.14) dI = d (E + pv) = TdS + vdp

Equality of two second mixed partials of I gives

(3.15)

(

∂T

∂p

)

S

=

(

∂v

∂S

)

p

Yet another state variable is the Gibbs free energy F = E − TS per
unit mass. If we use v and T as two independent variables, then (3.12)
implies

(3.16) dF = −pdv − SdT

The equality of mixed second partials of F gives

(3.17)

(

∂p

∂T

)

v

=

(

∂S

∂v

)

T

Again, F +pv is also a state variable. If we use p and T as independent
variable, it follows from (3.16) that

(3.18) d (F + pv) = vdp− SdT,
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equality of mixed partials immediately implies

(3.19)

(

∂v

∂T

)

p

= −

(

∂S

∂p

)

T

It is also convenient to define

(3.20) cp = T

(

∂S

∂T

)

p

,

(3.21) cv = T

(

∂S

∂T

)

v

,

which is the specific heat per unit mass for constant pressure and con-
stant volume respectively, since dQ = TdS is the heat content(4) per
unit mass per unit temperature. We also define volumetric expansion

rate with temperature for fixed pressure

(3.22) β =

(

∂v

∂T

)

p

4. Full equation of fluid dynamics

We return to (2.11). We note from (3.12) that

(4.23) T

(

∂S

∂T

)

p

DT

Dt
+ T

(

∂S

∂p

)

T

Dp

Dt
= T

DS

Dt
=

DE

Dt
+ p

D

Dt

1

ρ

Using (3.19), (3.20) and (4.23) and (2.11), we obtain

(4.24) cp
DT

Dt
− βT

Dp

Dt
= T

DS

Dt
=

1

ρ
ui,jΣij +

1

ρ
∇ · (k∇T ) +

p

ρ
∇ · u

Using (1.3) and (2.8), it follows that

(4.25) T
DS

Dt
= cp

DT

Dt
− βT

Dp

Dt
= Φ +

λ+ 2
3
µ

ρ
(∇ · u)2 +∇ · (k∇T ) ,

where the positive definite quantity
(4.26)

Φ =
2µ

ρ

(

Sij −
1

3
(∇ · u)δi,j

)(

Sij −
1

3
(∇ · u)δi,j

)

=
2µ

ρ

(

Si,jSi,j −
1

3
(∇ · u)2

)

has the physical interpretation of dissipation of mechanical energy per-
unit mass As stated earlier, we also have an equation of state that
follows from equilibrium thermodynamics

(4.27) f(p, ρ, T ) = 0

(4) Note that in our formulation the unit of heat and unit of energy are chosen the same
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Equations (1.1), (1.5), (4.25) and (4.27) constitute a complete set of
six scalar equations for the unknowns ρ, p, T and u, since the viscosity
coefficients µ = µ(ρ, T ), λ = λ(ρ, T ) and thermal conductivity k =
k(ρ, T ) are known functions.

4.1. Bernoulli law for steady flow of a frictionless non-conducting

fluid. Assume that the force perunit mass b = −∇Ψ, is time-independent.
Then, from (2.10), using (1.1),

(4.28)
D

Dt

(

E +
1

2
|u|2

)

= −u · ∇Ψ+
1

ρ
∂xj

(uiΣij) +
1

ρ
∇ · (k∇T )

Using (1.3), (1.4) and (1.1), it follows that

(4.29)

1

ρ
∂xj

(uiΣij) = −
1

ρ
u·∇p−

p

ρ
∇·u+

2µ

ρ
∂xj

{

ui

[

Sij −
1

3
(∇ · u) δi,j

]}

+

(

λ+
2

3
µ

)

(∇ · u)2

= −
D

Dt

(

p

ρ

)

+
1

ρ

∂p

∂t
+

2µ

ρ
∂xj

{

ui

[

Sij −
1

3
(∇ · u) δi,j

]}

+

(

λ+
2

3
µ

)

∂xj
(uj∇ · u)

Therefore, for a frictionless non-conducting fluid limit, i.e. when vis-
cosity coefficients µ, λ, as well as conductivity coefficient k is negligible,
and the flow is steady, i.e. pt = 0, we have from (4.28) and (4.29),

(4.30)
D

Dt

(

1

2
|u|2 + E +

p

ρ
+Ψ

)

= 0

This means that along a streamline:

(4.31) H =
1

2
|u|2 + E +

p

ρ
+Ψ

is a constant; this is generalization of Bernoulli’s principle for a general
compressible fluid that is frictionless, non-conducting and steady.

5. Isentropic and Homentropic flows

We note from (4.25) if the positive definite dissipation terms Φ,
(

λ+ 2
3
µ
)

(∇ · u)2 are small, along with temperature diffusion term
∇ · (k∇T ), each of which is the result of molecular diffusion, then
we can approximate DS

Dt
= 0, i.e. entropy is constant along a stream

line, though it need not be the same constant on different straight
lines. When the latter is true, the flow is said to be homentropic. For
isentropic flow, it is useful to take equation of state in the form

(5.32) ρ = ρ(p, S)

and define

(5.33)

(

∂p

∂ρ

)

S

= c2
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Then ignoring molecular diffusion terms in (1.5), which is consistent
with isentropic approximation process, (1.1) and (1.5) simplify under
isentropic approximation to the follow relation

(5.34)
1

ρc2
Dp

Dt
+∇ · u = 0

(5.35)
Du

Dt
= b−

1

ρ
∇p

Equations (5.34), (5.35) along with DS
Dt

= 0 and equation of state (4.27)
determine u, p, S and ρ for an isentropic flow.
For a homentropic flow, since S is a constant everywhere, p = p(ρ)

and c2 = c2(ρ(p)), in which case the set of equations (5.34) and (5.35)
completely determine the unknowns p and u; or equivalently ρ and u

if we choose to rewrite (5.34) and (5.35) in the form

(5.36)
Dρ

Dt
+ ρ∇ · u = 0

(5.37)
Du

Dt
= b−∇w ,where w =

∫ ρ c2(ρ′)

ρ′
dρ′

As shall be seen later, these form a pair of nonlinear hyperbolic PDEs;
the solutions are typically characterized by shocks, i.e. solutions need
to be weak solutions with jumps, and classical solutions have to be
matched across the two sides of the shocks by considering conserved
quantities on stream lines.
Note from (4.23),

(5.38)
D

Dt

(

E +
p

ρ

)

= T
DS

Dt
+

1

ρ

Dp

dt

Therefore, it follows that for Isentropic flows, the Bernoulli principle
for steady flow (4.30) reduces to

(5.39) H =
1

2
|u|2 +

∫ ρ c2(ρ′, S)

ρ′
dρ′ +Ψ = constant on astreamline

Note that if a flow has a shock region, molecular effects like viscous
dissipation and heat conduction become important; so typically H will
jump across the shock by an amount depending on how much dissipa-
tion and heat conduction takes place in a thin shock region.
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5.1. Sound propagation in homentropic flows. Consider small de-
parture from an equilibrium flow where u = 0. In equilibrium (5.37)
implies p = p0

(5.40) b =
1

ρ0
∇p0 = ∇w0

Such an equilibrum is when b is time-independent and curl-free. Then,
if we decompose

(5.41) p = p0 + p1 , ρ = ρ0 + ρ1

and linearize for small p1, ρ1 and u, then (5.34) and (5.35) imply

(5.42)
1

ρ0c
2
0

∂tp1 +∇ · u = 0

(5.43) ρ0ut = ρ1b−∇p1

Dividing (5.43) by ρ0 and taking divergence of the resulting equation,
while taking the time derivative of (5.42), we obtain on elimination of
u

(5.44)
1

ρ0c20

∂2p1
∂t2

= ∇ ·

(

1

ρ0
∇p1

)

−∇ ·

(

ρ1
ρ0

b

)

This is the equation for propagation of sound. If ρ0 is spatially uniform,
and effect of force b is negligible, we obtain the usual wave equation

(5.45)
1

c20

∂2p1
∂t2

= ∆p1,

where c0 will be the speed of propagation of sound, as we know from
elementary PDE class. We note that sound propagation is possible in
a medium with compressibility taken into account.

5.2. Vorticity in homentropic flow and potential flow approx-

imation. We recall the identity

(5.46) u · ∇u = ∇
1

2
|u|2 − u× ω,

where ω = ∇× u is the vorticity, it follows from taking curl of (5.37),
recalling Du

Dt
= ∂tu+ u · ∇u,

(5.47) ωt +∇× (ω × u) = ∇× b

If force b is conservative, we note that if ω = 0 initially, then ω = 0
for all t(5), i.e. a potential flow approximation u = ∇φ is valid under
those conditions. In this case, for steady flow, Bernoulli law (show

(5)This assumes uniqueness of solutions, which is true, but is yet to be proved.
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as an exercise) (5.39) is globally valid, i..e H is the same constant
everywhere.

5.3. Validity of incompressible ∇ · u = 0 approximation. We
return to the full set of equations (1.1),(1.5), (4.25) and (4.27) for ρ,
p, T and u and examine in a formal sense the conditions under which
incompressibility ∇·u = 0 assumptions would remain valid. We denote
a typical velocity scale by scalar U and a typical length scale of variation
of u to be L. So, from (1.1), incompressibility assumption is valid if

(5.48)
∣

∣

∣

1

ρ

Dρ

Dt

∣

∣

∣
<<

U

L

If we choose ρ and entropy per unit mass S as independent variables,
then

(5.49)
Dp

Dt
=

(

∂p

∂ρ

)

S

Dρ

Dt
+

(

∂p

∂S

)

ρ

DS

Dt
=

1

c2
Dρ

Dt
+

(

∂p

∂S

)

ρ

DS

Dt

So condition (5.48) translates to

(5.50)
∣

∣

∣

1

ρc2
Dp

Dt
−

1

ρc2

(

∂p

∂S

)

ρ

DS

Dt

∣

∣

∣
<<

U

L

This will be satisfied if each of the conditions
∣

∣

∣

1
ρc2

Dp

Dt

∣

∣

∣
<< U

L
and

∣

∣

∣

1
ρc2

(

∂p

∂S

)

ρ

DS
Dt

∣

∣

∣
<< U

L
. are satisfied. Normally, in estimating Dp

Dt
, we

may assume flow to be isentropic since of molecular diffusion effects
like viscosities and thermal conductivity only effect distribution of pres-
sure gradient rather than its order of magnitude. Then using (5.35), it
follows that the condition on pressure becomes

(5.51)
∣

∣

∣

1

ρc2
∂p

∂t
−

1

2c2
D

Dt
|u|2 +

1

c2
u · b

∣

∣

∣
<<

U

L

Noting that time scale associated with choice of velocity scales U and

L is L
U
, the second term term

∣

∣

∣

1
2c2

D
Dt
‖u|2

∣

∣

∣
<< U

L
, when U2/c2 << 1.

Now conider the magnitude of the first term on the left of (5.51),
which depends on the unsteadiness of the flow. If the flow-field is
oscillatory with frequency n, noting that p/ρ scales as U2, then the

condition 1
ρc2

∂p

∂t
<< U

L
will be satisfied when n2L2

c2
<< 1. If n = O(U

L
),

then the above condition is satisfied when U2/c2 << 1. If n >> U
L
,

then the condition is more exacting.
Consider the last term in (5.51). It is clear that u·b

c2
<< U

L
if

|b|L
c2

<< 1. If b is gravity, this condition is satisfied in most laboratory
conditions, given the relatively large value of speed of sound.
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We now consider the second term on the left of (5.50) with isentropic
assumption. We first note that from thermodynamic relations derived
earlier

(5.52)
1

ρc2

(

∂p

∂S

)

ρ

= −
1

ρc2

(

∂p

∂ρ

)

S

(

∂ρ

∂S

)

p

= −

(

∂ρ

∂T

)

p

ρ
(

∂S
∂T

)

p

=
βT

cp

Using (4.25), it follows from (5.52) that the second term on the left of
(5.50) << U

L
if

(5.53)
∣

∣

∣

β

cp

{

Φ+
1

ρ

∂

∂xj

(

k
∂T

∂xj

)}

∣

∣

∣
<<

U

L
,

which is physically the statement that variation of density of a material
element in the fluid due to internal dissipation and conduction of heat
is small.
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