Week 9 lectures

1. ISENTROPIC 1-D GAS DyYNAMICS EQUATIONS

In one space dimension, the equations for isentropic fluid dynamics
(5.34)-(5.35) of week 8 notes become

(1.1) pr+upy + pu, =0
1
(1.2) (up 4+ uuy) + ;px =0

where from equilibrium thermodyanmics, p = p(p,S) is considered
known. Since dp = (a—p)pdS + 2(p, S)dp, it follows from (3) and

a5
(LI) that
(1.4) P+ upe = A (pr +upy) = —c*pu,

Between ([L2]) and (L4]), we seek to take linear combination of the two
equations to find suitable characteristic variables. If we multiply (L.2)
by pc and add/subtract from (I.4]), then we obtain

(1.5) (pt + (u+ ¢)ps) + pe (ug + (u+ c)u,) =0

(1.6) (Pr + (u = c)pa) = pe(ur + (u = cJuy) = 0

Equations (LL5)-(L.6) in addition to (L3 are the complete set of hyper-
bolic equations for determination of p, u and S is characteristic form
since we may write them as following set of ODEs on characterics

dp du x
(17) E—FPCE—O,OHE—U‘FC
dp du dx
(18) %—pCE—0,0HE—U—C
dsS dx
1. = i
(1.9) o 0,on ik

Note the characteristic speeds are u, u£c. The latter two are associated
with sound waves when fluid motion is present. If we linearize the
nonlinear equations (L7)-(L9) about a quiescent state u = 0 with
uniform density py, we obtain

dp du dx

1.10 — —on — =

(1.10) it + poCo PTA T
dp du dx

1.11 - — on — = —

(1.11) o~ Poco s on o = =g

1



ds dx
1.12 — =0on — =0
(1.12) at O dt
Integrating (.12,
(1.13) S — Sy =H(x)
In the case of a homentropic flow, H(x) = 0. In that case, integration
of (LI0) and (TII) results in
(1.14) p — po + pocou = F(z —cot) ,
(1.15) p—po — pocou = G(z + cot) |
implying
1
(1.16) P—po=5 (F'(z = cot) + G(x + cot))
(1.17) W= — (F(z = cot) + G + cot))
.  2pouo ’ ’

Returning to nonlinear equations (L7)-(L.9), if we have a homen-
tropic flow, then p = p(p), ¢* = p/(p) and it follows that

d ([°cr) _ d _
(1.18) E(/ p/ dp+u>—0,ona—u+c
d([rel),, \_, dr_

Recall for that for a gas p = Cp” and so, ¢ = yCp?~!; using this (LIS)

and (LI9) implies

d 2c dz
(1.20) %<7_1+u)—0,0n$—u+c
d 2c dz
1.21 — — = -y —
(1.21) dt(v—l u) O’Ondt u—c

and we have on integration the Riemann invariants

2 dx
ctu=constant , on — =u*£c
v—1 dt

(1.22)



2. CASE OF A MOVING PISTON

The equations ([L.22)) simplify further if initial conditions are such
that one of the Riemann invariants is trivial, as it can be used in the
other to turn it into a first order nonlinear PDE for one scalar variable.
This is the case for the piston problem as described below. When such
simplifications are not possible, the Riemann invariants (L22]) can still
be used to compute or analyze solutions.

Consider an initially quiescent gas u = 0 in an semi-infinite cylindri-
cal container where the piston boundary is at x = X (¢), with X (0) = 0.
We assume initial density and entropy to be p = pg, S = Sy, each of
which are constants. The domain in ¢ — x plane is shown in Figure 1.

dx/dt =u+c

x=X(t)
dxdt FU-c x=teg

u=0,5=%), P=h, X

FIGURE 1. Two sets of characteristics shown in the ¢ — z domain
to the right of a moving piston x = X (¢)

On the set of characteristics ‘fl—f = u — ¢, which intersects the piston
x = X(t) as well as the z-axis, where u = 0, ¢ = ¢,
2c 2¢
(2.23) —u=
v—1 v—1

This can be used to eliminate ¢ completely from the equations. There-
fore, on the characteristic set

d 1
(2.24) d—f:u+c:co+%u,
we obtain from the Riemann invariant

(2.25)

2c 200
4+ u = 2u + —— = constant
v—1 v—1

or equivalently

1
(2.26) m+(%+7;u)%:0
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In the region in the ¢ — x plane region, where characteristic set (2.24))
intersects x = X(t), (2.25)) implies

(2.27) u=u = X(7)

piston

where t = 7 is the initial value of ¢t where the set of characteristics
(2:24)) intersects intersects x = X (t). Using (2.27)), integration of (2.24])

results in
v+1e

2.28) e =)+ (w+ 15X ) (- 7)

If and when it is possible to invert (2.28)) to solve 7 = 7(x, t) it produces
a classical solution to the PDE (226]) in the form

(2.29) u=X(7(z,t) ,

By taking partial derivative of (2.28) with respect to 7, the implicit
function theorem condition of inversion is:

1. 1) ..
(2.30) —VTX(T)—CQ-F(V; )X(T)(t—T)géO

For a piston moving to the left, i.e. X < 0, we still have —VT_lX(T) —
co < 0 when the piston speed is not comparable to sound speed. Under
these conditions, if X < 0, then (2.30) is satisfied since each term is
< 0. In the special case when X = —V = constant, then solution in

the region = < (co — “/THV) t is simply

2.31 u(z,t :—Vo,c:co—(y_l)V
(231) (2,1 .
and for x > c¢yt,
(2.32) u(z,t) =0 ,c(x,t) = co
y+1

In the intermediate region cot > x > (co — V) t, we have a simple

wave solution

(2.33) u(x,t) = 2 (% - co)

which may be verified to be a solution of the PDE (226]) for ¢ > 0
by direct substitution. These are continuous solutions. However, if
X(1) > 0 for any 7, then it is easily seen inversion condition (2.30)
will not always be valid. This gives rise to characteristic curves (2.28))
intersecting, which corresponds to classical solution developing singu-
larities. Beyond such time, physically reasonable solutions are ones
where one allows solutions to undergo jumps, i.e. we allow for weak
solutions.
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2.1. Shock Waves. When waves break, i.e. singularities form in clas-
sical solution, then the inversion condition (2.30) becoming invalid. In
that case, we must return to the basic derivation of conservation of
mass momentum and energy for x € (x1,x2) to determine additional
conditions that determine where to place one or more shocks i.e. dis-
continuities across which p, u and S may jump. We study these re-
lations in one space dimension for simplicity, though the idea is much
more general. Conservation of mass from week 1 notes implies

€2

d 2
(2.34) i | pdz + [pu]? =0,

Conservation of momentum in the absence of body forces implies

d [* . 2 ou]™
2. 2 2 4 pl™ = (2 o
(2.35) = /ml pudz + [pu® + p] <3M+)\) [01’] :

1

Conservation of energy implies
(2.36)

o 2 x2
% 5 <%pu2 + pS) dz+ [(%piﬁ + pE) u +pu} . = [k% + (gu + )\) Z—Z] .
where [.]7? is the evaluation of the quantity at x; subtracted from eval-
uation at at xo. The terms on the right in (238) and ([236]) are due to
molecular diffusion effects and can be ignored outside of a shock region.
If x = X,(t) denotes the location of a shock where there is discontinuity
of flow quantities, then by taking zo = X (t) + € and x; = X (t) — €
and taking the limit of e — 0%, with U = X, while ignoring molecular
effects, it follows that

(2.37) —Ulp] +[pu] =0,
(2.38) — U pu] + [pu*+p] =0,
(2.39) -U szﬁ + pc} + K%pzﬂ + pe) u —I—pu} =0,

One avoids the problem of overlapping characteristics for the case X >
0 by enforcing conditions (2.37)-(2:39) across the two sides of a shock
x = X(7); away from the shock one uses the classical solution such as
the one obtained in (2.29). In this context, it is useful to note that
for a polytropic gas under conditions of isentropic flow, £ = ﬁ. We
avoid going through any more details here, though there are excellent
texts on the subject of shocks (see for instance Whitham, Linear and

Nonlinear Waves, Wiley).



3. INCOMPRESSIBLE FREE BOUNDARY PROBLEMS: MOTION OF
BUBBLES

Thus far, we have discussed incompressible flow in a fixed domain €2.
There are many instances, when this is not appropriate. For instance
in the motion of a bubble, the boundary itself evolves in time. The
same is true for water waves. On a free boundary, such as between two
fluids, or between fluid and vacuum, the no-slip condition u = v, used
for a solid boundary, is no longer appropriate. Consider first the case
of a fluid boundary 02 with another fluid of negligible viscosity and
pressure variation, ¢.e. vacuum conditions. Since an infinitesimal free
boundary has infinitesimal mass, the forces on the two sides must be
in balance. This corresponds t

(3.40) —pn; +2uTin; = —pn; + 1 (&Cjui + 8miuj) nj = —oKN;

where o is the surface tension and « the curvature for in 2-D, and mean
curvature in 3-D. Note T is the viscous stress tensor and (3.40) is a
vector relation. It is called the Stress condition. By taking the dot
product of relation ([340) with n, we obtain

(3.41) —p+nT;jn; = —ok ,onds?

By taking dot product with respect to a tangent vector 7, tangent to
the interface for which 7 - n = 0, we obtain from (3.40)

(3.42) 7.1,;mn=00r7-T-n=0

Equations (B41)) and (B3:42]) are mathematically equivalent to (3.40)
since ([B.42) is true for any tangent vector 7. Physically, (8.41]) implies
that that the normal component of stress across a free surface is bal-
anced by surface tension effects, while (8.42)) is a statement that there
is no tangential stress.

It is to be noted that ([B.40) or its equivalent form (B.41)-(3.42) is
only valid when there is fluid motion only on one side of the domain
0. This is not valid when there is fluid motion on both sides of the
interface, as it is for strong winds blowing on top of an ocean surface.
Generalization of (B.41)) and (3:42) in those cases is that the jump in
normal stress across two sides of 0f is

[-p4+n-T-n] =0k
where as the jump in tangential stress across two sides of 0f2 is

[7-T-n]=0

(l)Hore we are returning to dimensional quantities
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Further, unlike the case of a fixed boundary, we need an additional
equation to determine the location of the free boundary as part of the
problem. This is determined by setting

(3.43) u-n=1Vy,

where V,, is the normal velocity of the interface. For a free boundary
described implicitly by a scalar relation F(x,t) = 0. This relation is
found by noting that a point on the free surface can be characterized
by x = X(t). Then F(X(t),t) = 0; therefore, taking time derivative
F,+X,-(VF)=0=F,+V,|VF|, since by definition V,, is the normal
component of surface motion, and therefore X; - n = V,,. This implies

that (3.43)) may be replaced by u-n = — IVF;*“I’ or
(3.44) Fo+u-(VF)=0, on F(x,t) =0

This is called the kinematic condition.

3.1. Inviscid Irrotational Free boundary. Consider the simplest
case, when the flow is inviscid, i.e. viscosity effects are neglected.
Further, we assume that the flow is irrotational. Then the equations
simplify. In €2, we have

(3.45) A® =0

Then, since Bernoulli equation is valid everywhere in €2, we have
1
(3.46) a0 +L+ v+ SIve =0,
P

where we assumed body force b = —VV. In the case of gravity V =
gxs3, gravity being alligned in the negative x3-axis Using this in the
pressure equation (B.41]), we obtain after noting that viscous stress
tension T = 0 here, we obtain on 0f)

1
(347) (I)t + V(X) + §|V(I)‘2 = 0K

Equation (3.43]) in 2, together with pressure condition (3.47) and kine-
matic boundary condition (3.44]) completely specifies the free boundary
problem if € is finite. However, if co € €2, then we have to add an ad-
ditional condition at co. For instance, a bubble in 3-D with changing
volume will introduce a source at co will introduce a source flow at oo:

m(t)x
4r|z|3

(3.48) u=Vo ~ as X — 00,

where m(t) = < (Bubble Volume) is source strength. On the other
hand, if there is a uniform flow Uy at oo, then we need to specify as
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flow past a solid body,
(3.49) u~ Ujasx — oo

3.2. Spherical Bubble. First consider the simplest case, the motion
of spherical oscillating bubble in a fluid with no body force b = 0. This
is physically realistic for small bubbles, where gravity does not play an
important role. In this case, ® = ®(r,t), r = |x|. There is no 6, ¢
dependence and the boundary of the sphere is r = R(t) and the domain
Q) is given by r > R(t). Therefore, we have from Laplace’s equation in
spherical coordinates:

2

(3.50) 2P + ~0,® =0

This implies

351 o) =A@+ 2D implying u, — — 20
. rt) = . mplying u, = 2

Therefore, since F(x,t) = r — R(t), the kinematic condition (3.44])
implies that

dR dR B
(3.52) o) =D
Since increase/decrease in volume of the bubble 4T R3(t), is effectively
a source/sink, it follows that from (3.52]),

d 4rm dR

3.53 t)= ——R*=4rR*>— = —47B

(3:53) ml) =3 N g

Now, consider the pressure condition: on 0€2, i.e. on r = R(t):
1 20

3.54 0P+ =(0,0)* = —

(3.54) @+ 50,07 = 7

From representation (3.51)), this becomes

dA Cfi—]f B? 20
(355) E+§+2—R4—p—R

Further, using Bernoulli equation as x — oo, we find from (3.46]), (3.55)

dB 2
Poo d dt B 20'
(8:56) p ' @~ TR TR TR

Thus, in terms of specified p,, by using [3.53) and ([3.50]), we obtain
after some algebra

@R 3 (dR\® 20 ps
> " 2

3.57 R—+ - — — =
( ) + dt pR p
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You can analyze this ODE if you like to study oscillation of bubble for
given poo /p. If poo/p is a constant (3.57)) is a automomous system which
can be further reduced to a first order system and further analyzed; or
your could study the phase plane the usual way about the equilibrium,
which happens to be

_ P
(3.58) r=Ry= =
assuming po, < 0. If p,, > 0, there is no equilibrium, since the bubble
will eventually contract to zero size since the acceleration is clearly
negative for all time.
You can also study the response of the bubble to sound by considering

1’%’" = Cy + (4 cos wt for constant Cy and C}.

3.3. Nonspherical Perturbation to a bubble. Suppose the bubble
is now perturbed a bit about the equibrium position r = Ry, deter-
mined from (B.58) with p., < 0 and independent of time and with no
body force, i.e. V = 0. We assume that the perturbation is not nec-
essarily spherically symmetric. In that case, in spherical coordinates,
the boundary 0f2 of the bubble is given by

(3.59) r=Ro+ef(0,0,1)

and we seek to study the evolution of f with time, with given initial
perturbation

We will choose ¢ << 1, and seek solution for the linearized problem.
In order to simplify the problem, we have to take boundary conditions
at r = Ry + ¢f and apply them at the spherical unperturbed boundary
r = Ry. This is done by Taylor expanding the boundary condition
in powers of €, assuming that this expansion is possible (this assume a
priori that the boundary shape is analytic. We note that in equilibrium
® = 0, since there is no flow in equilibrium. So, we may assume

(3.61) O(r,0,0,t) = eV(r,0,0,t)

Further, mean curvature is given by x = V - n. In our case, note that
in polar coordinates

(3.62)

1 2 €2 £2 -1/2
n=(1,- fo : fo) (14— f7+ o —
Ro+ef sinf(Ry+ ef) (Ro + €f) (Ro + €f)?sin” 0
Recalling that that for any vector F, expressed in spherical coordinates,

L 989 (sinthetalFy) + !

1
(3.63) V-F = =0, (r*F,) + . O Fy

rsin theta
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We obtain

2 2e €2
3.64 = — —f——Lf+O(
(3.64) i g~ gl = LT+ O()
where the differential operator £ in 6 and ¢ is defined by
1 0 0 1 0
. = (el )+ - &
(3:65) L=+gnaa0 <Sm ae) T 600
The pressure boundary condition (8.47) becomes
(3.66) eWi(Ro,0,0) = —7(2f + L) + O()
0
The kinematic condition (L4]) becomes
(3.67) €00, 6,1) ~ 2 (Ro,0,6.1) = O(e)

Equation (3.66) and (3.67)) are now applied on the unperturbed bound-
ary r = Ry. We have to solve for ¥(r, 6, ¢,t) outside this perturbed
boundary with condition

0PU 200 1 0 ov 1 0%
. =AV=—+-—+—-———|5i —

(3.68) 0 or? * r or * r2sin 6 00 ( ) r2sin? 0 O¢?

Now, it is known that the differential operator £ defined in (3.65) has

eigenfunctions

(3.69) LY m(0,¢) = =U(1 + 1)Y,m(6, 0)

where [ > 0 is an integer, and Y ,, are called spherical harmonics, given

by

(3.70) Yim(0,0) = ™ P, (cosf) , where —1 <m <1

and P, ,,(z) are called associated Legendre functions that satisfy the

differential equation
2

m
(3.71) [(1=2)P,) ~ =5 Pn =~ + D P
It is known that the set
(3.72) {Yim (0, ¢)}1:0,..oo,m=—l..l

forms a complete orthogonal set on the unit sphere. An arbitrary func-
tion f(#, ¢) can be written in terms of a linear combination of Y} ,,,(6, ¢)
in the L2 sense. In particular, the we may express perturbation about
a sphere is given by

[%S) l

(3.73) FO,0,0) =" arm(t)Yim(0, ¢)

=0 m=—1
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for some set of quantities a;,,,. Similarly, if we express

(3.74) @@ﬁﬁiyzfiE:zmdnwnmwﬁ)

1=0 m=—1

Plugging ([3.74) into ([B68) after using LY}, (0, ¢) = —I(1 + 1)Y},, we
obtain

o) l
?Bim | 20B, 1+ 1)Byy,
@WO:ZEﬁm@@<L-F u_<2u)7

or? r Or T
=0 m=-1

implying
PBiym  20Bi,  l(l+1)Bin,

_ —0
or? r Or r2

So, solving we get a linear combination of 7! and r~'~!. The only
acceptable solution is a multiple of »~*~! since r' does not vanish as
r — oo. Therefore, it follows that

by (t) RS
- AN
Using (B.73), (B.74) and (3.77) in the linearized boundary condition
(3.60), (B.67), we obtain for each (I, m),

(3.76)

(377) ma(’r’, t)

d o
(3.78) ——bim = — o5 (=12 = 1+ 2)aym
dt R?
d (I+1)
: — g + —Lby g =
(3.79) Gt T b 0

Or, eliminating b; ,,, between the two relations, we obtain

Pag,  (+1)(P+1-2)0
(3.80) = 7 Ui m

The solution is obviously sinusoidal for [ > 1, with frequency

A+ ) +2)(-1)0

This describes the linearized motion of an oscillating bubble that os-
cillates due to surface tension effects when disturbed from equilibrium
The general shape will of course be given by [B.73), with a;,, deter-
mined from initial values of shape distortion, that determines ay,,(0)
and velocity that determines b;,,(0).
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Remark 3.1. Note that the above calculation involved a linearization
and throwing away the nonlinear term. Generally, keeping the nonlin-
ear term makes it a much more difficult mathematical problem. Next
class, I will show how you can formulate such free boundary problems
in terms of fixed boundary problem in 2-D through the use of conformal
map. There is also another way of handling such problems in both 2-D
and 3-D. This is through the use of dipole or vortex sheet method.
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