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Abstract. We summarize a recently developed integral equation approach to
tackling the long-time existence problem for smooth solution v(x, t) to the 3-D
Navier-Stokes equation in the context of a periodic box problem with smooth
time-independent forcing and initial condition v0. Using an inverse Laplace

transform of v̂(k, t) − v̂0 in 1/t, we arrive at an integral equation for Û(k, p),
where p is inverse-Laplace dual to 1/t and k is the Fourier variable dual to

x. The advantage of this formulation is that the solution Û to the integral
equation is known to exist a priori for p ∈ R+ and the solution is integrable
and exponentially bounded at ∞.

Global existence of NS solution in this formulation is reduced to an asymp-

totics question. If ‖Û(., p)‖l1(Z3 has subexponential bounds as p → ∞, then

global existence to NS follows. Moreover, if f = 0, then the converse is also
true in the following sense: if NS has global solution, then there exists n ≥ 1
for which the the inverse Laplace transform of v̂(k, t) − v̂0 in 1/tn necessarily
decays as q → ∞, where q is the inverse-Laplace dual to 1/tn.

We also present refined estimates of the exponential growth when the solu-

tion Û is known on a finite interval [0, p0]. We also show that for analytic v[0]

and f , with finitely many nonzero Fourier-coefficients, the series for Û(k, p) in
powers of p has a radius of convergence independent of initial condition and
forcing; indeed the radius gets bigger for smaller viscosity. We also show that
the the integral equation can be solved numerically with controlled errors.

Preliminary numerical calculations for Kida ([14]) initial conditions, though
far from being optimized, and performed on a modest interval in the acceler-
ated variable q show decay in q.

1. Introduction

The global existence of smooth solution to the incompressible Navier-Stokes (NS)
system

(1.1) vt + (v · ∇)v = −∇P + ν∆v + f , with ∇ · v = 0 , and v(x, 0) = v[0](x)

for x ∈ Ω ⊂ R
3 for smooth f and v[0] has remained a formidable open mathematical

problem for almost three quarters of a century, despite extensive research (see for
example monographs [11], [26], [5], [10]). Smooth solutions are known to exist only
on a time interval [0, T ] where T scales inversely with a suitable norm of v[0] and
f . Global existence can be proved only when f and v[0] are sufficiently small or
ν is sufficiently large, i.e. the Reynolds number sufficiently small. This problem
remains unsolved even for f = 0 (no forcing) or even without the mathematical
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complication of no-slip boundary on ∂Ω, as is the case when Ω = R
3 or T

3[0, 2π]
([0, 2π]3 periodic box).

Global existence is not simply a mathematical issue. It has much wider impact,
particularly if singular solutions exist. It is known [3] for instance that singularities
can only occur when vorticity and more generally ∇v blow up. This means that if
solutions were to develop singularities, the relevance of Navier-Stokes as a model
of actual fluid flow becomes questionable, as linear stress-strain relation, incom-
pressibility, and even the continuum hypothesis implicit in NS derivation become
doubtful. Viscous regularization of inviscid Burger approximation determines the
size of a shock-layer once a shock is formed, and analogously it may be expected
that if smooth NS solutions were to become singular, regularizing effects such as
departure from a linear stress-strain relation will determine the smallest time and
space scales observed in fluid flow–i.e. there will be dependence on parameters
other than those present in NS. This can profoundly affect our understanding of
small scale turbulence and indeed of turbulent mixing, which is the theme of the
present conference. In fact, some 75 years back, Leray [16], [17], [18] was motivated
to study weak solutions of 3-D NS, conjecturing that turbulence was related to blow
up of smooth solutions.

The typical method used in the mathematical analysis of NS, and of more general
PDEs, is the so-called energy method. For NS, the energy method involves a
priori estimates on the Sobolev H

m norms(1) of v. It is known that if ‖v(·, t)‖H1

is bounded, then so are all the higher order energy norms ‖v(·, t)‖Hm if they are

bounded initially. The condition on v has been further weakened [3] to
∫ t

0
‖∇ ×

v(·, t)‖L∞dt < ∞. Other controlling norms are known [21], [22], [15], [24] to exist;
however, lack of a global conservation law involving a controlling norm is believed
to be the primary obstacle [25] in the way of a global existence proof.

Globally, only weak solutions (possibly non-unique) are known to exist, as a
result of Leray’s pioneering work [16], [17], [18]. In that setting, ∇v can blow-up

on a small set in space-time(2). However, when f = 0 (no forcing) in the periodic
box problem, a time Tc may be estimated in terms of the ‖v[0]‖H1 so that any weak
Leray solution becomes smooth again for t > Tc.

Numerical solutions to (1.1), while generating physical evidence on the nature
of fluid flow, do not address the existence issue either. Indeed, truncation errors in
a usual numerical scheme depend on derivatives of v and these are not known to
exist beyond an initial time interval.

In this paper, we summarize the salient points of a new approach [9], [12] towards
Navier-Stokes existence that can be generalized to a wider class of PDE initial value
problems. The method is fundamentally different from the usual PDE approach
to existence and uniqueness. It originates from ideas of Borel summation which
associates a unique function to a divergent series under some conditions (see [2] for
a general exposition and [13] which relates to N-S). In the context of NS equation,

(1)Here ‖.‖Hm norm is essentially the sum of L2 norms of a function and all its space derivaties
upto order m

(2)The 1-D Hausdorff measure of the set of blow-up points in space-time is known to be zero
[4]
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consider a formal asymptotic expansion for small t,

(1.2) v(x, t) ∼ v[0](x) +

∞∑

m=1

v[m](x)tm.

By plugging in this formal expansion into Navier-Stokes equation (1.1) and match-

ing like powers of t we arrive(3) at a set of recurrence relation (as in (4.21) ) that
completely determines all coefficients v[m] in terms of v[0], f and its x-derivatives,
assuming they exist. For analytic initial data v[0] and forcing f , it has been shown[9]
that this series can be Borel-summed into an actual solution to the Navier-Stokes
equation. The expression for the Borel sum of (1.2) is given as a Laplace transform

(1.3) v(x, t) = v[0](x) +

∫ ∞

0

e−p/tU(x, p)dp

where U(x, p) satisfies an integral equation (IE) (see (2.8) in the sequel, where

Û(k, p) = F [U(., p)] (k) is the Fourier transform of U). It has been shown [9], [12]
that there exists a unique solution to this IE within the class of locally integrable
functions, exponentially bounded in p (like eαp), uniformly in x. Indeed, U(x, p)
generates a smooth solution to NS through the relation (1.3). The existence time
interval for NS solution is

[
0, α−1

)
, where α is the growth exponent of the asso-

ciated IE solution. If the IE solution U does not grow with p or grows at most
subexponentially, then global existence of NS follows.

Borel summation has been used in other contexts including nonlinear ODEs [27],
[6] as well as difference equations. It has also been used in obtaining PDE solution
in parts of the complex plane [19]. We will not emphasize the theoretical aspects
of Borel summation, beyond pointing out that it is limited to analytic initial data
and forcing. Our generalization, leading to the integral equation representation
(2.8) is much more general and transcends these restrictions. Further, while the
asymptotic expansion (1.2) is only valid for t ≪ 1, its Borel sum makes sense much
more generally. Indeed, if the solution of the integral equation, which is known to
exist a priori, does not grow as p → ∞ or even grows sub-exponentially, then global
existence of NS solution follows. Thus, in this representation, the global existence of
a time evolving PDE becomes a problem of asymptotics for the associated integral
equation.

Further, as will be discussed later, it is sometimes advantageous to use a more
general Laplace transform representation:

(1.4) v(x, t) = v[0](x) +

∫ ∞

0

e−q/tn

Uacc(x, q)dq

for n ≥ 1. The q-representation will be referred to as the accelerated representation;
U(., p) → Uacc(., q) transformation is expressed through an explicit integral formula
introduced by Ecalle in the context of ODEs.

(3)We assume that f is either time-independent or has a convergent power series expansion in t
for small t. Further pressure P is eliminated by projection onto the space of divergence free-field.
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2. Navier-Stokes Equation and Integral equation

We denote by “ˆ”, the Fourier transform by “ ∗̂ ” the Fourier convolution (“ ∗ ”
is the Laplace convolution) and assume for simplicity that the forcing is time inde-

pendent. We also denote Fourier transform by F and its inverse by F−1(4). For a
2π periodic box problem, in Fourier space, NS reads (see e.g. [5], [26], [11], [10])

(2.5) v̂t + ν|k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂ , v̂(k, 0) = v̂[0](k), v̂ = (v̂j)j=1,2,3

where

(2.6) Pk ≡
(

1 − k(k·)
|k|2

)

is the Fourier transform of the Hodge projection P , the projection on the space
of divergence free vector-fields. We also follow the usual convention of summation
over repeated indices. When x ∈ T

3[0, 2π]3, we take k = (k1, k2, k3) an ordered
triple of integers, i.e. k ∈ Z

3, while if x ∈ R
3 we would take k ∈ R

3. Without loss
of generality we can assume that the average velocity and force over a period are

zero, implying v̂(0, t) = 0 and f̂(0) = 0.
We write v̂ = v̂[0] + û and apply the formal inverse Laplace transform in 1/t to

the resulting equation to obtain

(2.7) pÛpp + 2Ûp + ν|k|2Û = −ikjPk

[
v
[0]
j ∗̂Û + Ûj ∗̂v̂[0] + Ûj

∗∗Û
]

+ v̂[1](k)δ(p)

:= −ikjĤj(k, p) + v̂[1](k)δ(p)

The solution to the homogeneous equation on the left side of (2.7) can be expressed

in terms of the Bessel functions J1 and Y1. Using boundedness of Û(k, p) at p = 0
(which follows from v̂(k, 0) = v̂[0](k)) one obtains the integral equation (IE) (see
[9] for more details):

(2.8) Û(k, p) = −ikj

∫ p

0

G(z, z′)Ĥj(k, p′)dp′ + Û [0](k, p) ≡ N
[
Û

]
(k, p) ,

where Û [0](k, p) ≡ 2J1(z)

z
v̂[1](k) , z = 2|k|√νp, z′ = 2k

√
νp′ ,

G(z, z′) =
πz′

z
(J1(z

′)Y1(z) − Y1(z
′)J1(z)) ,

where ∗∗ denotes Fourier transform followed by Laplace transform and

(2.9) v̂[1](k) = −ν|k|2v̂[0] − ikjPk

[
v̂
[0]
j ∗̂v̂[0]

]
+ f̂(k)

2.1. Properties of the integral operator N and of the solution to IE (2.8).
For analysis of the IE, it is convenient to define a number of different spaces of
functions and corresponding norms.

Definition 2.1. We denote by l1(Z3) the set of functions f̂ of k ∈ Z
3) such that(5)

‖f̂(k)‖l1(Z3) =
∑

k∈Z3

|f̂(k)|

(4) For periodic problem, F−1 is simply evaluation of a function based on its Fourier coefficients
(5)Since for NS the velocity and forcing have the property that f̂(0) = 0 = v̂(0, t), the k = 0

sum is left out in the l1 sum.



INTEGRAL EQUATION AND NAVIER-STOKES 5

Also, for analytic functions f(x) whose series coefficients are possibly exponentially
decaying functions in Z

3, it is convenient to define in the Fourier space the norm:

‖f̂‖µ,β = eβ|k|(1 + |k|)µ|f̂ |

Definition 2.2. For α ≥ 0, we define define the norm ‖.‖(α)
1 on functions of (k, p),

k ∈ Z
3, p real, with p ≥ 0 (i.e. p ∈ R

+):

(2.10) ‖Û‖(α)
1 ≡

∫ ∞

0

e−αp

{
∑

k∈Z3

|Û(k, p)|
}

dp =

∫ ∞

0

e−αp‖Û(·, p)|l1(Z3)dp

Definition 2.3. We define A(α)
1 to be the Banach space of functions Û(k, p) that

are l1(Z3) in k ∈ Z
3 and absolutely integrable in p with ‖Û‖(α)

1 < ∞.

Definition 2.4. For analytic v[0] and forcing f , it is convenient to define for β ≥ 0,
µ > 3, the following space A of functions of (k, p), bounded in k and continuous in
p ∈ R

+ with

‖Û‖ = sup
p∈R+

e−αp(1+p2)

[
sup
k∈Z

(1 + |k|)µeβ|k||Û(k, p)|
]

= sup
p∈R+

e−αp(1+p2)‖Û(·, p)‖µ,β

We have the following theorems:

Theorem 2.1. If |k|2v̂0, f̂ ∈ l1, then the integral equation (2.8) has a unique

solution in the space A(α)
1 , if α is large enough. Taking the Laplace transform it

follows that

(2.11) v̂(k, t) = v̂0(k) +

∫ ∞

0

Û(k, p)e−p/tdp

satisfies the Navier-Stokes equation (2.5) in Fourier space. The generated Fourier
series v(x, t) = F−1 [v̂(.t)] (x) is a classical solution to Navier-Stokes for t ∈

(
0, 1

α

)
.

If ‖v̂0‖µ+2,β and ‖f‖µ,β are finite for µ > 3 and β ≥ 0, then Û ∈ A for sufficiently

large α. Furthermore, in this case if β > 0, Û is analytic for p ∈ R
+ ∪ {0}.

Outline of the proof: The detailed proof of the theorem is given in Theorem 1
in [12], though a more general IE is considered; the Theorem 2.1 here corresponds
to the special case n = 1 in [12]. The proof of the last statement for n = 1 is given
in [9]. The key feature of the proof is the boundedness of |k|G for z, z′ ∈ R

+ for
z′ ≤ z (i.e. for p′ ≤ p), which follows from the properties of J1 and Y1. Therefore,

‖N
[
Û

]
(·, p)‖l1(Z3) ≤

C√
p

∫ p

0

[
‖v̂[0]‖l1‖Û(·, s)‖l1 + ‖Û(·, s)‖l1 ∗ ‖Û(·, s)‖l1

]
ds+‖v̂[1]‖l1

and from the properties of Laplace convolutions we obtain

‖N
[
Û

]
‖(α)
1 ≤ Cα−1/2‖Û‖(α)

1

(
‖v̂[0]‖l1 + ‖Û‖(α)

1

)
+

1

α
‖v̂[1]‖l1 ,

and in a similar manner

‖N
[
Û [1]

]
−N

[
Û [2]

]
‖(α)
1 ≤ Cα−1/2‖Û [1]−Û [2]‖(α)

1

(
‖v̂[0]‖l1 + ‖Û [1]‖(α)

1 + ‖Û [2]‖(α)
1

)

It follows that for large enough α, N is contractive with respect to ‖.‖(α)
1 in the

ball of radius 2
α‖v̂[1]‖l1 . The transformations are easily undone to obtain a classical
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solution to the 3d NS equation for t ∈
(
0, α−1

)
(6) satisfying the initial condition.

Conversely, since a smooth solution to (1.1) is known to be unique, its Fourier
transform must be expressible as (2.11), implying the solution is analytic in t for
Re t−1 > α for some α. The inverse Laplace transform L−1

[
v̂(k, τ−1) − v̂0

]
(p) =

Û(k, p) must exist and satisfy IE (2.8) Therefore, the solution to (2.8) is unique,
without any restriction on the ball size in the Banach space.

Remark 2.5. The main significance of Theorem 2.1 is not that there exists a unique
smooth solution to 3-D Navier-Stokes locally in time. This has been a standard
result for many years (see for instance [11], [26], [10], [5]). The connection with the

integral equation (2.8) is more significant. Its solution Û(k, p) exists for p ∈ R
+.

If this solution does not grow with p or grows at most subexponentially, then 3-D
NS will have global solution for the particular initial condition in question. So, in
a sense the problem of global existence has become one of asymptotics. We will
see later that this connection can be made stronger. Furthermore, a numerically
discretized solution to the integral equation has rigorously controlled errors as will
be discussed later unlike numerical schemes for N-S.

3. Revised estimates on the exponent α

The existence interval
[
0, α−1

)
for 3-D NS proved in Theorem 2.1 is suboptimal.

It does not take into account the fact that initial data v[0] and forcing f are real
valued. (Blow up of Navier-Stokes solution for particular complex initial data is
known [23].) Also, the estimates ignore possible cancellations in the integrals.

In the following, we address the issue of sharpening the estimates, in principle
arbitrarily well, based on more detailed knowledge of the solution of the IE on
a p-interval [0, p0]. This knowledge may come from a computer assisted set of
estimates, on a priori information based on optimal truncation of asymptotic series
among others as explained in the next section. If this information shows that the
solution is small for p towards the right end of the interval, then α can be shown
to be small. This in turn results in longer times of guaranteed existence, possibly
global existence for f = 0 if this time exceeds Tc, the time after which it is known
that a Leray weak solution becomes classical again because of long term effect of
viscosity.

To get a mathematical sense of how such estimates are possible from the integral
equation (2.8), define

Û (a)(k, p) = Û(k, p) for p ≤ p0 and 0 otherwise

Define Ŵ = Û − Û (a), where we see that Ŵ is nonzero only for p > p0. Then, from
(2.8) we have for p > p0,

(3.12) Ŵ (k, p) = Ŵ (0)(k, p) − ikj

∫ p

p0

G(z, z′)Ĥ(w)
j (k, p′)dp′ ≡ N (w)

[
Ŵ

]
(k, p),

where

(3.13) Ĥ(w)(k, p) = Pk

[
v̂
[0]
j ∗̂Ŵ + Ŵj ∗̂v̂[0] + Ŵj

∗∗Û (a) + Û
(a)
j

∗∗Ŵ + Ŵj
∗∗Ŵ

]

(3.14) Ŵ (0)(k, p) = 2
J1(z)

z
v̂[1](k) − ikj

∫ min p,2p0

0

G(z, z′)Ĥ(a)(k, p′)dp′,

(6)The solution immediately smooths out in x for t > 0
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and

(3.15) Ĥ(a) = v̂
[0]
j ∗̂Û (a) + Û

(a)
j ∗̂v̂[0] + Û

(a)
j

∗∗Û (a)

We note that if the calculated Û (a) is seen to rapidly decrease in some subinterval
[pd, p0], then the inhomogeneous term Ŵ (0) in the integral equation (3.12) becomes
small. For sufficiently large p0, the factor 1√

p multiplying integral term in (3.12) is

also small for p ≥ p0. This ensures contractivity of operator N (w) at a smaller α.
Precise statements on estimates on α based Û (a) is given below in Theorem 3.1.

3.0.1. Sharper estimates. Let Û(k, q) be the solution of of (2.8) provided by Theo-
rem 2.1. Define

(3.16) Û (a)(k, p) =

{
Û(k, p) (0, p0] ⊂ R

+

0 otherwise

Û (s)(k, q) = −ikj

∫ p

0

G(p, p′; k)Ĥ
(a)
j (k, p′) dp′ + Û0(k, p),

Ĥ
(a)
j (k, p) = Pk

[
v̂0,j ∗̂Û (a) + Û

(a)
j ∗̂v̂0 + Û

(a)
j

∗∗Û (a)
]
(k, p),

Using (3.16) we introduce the following functions of Û (a)(k, p), v̂0 and f̂ :

b := α

∫ ∞

p0

e−αp‖Û (s)(·, p)‖l1 dp,(3.17)

ǫ1 =

[
C1 +

∫ p0

0

e−αp′

C2(p
′) dp′

]
(3.18)

Finally, we let

C0(k) = sup
p0≤p′≤p

{
|G(p, p′; k)|

}
, C1 = 4 sup

k∈Z3

{
|k|C0(k)

}
‖v̂0‖l1 ,

C2(q) = 4 sup
k∈Z3

{
|k|C0(k)

}
‖Û (a)(·, p)‖l1 , ǫ = 2 sup

k∈Z3

{
|k|C0(k)

}
.

Theorem 3.1. (i) The exponential growth rate α of Û is estimated in terms of the

restriction of Û to [0, p0] as follows.

(3.19) If α > ǫ1 + 2
√

ǫb then

∫ ∞

0

‖̂U(·, p)‖l1e
−αpdp < ∞

Remark 3.1. It was argued in [12], in a slightly more general context, that the

estimated ǫ1 +
√

2bǫ is small if the solution Û (a) is small in some subinterval [pd, p0].
This implies imply a long interval (0, α−1) of guaranteed existence of a solution to
(1.1).

4. Calculation of integral equation solution over [0, p0]

The results in Theorem 3.1 rely on the knowledge of Û for p ∈ [0, p0]. There
are two approaches to calculating the solution over [0, p0]. One is based on using

the power series of Û(k, p) at p = 0, while the second approach relies on numerical
solution on [0, p0]. Unlike Navier-Stokes solution, the numerical soution to the
integral equation (2.8) has errors that can be completely controlled.
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4.1. Power Series for Û(k, p) and its radius of convergence. When the initial
data and forcing are analytic, the formal series (1.2) is useful since it implies

(4.20) Û(k, p) =

∞∑

m=1

v̂m(k)
pm−1

m!

Borel summability ensures[9] that the series (4.20) has a finite radius of convergence.
The results in [9] only give a radius of convergence that depends on v0 and f .
However, we expect more to be true. We now show that in the special case when
the initial condition has a finite number of Fourier modes, the radius of convergence
is independent of the size of initial data and forcing. The argument below allows
for f to be a function of time as well, provided it is analytic in t at t = 0.

We note the small time expasion:

v̂(k, t) = v̂[0](k) +
∞∑

m=1

v̂[m](k) tm

f̂(k, t) = f̂ [0] +

∞∑

m=1

f̂ [m](k) tm

where

v̂[m+1] =
1

m + 1

[
f̂ [m] − ν|k|2v̂[m] − ikjPk

( m∑

ℓ=0

v̂
[l]
j ∗̂v̂[m−ℓ]

)]
, m ≥ 0(4.21)

and recall that for small p,

(4.22) Û(k, p) =
∞∑

m=0

d̂m(k) pm, d̂m =
ĉm+1

m!
.

If the power series converges for a large range of p, then, in principle, we can use

it to compute Û as accurately as we wish. In order for this to be possible, though,
we must understand how the radius of convergence of the series depends on ν, the
viscosity, and the size of the initial data v̂[0] and forcing f .

Taking the ℓ1-norm on both sides of (4.21) with respect to k and writing

am = ‖v̂[m]‖ℓ1 , bm = ‖f̂ [m]‖ℓ1 ,

we obtain

am+1 ≤ 1

m + 1

[
bm + ν

∥∥|k|2|v̂[m]|
∥∥

ℓ1
+ 2

m∑

ℓ=0

∥∥|k||v̂[ℓ]|∗̂|v̂[m−ℓ]|
∥∥

ℓ1

]
.

If the initial data v̂[0] has only a finite number of modes (which is the case here),
we define K0 = supk∈supp v[0] |k| < ∞. Then by induction, we can prove that
supk∈supp v[m] |k| = (m + 1)K0 < ∞. It follows that

am+1 ≤ 1

m + 1

[
bm + K2

0ν(m + 1)2am + 2K0(m + 2)

m∑

ℓ=0

aℓam−ℓ

]

≤ bm

m + 1
+ K2

0ν(m + 1)am + 4K0

m∑

ℓ=0

aℓam−ℓ.



INTEGRAL EQUATION AND NAVIER-STOKES 9

Consider now the formal power series

y0(t) :=

∞∑

m=0

ãmtm

where

ã0 = a0,

ãm+1 =
bm

m + 1
+ K2

0ν(m + 1)ãm + 4K0

m∑

ℓ=0

ãℓãm−ℓ, m ≥ 0.(4.23)

Clearly am ≤ ãm for all m ≥ 0, as it can be shown by a simple induction. If we
multiply both sides of (4.23) by tm and sum over m from 0 to ∞, then

∞∑

m=0

ãm+1t
m =

∞∑

m=0

bm

m + 1
tm + K2

0ν

∞∑

m=0

(m + 1)ãmtm + 4K0

∞∑

m=0

m∑

ℓ=0

ãℓãm−ℓ tm,

which shows that y0 is a formal power series solution of the ODE

1

t
(y − ã0) = w + K2

0ν(ty)′ + 4K0y
2, where w(t) =

∞∑

m=0

bm

m + 1
tm.

This equation can be written as

K2
0νt2y′ + 4K0ty

2 + (K2
0νt − 1)y + (tw + ã0) = 0,

or, with the change of variable s = 1/t,

−K2
0νy′ + 4K0s

−1y2 + (K2
0νs−1 − 1)y + (s−1w + ã0) = 0.

According to theory [8], any singularity of B[y] in Borel plane must exhibit itself
as an exponentially small correction to y0. Hence we write

y = y0 + δ

and find the ODE for δ:

−K2
0νδ′ + 4K0s

−1(δ2 + 2z0δ) + (K2
0νs−1 − 1)δ = 0.

The dominant balance of this equation is

−K2
0νδ′ +

[
(8ã0K0 + K2

0ν)s−1 − 1
]
δ = 0,

which gives the leading asymptotics of δ:

δ ∼ e−K−2
0 ν−1ss8ea0K−1

0 ν−1+1.

It follows from [8] that the radius of convergence of B[y], hence that of (4.22), is
at least K−2

0 ν−1, and clearly this is independent of the size of the initial data and
forcing.
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4.2. Control of numerical errors in a discretized scheme. The errors in a
numerical discretization scheme for 3-D Navier-Stokes cannot be readily controlled
since these depend on derivatives of the classical solution; and these are not known
to exist beyond some initial time interval. In contrast to Navier-Stokes PDE, the p
derivatives of solution Û to the integral equation (2.8), are a priori bounded on any
interval [0, p0] ⊂ R

+. Calculation of the numerical solution to the integral equation
(2.8) with rigorous error control is relevant to Navier-Stokes solution in more than
one way.

As argued earlier, the knowledge of solution over an interval [0, p0] provides a

refined estimate of the exponent α for the solution Û(k, p) to the IE, and indeed of
the existence interval for the NS problem.

Further more, a numerical scheme to calculate solution to (2.8), which is analyzed
in this section is interesting in its own right. It provides through Laplace Transform
an alternate calculation of Navier-Stokes dynamics. Evidently, this method is not
numerically efficient to determine v(x, t) for fixed time t; nonetheless it may be
advantageous in calculation of some long time averages involving v and ∇v that
occur in analysis of turbulent flow. These can sometimes be expressed as functionals
of Û .

Definition 4.1. We introduce N (N) to be the integral operator based on Galerkin
projection onto the space k ∈ [−N, N ]3 \ 0

(4.24) N (N)
[
V̂

]
(k, p) = PN Û [0](k, p) − ikj

∫ p

0

G(z, z′; k)PN Ĥ
(N)
j (p′; k)dq′

where PN is the Galerkin projection to the space k ∈ [−N, N ]3 \ {0} and

(4.25) Ĥ
(N)
j = Pk

[
v̂
[0]
j ∗̂V̂ + V̂j ∗̂v̂[0] + V̂j

∗∗V̂
]
,

Remark 4.2. The proof of existence and uniqueness of the solution to the integral

equation Û (N) = N (N)
[
Û (N)

]
is very similar to the one sketched for Û . It is also

easily shown [12] that ‖Û − Û (N)‖(α) = O(1/N) as N → ∞.

Definition 4.3. We introduce a discrete operator N (N)
δ by

(4.26)
{
N (N)

δ

[
V̂

]}
(k, mδ) = −ikj

m−1∑

m′=0

w(1)(m, m′; k, δ)PN Ĥ
(N)
j,δ (k, m′δ′)

+ Û (0)(k, mδ) − ikjw
(1,1)(m, k, δ)PN Ĥ

(N)
j,δ (k, mδ)

where m is a positive integer,

(4.27)

Ĥ
(N)
j,δ (k, m′δ) =

∑

k′∈[−N,N ]3\{0,k}
Pk

[
v̂0,j(k

′)V̂ (k − k′, m′δ) + v̂0(k
′)V̂ (k − k′, m′δ)

]

+
∑

k′∈[−N,N ]3\{0,k},m′′=0..,m′

Pk

[
V̂j(k

′, m′′δ)V̂ (k − k′, (m′ − m′′)δ)
]
w(2)(m′, m′′; k, δ),

where we define V̂ (k, 0) = Û (0)(k, 0). The precise form of these functions and of
the weights w(1)(m, m′; k, δ), w(1,1)(m, k, δ) and w(2)(m′, m′′; k, δ) will depend on

the particular discretization scheme employed to calculate N (N)
[
Û

]
In order to
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keep the discussion relevant to any reasonable uniform δ discretization of p, we do
not specify the weights, aside from requiring consistency–that in the formal limit

of δ → 0, the discrete operator N (N)
δ involving summation reduces to the integral

operator N (N). Based on the behavior of the kernel G, consistency implies that

(4.28) |k||w(1)(m, m′; k, δ)| ≤ C1δ
1/2

m1/2

|kw(1,1)| ≤ C1,1δ(mδ)−1/2 , |w(2)| ≤ C2δ , |w(2,l)| ≤ C3δ

Definition 4.4. We let

T
(N)
E,δ = N (N)Û (N) −N (N)

δ Û (N)

be the truncation error due to q-discretization for a fixed number of Fourier modes,

[−N, N ]3. The discretization is consistent (in the numerical analysis sense) if T
(N)
E,δ

scales with some positive power of δ and involves a finite number of derivatives of
Û .

Definition 4.5. Define the norm ‖ · ‖(α,δ) by

‖f̂‖(α,δ) = sup
m∈Z+∪{0}

(1 + m2δ2)e−αmδ‖f̂(·, mδ)‖l1

Remark 4.6. More specific bounds on the truncation error depend on the specific
numerical scheme. It is however standard for numerical quadratures to choose the
weights w(j) so that integration in p is exact for a piecewise polynomial of given
order, l for p ∈ [0, p0]. For a general V̂ (·, p), the interpolation errors involve l + 1

q-derivatives. Since Û is analytic in p for p ∈ R
+ ∪ {0}, the derivatives of Û are

exponentially bounded for large p. It follows that ‖T (N)
E,δ ‖(α,δ) → 0 as δ → 0.

Theorem 4.1. Consider a discretized integral equation consistent with (2.8), based
on Galerkin truncation to [−N, N ]3 Fourier modes and uniform discretization in p,

Û
(N)
δ = N (N)

δ

[
Û

(N)
δ

]
,

see (4.26) below. Then, the error Û − Û
(N)
δ at the points p = mδ, m ≥ 1 ∈ Z

+

satisfies

(4.29) ‖Û(·, mδ) − Û
(N)
δ (·, mδ)‖l1 ≤

[
‖TE,N + T

(N)
E,δ ‖(α,δ)

] eαmδδ

(1 + m2δ2)

for m ≥ 1. In (4.1), TE,N is the truncation error due to Galerkin projection and

T
(N)
E,δ is the truncation error due to the δ-discretization in p for a given N , where

‖TE,N‖(α,δ) → 0 as N → ∞ for any δ and ‖T (N)
E,δ ‖(α,δ) → 0 as δ → 0.

Remark 4.7. A detailed proof is given in [12] for the more general integral equa-
tion obtained with accelerated variable q instead of p. Indeed, using an accelerated

variable offers the advantage that the ‖T (N)
E,δ ‖α,δ → 0 as δ → 0, uniformly in N .

This is not the case for n = 1, i.e. when we use p.



12 O. COSTIN1, G. LUO1 AND S. TANVEER1

5. Acceleration

We have already established that at most subexponential growth of ‖Û(·, p)‖l1

implies global existence of a classical solution to (1.1).
We now look for a converse: suppose (1.1) has a global solution, is it true that

Û(·, p) always is subexponential in p ? The answer is no in general. Any com-
plex singularity ts in the right-half complex t-plane of v(x, t) produces exponential

growth of Û with rate Re ts (oscillatory with a frequency Im ts), as it is seen by
looking at the the asymptotics of inverse the Laplace transform.

However, when there is no forcing f = 0, it can be proved (see Theorem 5.1 for
precise statements) that given a global classical solution of (1.1), there is a c > 0
so that for any ts we have | arg ts| > c. This means that for sufficiently large n, the
function v(x, τ−1/n) has no singularity in the right-half τ plane. Then the inverse
Laplace transform

(5.30) Uacc(x, q) =
1

2πi

∫ c+i∞

c−i∞

{
v(x, τ−1/n) − v[0](x)

}
eqτdτ

can be shown to decay as q → ∞, reflecting the exponential decay of v(x, t) for
large t.

This means that it is advantageous to find Uacc(x, q) so that the generalized
Laplace transform representation

(5.31) v(x, t) = v[0](x) +

∫ ∞

0

Uacc(x, q)e−q/tn

dq

gives a solution to (1.1). The transformation from U(x, p) to Uacc(x, q) is referred

to as acceleration and was first used in one variable by Écalle. In fact, there is an
integral transformation that directly relate U to Uacc, though this is not used in
the analysis.

The resulting integral equation for Û(k, q) has been analyzed [12] and results
similar to Theorems 2.1 and 3.1 hold. Indeed, preliminary numerical calculations,
described in §5.1 give encouraging results.
As mentioned in §5.1, while subexponential growth of Û guarantees global solution
to (1.1), the converse is not true if there exist purely complex right half t- plane
singularities. The following theorem shows however that a converse is true, for
f = 0, after suitable acceleration. Thus the problem of global existence of (1.1)

becomes a problem of asymptotics for solution Ûacc.

Theorem 5.1. Assume that v̂0 ∈ l1(Z3), ν > 0 and f̂ = 0 (zero forcing). If NS
has a global classical solution, then there exists n large enough so that Uacc(x, q) =

O(e−Cq1/(n+1)

) as q → +∞, for some C > 0 .

The proof of this theorem in given in [12].

Remark 5.1. Together with Theorem 2.1, Theorem 5.1 shows that global existence
is equivalent to an asymptotic problem. The solution to NS exists for all time if
and only if Ûacc decays for some n ∈ Z

+.

5.1. Preliminary Numerical Results. The computations described here are for
n = 1 (unaccelerated case) and n = 2. We present the details elsewhere[12]. The
code is far from being optimized and the results are only presented over a modest
interval in p or q.
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5.1.1. Kida Flow. Now we consider the Kida initial condition [14]

v1(x1, x2, x3, 0) = sin x1(cos 3x2 cosx3 − cosx2 cos 3x3).

The high degree of symmetry (preserved in time) lowers the number of compu-
tational operations. We computed the solution for ν = 0.1 and no forcing, for a
Reynolds number Re = 20π. This is not very large, but we were mainly interested
in testing the concepts developed. We used q0 = 10 and used 128 points in each
space dimension, i.e. N = 64, and step size ∆q = 0.05. To investigate the growth
of the solution Û with q, we computed the l1-norm

‖Û(·, q)‖l1,N :=
∑

k∈[−N,N ]3

|Û(k, q)|

and plotted ‖Û1(·, q)‖l1,128 vs. q in Fig.1. For comparison we also included in Fig.1
a plot of the solution to the original (unaccelerated) equation, i.e. q = p case.

Singularities in the right half plane, if present, come in conjugate pairs because
of reality of the solution. These exponential growth (mixed with oscillations) of

Û(k, p), seen in Fig.1 (a). The oscillation parameters depend on k while the growth
rate is virtually insensitive to k. By monitoring the oscillation against the growth
rate of each of the modes, we predicted that acceleration with n = 2 would elim-
inate singularities in the right-half τ = 1/tn plane. This expectation is confirmed

in Fig.1 (b), in which it is seen that ‖Û(., q)‖l1 decreases beyond some q. Actually,
it has been shown in [12] that if (1.1) has a global solution and appropriate accel-

eration is used, then ‖Û(., q)‖l1 is O(e−cq1/(n+1)

). Remarkably, though the interval
of calculation is only modestly long, [0, 10], this asymptotic trend is clear in Fig.2.
For large enough q, the low k modes dominate, while for smaller q more modes con-
tribute to the norm, and this explains the damped oscillation in present in Fig.2. It
is remarkable that a computation over a moderate q-interval can capture the large
q-trend.

6. Discussion and Conclusion

We have shown here how an integral equation approach akin to Borel summation
techniques is useful to the study of evolution PDEs, such as for 3-D incompressible
Navier-Stokes. In this formulation, the PDE problem becomes equivalent to a
nonlinear integral equations with unique solutions. These solutions are smooth and
analytic in the dual variable providing control of the errors. Furthermore, global
existence becomes an asymptotic problem. We also illustrate how to obtain better
asymptotic estimates can be obtained if the solution for a finite interval [0, p0] is
known. Preliminary numerical results are encouraging.

Indeed, the numerical approach outlined here, once fully optimized, is likely to
be of interest in its own right since long-time averages one encounters in turbulence
study may be more accurately computable in the dual variable representation rather
than employing a DNS.
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Figure 1. For zero forcing and ν = 0.1: (a). The original (unac-

celerated) equation, ‖Û1(·, p)‖l1,128 vs. p. (b). Accelerated equa-

tion with n = 2, ‖Û1(·, q)‖l1,128 vs. q.
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Figure 2. Asymptotic behavior of ‖Û1(·, q)‖l1,128. (a).

log ‖Û1(·, q)‖l1,128 vs. q1/3. (b)
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