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Basic Idea

Application of a very general but basic idea applicable to a whole

class nonlinear problems written abstractly as N [u] = 0.

Suppose, we determine some u0 for which initial/BC are

approximately satisfied and N [u0] = R is small. Then

E = u − u0 satisfies

LE = −R − N1[E] ,

where L = Nu, N1[E] = N [u0 + E] − N [u0] − LE

If L can be suitably inverted, and nonlinearity N1 is regular, then

we note E satisfies the weakly nonlinear equation,

E = E0 − L−1R − L−1N1[E]

where E0 solves LE0 = 0 and satisfies IC/BC.



Remarks

Inversion of this type needed in bounding |u− u0| in a problem of

the type: N [u; ǫ] = 0 where N [u0; 0] = 0

Previously, this idea used to determine errors in numerical

solution to elliptic PDEs(Nakao et al, (2005); determine existence

of Stokes Water Wave (Fraenkel, ’07) using a rough u0. Computer

assisted proof by Kobayashi (’04)

Not recognized until recently is the determination of an accurate

analytical quasi-solution u0, together with efficient error

determination.

Recent work in this direction: (Costin, Huang, Schlag, 2012),

(Costin, Huang, T., 2012), (Costin, T., 2013), (Costin, Kim, T.

2014),(T. 2013) in problems arising in NLS, Proof of Dubrovin

Conjecture for P-1, Blasius similarity solution, and water waves.



Painleve-1 and Tritronqué solution

Painleve-1 Equation:

y′′ + 6y2
− x = 0

Widely studied integrable ODE arising from reduction of many integrable

PDEs. Dubbed as a ‘nonlinear special function’ (Clarkson)

Unique solution to P-1 with the following property termed as the

Tritronqué (Boutroux)

y =

√

x

6

[

1 + o
(

x−5/8
)]

as x → +∞

Tritronqué properties studied before (Joshi & Kitaev (’01), Masoero (’11),

Olver & Trogdon (’14), · · · , ) Dubrovin, Grava and Klein (2008)

conjectured that the sector arg x ∈
(

−4
5
π, 4

5
π
)

is singularity free.

Dubrovin conjecture proved recently (Costin, Huang & T., ’14).



Past studies

Well-known Painleve solutions are single valued and meromorphic with

singularity location determined by initial condition y(x0), y
′(x0) For

P − 1 singularities are double poles in C.

Solution also characterized by xp, â2 in the local representation:

y(x) = −
1

(x − xp)2
+ (x − xp)

2
∞
∑

j=0

âj(x − xp)
j , (1)

â0 = −
xp

10
, â1 = −1

6
, â3 = 0 and for n ≥ 4, ân is determined from

ân = −
6

(n + 5)(n − 2)

n−4
∑

j=0

âkân−4−k (2)

Known that the closest xp from the origin for the tritronqué is on the

negative axis (Joshi & Kitaev, ’01), and its location determined

numerically.



Properties of tritronqué and open question

Singularties at larger distance can be rigorously estimated by

adiabatic invariance of conserved quantities(Costin et al,’14).

When xp is not particularly large, we are unaware of any method

of rigorous analysis to confirm its location.

In general, while numerical methods have been used to calculate

Painlev’e solutions to great accuracy (e.g. Fornberg), we are

unaware of rigorous error determination.

Will find accurate tritronqué approximation with rigorous error

bounds in some domain D ⊂ C. The method is an extension of

the methods used to prove Dubrovin Conjecture (Costin, Huang,

T.)

Will be clear that the method is much more general and applicable

to all solutions of all Painleve equations, and generally a broad

class of nonlinear problems.



Key Steps

1. Coming up with a compact analytical representation of

approximate solution y0.

2. Proving that R is appropriate small and that boundary/initial

conditions are satisfied to within small errors.

3. Finding bounds on L−1 good enough to apply contraction

mapping theorem.



Definitions

Define r = 7
10

, x0 = −770766
323285

= −2.384168.., τ = x−(L+x0+r)/2
(L−x0−r)/2

.

Also, define P (ζ) =
∑17

k=0 anζ
n, where where a0 = −x0/10,

a1 = −1/6, a2 = 19949
321055

, a3 = 0 and

an = −
6

(n + 5)(n − 2)

n−4
∑

j=0

akan−4−k for 17 ≥ n ≥ 4

Define Pu(τ ) =
∑22

k=0 ckτ
k where c := (c0, c1, · · · , c22) is given by

c =

(

335867

539062

,
419712

989125

, −
352463

3539236

,
60789

1703279

, −
132842

11825541

,
43961

54574472

,
39599

12036926

, −
213665

48625258

,

61644

14973337

, −
107283

33444500

,
44761

18892011

, −
28249

13550715

,
20641

14839893

,
13459

92774551

, −
4992

34838093

, −
11771

8149937

,

24115

27631671

,
42106

39550107

, −
21163

32637441

, −
9782

15918509

,
11581

32652169

,
14692

88640147

, −
12278

123249611

)

(3)



Definitions II

Further, take b = 4
5
(24)1/4, a = 5

2
b,

N0(x) = − 4412401

98304
√

6
x−19/2

[

1 − 1225

90049
√

6
x−5/2 +

30625

2161176
x−5

]

G1(x) = x−5/8 exp
[

−ibx5/4
]

,G2(x) = x−5/8 exp
[

ibx5/4
]

w0 =
2
∑

j=1

(−1)j

ia
Gj(x)

∫ x

∞
G3−j(y)yN0(y)dy. = Re

{∫ ∞

0
e−sbx5/4W0

(

x5/4, s
)

ds

}

,

W0(z, s) = −4412401
√

6

368640az7

(

(1 + is)−15/2 − 1225
√

6

540294z2
(1 + is)−19/2

+
30625

2161176z4
(1 + is)−23/2

)

(4)

Note w0 is known in terms of erf function



Further Definitions

We also define domains Dj for j = 1, · · · , 4 with D1 = [5.5,∞),

D2 = [−0.49, 5.5), D3 = [x0 + r,−0.49) and

D4 = {x ∈ C : |x− x0| = r, x 6= x0 + r}. We define D = D1 ∪D2 ∪D3 ∪D4

(See Figure).

Re(x)

Im(x)
arg(x) = 4π/5

arg(x) = 6π/5

5.5-0.49x0

D1D2D3

D4

Figure 1: Sketch of Domain D = D1 ∪ D2 ∪ D3 ∪ D4



Main Results

Theorem: Let

y0(x) =



























√

x
6

[

1 + 1

8
√

6
x−5/2 − 49

768
x−5 + 1225

1536
√

6
x−15/2 + w0(x)

]

on D1

− 1
(x−x0)2

+ Pu(τ(x)) on D2 ∪ D3

− 1
(x−x0)2

+ (x − x0)2P (x − x0) on D4

(5)

Then the tritronqée solution y to P-1 has the representation

y(x) = y0(x) + E(x) ,where
∣

∣

∣
E(x)

∣

∣

∣
≤ 2.35 × 10−5 ,

∣

∣

∣
E′(x)

∣

∣

∣
≤ 1.16 × 10−4

(6)

Moreover, y has a unique double pole singularity at x = xp ∈ {ζ : ζ ∈ C, |ζ − x0| < r} with

|xp − x0| ≤ 4.1× 10−6. This is the closest singularity of the tritronquée solution from the origin.



Crux of the Proof

In domain Dj , j ≥ 2, E = y − y0 satisfies

E′′ + 12y0E = −R(x) − 6E2(x) (7)

G1, G2 are fundamental solutions to G′′ + 6y0G = 0; hence

E(x) =
1

W

∫ x

xe

(G2(x)G1(t) − G1(x)G2(t))
(−R(t) − 6E2(t)

)

dt

+ E(xe)G1(x) + E′(xe)G2(x) =: N [E] (8)

with y0 is chosen to make R small.

Bounds on G1, G2 obtained abstractly, or by using exact Green’s function for a

neighboring problem.

Small IC/BC and small R, guarantees small E0 = N [0] and N is contractive in

a small ball in C(Dj). Smoothness of G1, G2, shows solution to be in C2(Dj).

Continuity of y0 +E and y′
0 +E′ at xe guarantees solution to be the tritronqué.



Determing y0

In D1, a few terms of the asymptotic series of the Tritronqué for

large x used; but to obtain 10−12 accuracy for x ≥ 5.5, needed to

include w0.

With y and y′ at x = 5.5, projected numerical solution in

[x0 + r, 5.5] to a truncated Chebyshev basis, after taking out

−1/(x − x0)
2 to obtain Pu(τ (x)). This leads to

y0 = − 1
(x−x0)2

+ Pu(τ (x)) in D2 ∪ D3.

In domain D4 we used a truncated power-series representation,

choosing x0 and a2 to satisfy continuity condition on y and y′ at

x = r.



Bounds for G1, G2 in Domain D2 = [−0.49, 5.5]

Recall G1, G2 fundamenal solution to G′′ + 12y0G = 0. It is easy to prove

y0 > 0, y′
0 > 0 in D2.

Lemma 0.1 ‖G′
1‖∞ ≤ 3.391, ‖G1‖∞ ≤ 3.775, ‖G′

2‖∞ ≤ 1 and

‖G2‖∞ ≤ 1.114 on D2.

Proof: On multiplication by 2G′
j , integration from L = 5.5 to x and gives

G′
j
2
(x)+12y0(x)G

2
j (x)+12

∫ L

x
y′
0(t)G

2
j (t)dt = G′

j
2
(L)+12y0(L)G2

j (L) (9)

Using y0, y
′
0 > 0, and initial conditions on Gj , above implies

G′
1(x)

2 + 12y0(x)G1(x)
2 ≤ 12y0(L), (10)

G′
2(x)

2 + 12y0(x)G2(x)
2 ≤ 1, (11)

|G′
1| ≤

√

12y0(L) ≤ 3.391 and |G′
2| ≤ 1 are immediate. To find bounds on G1,

G2, it is convenient to partition D2 into two intervals [−0.49, γ0) and [γ0, 5.5),

where γ0 will be chosen appropriately.



Bounds on G1, G2 in D2–continued

Using bounds on |G′
1|,

|G1(x)| ≤
√

y0(L)
√

y0(x)
when γ0 ≤ x ≤ L, and for x ∈ (−0.49, γ0),

|G1(x)| ≤
∫ γ0

x
|G′

1(x)|dx + |G1(γ0)| ≤ (γ0 − x)
√

12y0(L) +

√

y0(L)
√

y0(γ0)

Since y0 is monotonically increasing, it follows from above that for any x ∈ D2

∣

∣

∣
G1(x)

∣

∣

∣
≤ (γ0 + 0.49)

√

12y0(L) +

√

y0(L)
√

y0(γ0)
(12)

Similarly, using bounds on G′
2, we obtain for any x ∈ D2,

∣

∣

∣
G2(x)

∣

∣

∣
≤ 1
√

12y0(γ0)
+ (γ0 + 0.49) (13)

From explicit evaluation with γ0 = − 16
100

, obtain lemma bounds.



Bounds on G1, G2 in domain D4

Y0(ζ) := y0(x0 + ζ) = − 1

ζ2
+ ζ2P (ζ) (14)

where ζ = x − x0, P (ζ) =
∑17

j=0 ajζ
j known.

We checked
∣

∣

∣
aj

∣

∣

∣
≤ 1

2j for 0 ≤ j ≤ 17.

Definition 0.2 Define G1(ζ) =
∑∞

n=0 Anζ4+n, G2(ζ) =
∑∞

n=0 Bnζn−3, where

A0 = 1, A1 = A2 = A3 = 0, and

An = − 12

n(n + 7)

min{n−4,17}
∑

k=0

akAn−4−k , for n ≥ 4 (15)

B0 = 1, B1 = B2 = B3 = B7 = 0

and for n ≥ 4, n 6= 7, Bn = − 12

n(n − 7)

min{n−4,17}
∑

k=0

akBn−4−k (16)

G1, G2 are independent solutions to G′′ + 6Y0G = 0 with Wronskian −7.



Bounds on G1, G2 in D4–II

Lemma 0.3 For any integer n ≥ 1,

∣

∣

∣
An

∣

∣

∣
≤ cA

(3

4

)n
,
∣

∣

∣
Bn

∣

∣

∣
≤ cB

(3

4

)n
, (17)

where cA = 0.21 and cB = 0.85,

Proof: We checked the inequalities for the first twenty two coefficients

{An, Bn}22
n=1 through explicit calculations. Assume the inequality holds for

n ≤ n0 for some n0 ≥ 22. Then, using bounds on ak, and noting that recurrence

relations no longer involves A0, we obtain

∣

∣

∣
An0+1

∣

∣

∣
≤≤ 36cA

(n0 + 1)(n0 + 8)

(

4

3

)4 (3

4

)n0+1

≤ cA

(

3

4

)n0+1

(18)

So, the inequality holds for n0 + 1. By induction it holds for all n. The same

induction proof works for Bn after using 36
(n0+1)(n0−6)

(

4
3

)4 ≤ 1 for n0 ≥ 22.

This immediately leads to bounds on G1, G2 and their derivatives in D4.



Location of closest singularity xp

Cauchy integral formula implies that the integral − 1
2πi

∮

|ζ|=r ζy(x0 + ζ)dζ

equals to the number of singularities of y(x) in |x − x0| < r. From this

observation, we calculate

∣

∣

∣

∣

1+
1

2πi

∮

|ζ|=r
ζy(x0 + ζ)dζ

∣

∣

∣

∣

≤
∣

∣

∣

∣

1+
1

2πi

∮

|ζ|=r
ζy0(x0 + ζ)dζ

∣

∣

∣

∣

+r2‖y−y0‖∞ ≤ 1.2×10−5

(19)

implying exactly one singulariy in |x − x0| < r.

Also, Cauchy formula gives xp − x0 = − 1
4πi

∮

|ζ|=r ζ2y(x0 + ζ)dζ, and hence

|xp − x0| ≤
∣

∣

∣

∣

− 1

4πi

∮

|ζ|=r
ζ2E(ζ)dζ

∣

∣

∣

∣

≤ r3

2
‖E‖∞ ≤ 4.1 × 10−6,



Conclusion

1. We showed how a suitably accurate approximate solution u0 can be

constructed and used to determine rigorous error bounds.

2. ODE or systems of ODEs, including two point boundary value

problems are easily amenable through this method. (Costin & T, ’13,

Costin, Kim & T, ’14) Opens the opportunity for

homoclinic-heteroclinic determination in higher dimension. Also,

integro-differential equations are amenable to this approach.

3. PDE similarity blow up or spectral analysis in 1+1 dimension

amenable to our type of analysis. (Costin et al, ’13.)

4. PDEs also fit into this approach, though the challenge is always to

find a suitably compact representation; as otherwise, it becomes a

computer assisted proof.

5. Papers available online. http://www.math.ohio-state.edu/∼tanveer
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