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Background

Mathematical models involves simplifying assumptions whe re

"small" terms are ignored. However, for physical relevance , any

term dropped cannot have a "singular" effect on the solution .

For instance, it is reasonable to ignore the gravitational p ull of

distant stars in planetary orbit computation, except on ver y large

time scales.

However, for fluid motion past a solid body, viscous effects

cannot be ignored regardless of viscosity size.

Whether or not one can ignore a term that seems small depends

on whether it is a regular or singular perturbation. A pertur bation

is regular if every ǫ = 0 solution is obtained as limǫ→0 of some

non zero ǫ solution and vice versa.

Prediction of singular effects or lack of it not always obvio us



Simple illustration of regular and singular perturbation

Want Solution X to AX = B, where A = A(ǫ), ǫ small

We compare two cases (a) and (b) as follows:

Case (a) : A(ǫ) =





1 1

ǫ 2



 , B =





1

0





Case (b) : A(ǫ) =





1 1

2 2 + ǫ



 , B =





1

0





Solutions : X =





2
2−ǫ

− ǫ
2−ǫ



 , X =





2+ǫ
ǫ

−2
ǫ



,

Regular perturbation X = X0 + ǫX1 + .. in case (a) , but not (b)



ODE examples of perturbations

For x ∈ (0, L), where f and g are given regular functions,

Find y(x) satisfying y′′+f(x)y′+ǫg(x)y = 0 , y(0) = 1, y′(0) = 0.

Find y(x) satisfying ǫy′′+f(x)y′+g(x)y = 0 , y(0) = 1 , y′(0) = 0.

Not difficult to prove that ǫ term in Case (a) is a regular

perturbation, while it is a singular perturbation in Case (b) .

Distant Star effects on planetary orbits is similar to the ǫ term in

first case , while viscous effects in fluid flow problem is like the ǫ

term in the second case above

A formal ansatz y ∼ y0 + ǫy1 + .. will be consistent in the first

case but inconsistent in the second . Typically, users of

perturbation theory take this as evidence for the type of

perturbation. This type of evidence is not always reliable.



Example of Pertubation in PDE evolution problems

Find u(x, t) for x ∈ (−∞, ∞), and t > 0 satisfying:

ut + uux = ǫuxx , u(x, 0) = u0(x)

When ǫ = 0, u = u(0) evolution typically looks like:

u(x ,0) u(x 0.5)

x

u

, , u(x,2)

∂xu(0) blows up first at some time t = ts. As ǫ → 0+, actual

solution u → u(0) for t < ts. For t ≥ ts, limǫ→0 u 6= u(0), i.e. ǫ

term is a singular perturbation. Here, singular perturbation

warned by singular behavior of ∂xu(0).Not always the case!!



Mathematically Precise Notions

Any mathematical model can be described abstractly by

N [u; u0, ǫ] = 0,

where operator N can describe arbitrary differential, integral or

algebraic operator. u0 describes initial and/or boundary

conditions and ǫ describes parameters.

Definition: The above problem is well posed if there is a unique

solution u that depends continuously on u0 and parameters ǫ.

Ill-posed problems are physically irrelevant since we cann ot

measure u0 and ǫ to infinite precision. If solution changes

discontinously, say at ǫ = 0, then the ǫ = 0 simplified model is

not a good model since singular perturbation effect has been

ignored. In the evolution problem for ǫ = 0, if u0 blows up in finite

time, then at least for t ≥ ts, cannot ignore the ǫ term.



Mathematical Model of Viscous Fingering Problem

x

Ω

y=1

Fluid of zero viscosity

λ δ Ω

y=−1

Viscous Fluid
V=1

x

∆φ = 0 , (x, y) ∈ Ω (exterior of finger)

On ∂Ω: vn = ∂φ
∂n

, and φ = ǫκ,where κ, ǫ denote curvature and

surface tension

Boundary condition at ∞: φ ∼ x + O(1) as x → ∞
At the walls: ∂φ

∂y
(x, ±1) = 0

For ǫ = 0, Saffman & Taylor (’58) found steady finger solutions

with width λ ∈ (0, 1); experiment yields λ ≈ 1
2

. Perturbation in

powers of ǫ consistent! Yet, we now know the model is ill-posed

at ǫ = 0.



Perils in relying simply on consistency check

Consider the solution φ(x, y) to

∆φ = 0 for y > 0

On y = 0, require Boundary Condition

ǫφxxx(x, 0) + (1 − x2 + a)φx(x, 0) − 2xφy(x, 0) = 1,

where a ∈ (−1, ∞) is real. Also require that as x2 + y2 → ∞,

(x2 + y2) |∇φ| bounded.

Can show W (x + iy) = φx(x, y) − iφy(x, y) satisfes

ǫW ′′ +
[−(z + i)2 + a

]

W = 1

For ǫ = 0, W = W0 ≡ 1
−(z+i)2+a

. Ansatz W = W0 + ǫW1 + ..

consistent. Suggests no restriction on a. Yet, we will discover

this conclusion to be incorrect !



Perils in relying on simply consistency –II

With scaling of dependent and independent variable, obtain :

z + i = i2−1/2ǫ1/2Z ; W = 2−1ǫ−1G(Z) ; a = 2ǫα

G′′ − (
1

4
Z2 + α)G = −1

Using parabolic cylinder functions, the above problem has a n

explicit solution. Requiring G → 0 as Z → ∞ for

arg Z ∈ (−π
2
, π

2

)

is possible if and only for integer n ≥ 0

α = (2n +
3

2
) , i .e. a = 2ǫα = 2ǫ

(

2n +
3

2

)

limǫ→0+ solution not equal ǫ = 0 solution, unless a is as above.

Discontinuity of solution set at ǫ = 0. So ǫ term cannot be

discarded, despite consistency of regular perturbation se ries.



Surprises when close to an ill-posed system

Suppose ǫ1 << ǫ in the following variation of the toy problem:

ǫW ′′ +

[

−(z + i)2 + a − ǫ1

(z + i)2

]

W = 1 for y = Im z ≥ 0

Question: Should we ignore ǫ1 term ? Appears reasonable since

a scales as ǫ without ǫ1 term and ǫ1

(z+i)2
<< a for y = Im z ≥ 0.

This reasoning is incorrect .

Explanation: what matters is the size of ǫ1-term in an ǫ1/2

neighborhood of z = −i. It is O(ǫ) when ǫ1 = O(ǫ2).

Similar situation arises for small surface tension viscous

fingering Saffman-Taylor problem. Combescot et al (1986),

Shraiman (1986), T. (1986, 1987), Xie & T (2003)

The toy problem also illustrates that disparate length (and time)

scales can interact in nearly ill-posed problem.



Regularity study for time-evolving problems

Recall for 1-D Burger’s equation, any small viscous term bec ome

important if the inviscid Burger’s equation develops singu larity in

ux.

By analogy, if we study any time evolution equation, it is

important to know if the problem has smooth solution for all t ime

or if the solution becomes singular like inviscid Burger’s s olution.

If it becomes singular, one seeks to determine what regulari zation

ignored in the model should be included to describe the physi cal

situation. This is true whether or not we model bacterial gro wth,

thin fluid film, or evolution of stars. One of this outstanding

problem is the master equation for fluid dynamics: 3D

Navier-Stokes equation



3-D Navier-Stokes (NS) problem

vt + (v · ∇)v = −∇p + ν∆v + f ; ∇ · v = 0,

where v = (v1, v2, v3) ∈ R
3 is the fluid velocity and p ∈ R

pressure at x = (x1, x2, x3) ∈ Ω at time t ≥ 0. Further, the

operator (v · ∇) =
∑3

j=1 vj∂xj
, ν = nondimensional visocity

(inverse Reynolds number)

The problem supplemented by initial and boundary condition s:

v(x, 0) = v0(x) (IC) , v = 0 on ∂Ω for stationary solid boundary

We take Ω = R
3 or Ω = T

3[0, 2π]; no-slip boundary condition

avoided, but assume in the former case ‖v0‖L2(R3) < ∞.

Millenium problem: Given smooth v0 and f , prove or disprove

that there exists smooth 3-D NS solution v for all t > 0. Note:

global solution known in 2-D.



NS - a fluid flow model; importance of blow-up

vt + (v · ∇)v = −∇p + ν∆v + f ; ∇ · v = 0,

Navier-Stokes equation models incompressible fluid flow.

vt + (v · ∇)v ≡ Dv
Dt

represents fluid particle acceleration. The

right side (force/mass) can be written: ∇ · T + f , where T : a

tensor of rank 2, called stress with

Tjl = −pδj,l +
ν

2

[

∂vj

∂xl

+
∂vl

∂xj

]

The second term on the right is viscous stress approximated t o

linear order in ∇v. Invalid for large ‖∇v‖ or for non-Newtonian

fluid (toothpaste, blood)

Incompressibility not valid if v comparable to sound velocity

Whether or not fluid turbulence is describable by Navier-Sto kes

depends on its global regularity.



Definition of Spaces of Functions

Hm(R3): closure of C∞
0 functions under the norm

‖φ‖Hm =







∑

0≤l1+l2+l3≤m

‖ ∂l1+l2+l3φ

∂xl1
1 ∂xl2

2 ∂xl3
3

‖2
L2







1/2

Note H0 = L2 If φ is a vector or tensor, components are also

involved in the summation.

Hm(T3[0, 2π]): Closure under the above norm of C∞ periodic

functions in x = (x1, x2, x3) with 2π period in each direction.

Lp

(

[0, T ], Hm(R3)
)

will denote the closure of the space of

smooth functions of (x, t) under the norm:

‖v‖Lp,tHm,x
≡ ‖‖v(., t)‖Hm‖Lp



Basic Steps in a typical nonlinear PDE analysis

Construct an approximate equation for v(ǫ) that formally reduces

to the PDE as ǫ → 0 such that ODE theory guarantees solution

v(ǫ)

Find a priori estimate on v that satisfies PDE and also obeyed by

v(ǫ)

Use some compactness argument to pass to the limit ǫ → 0 to

obtain local solution of PDE

If a priori bounds on appropriate norms are globally controlled,

then global solution follows. One way to get to classical (st rong)

solutions is to have a priori bounds on ‖v(., t)‖Hm for any m large

enough.

For weak solutions, starting point is an equation obtained

through inner product (in L2 ) with a test function.



Some basic observations about Navier Stokes

For f = 0, Ω = R
3, if v(x, t) is a solution, so is

vλ(x, t) = 1
λ
v

(

x
λ
, t

λ2

)

.

A space-time norm ‖.‖ is called sub-critical if for λ > 1,

‖vλ‖ = λ−q‖v‖ for some q > 0. If the above is true for q < 0, the

norm is termed super-critical

Basic Energy Equality for f = 0:

1

2
‖v(., t)‖2

L2
+ ν

∫ t

0

‖∇v(., t′‖2
L2

dt′ =
1

2
‖v0‖2

L2

Therefore, for following super-critical norms over time interval [0, T ]:

‖v‖L∞,tL2,x
≤ ‖v0‖L2

, ‖v‖L2,tH1
x

≤ C

These are the only two known globally controlled quantities



Results by Leray

Leray (1933a,b, 1934) made seminal contributions:

A solution guaranteed in the space

L∞

(

(0, T ), L2(R
3)

) ∩ L2

(

(0, T ), H1(R3)
)

for any T > 0.

For regular f and v0, unique smooth solution in (0, T ∗)

For t ∈ (0, T ∗), weak and strong solution the same. Only small

v0, f or large viscosity gives T ∗ = ∞
∫ T

0
‖∇v(., t)‖∞dt < ∞ guarantees smooth solution on (0, T ].

Uniqueness of Leray’s global weak solution for t > T ∗ not known

Leray conjectured formation of singular 1-D line vortices w here

∇ × v blows up at some time t0.

Also conjectured blow up for f = 0 via similarity solution

v(x, t) = (t0 − t)−1/2V

(

x

(t0 − t)1/2

)



Some known important results -II

Cafarelli-Kohn-Nirenberg (1982): 1-D Hausdorff measure o f the

singular space-time set for Leray’s weak solution is 0.

Necas-Ruzicka-Sverak (1996): no Leray similarity solutio n for

v0 ∈ L3. Tsai (2003): no Leray-type similarity solution with finite

energy and finite dissipation.

Beale-Kato-Majda (1984):
∫ T

0
‖∇ × v(., t)‖∞dt < ∞ guarantees

smooth v over [0, T ]

Other controlling norms by Prodi-Serrin-Ladyzhenzkaya an d

Escauriaza, Seregin & Sverak (2003): ‖.‖Lpt
Ls,x

for 3
s

+ 2
p

= 1 for

s ∈ [3, ∞).

Constantin-Fefferman (1994): If ∇×v
|∇×v|

is uniformly Holder

continuous in x in a region where |∇ × v| > c for a sufficiently

large c for t ∈ (0, T ], then smooth N-S solution exists over (0, T ]



Difficulty with Navier-Stokes in the usual PDE analysis

Nonlinearity strong unless ν is large enough for given v0 and f .

Rules out perturbation about linear problem.

ν = 0 approximation (3-D Euler equation) no simpler. Rules out

any perturbative treatment.

The norms that are controlled globally are all super-critic al: does

not give sufficient control over small scales.

Other techniques include introduction of ǫ regularizations like

hyperviscosity, compressibility, etc. and taking limit ǫ → 0

Maddingly-Sinai (2003): if −∆ is replaced by (−∆)α in N-S

equation, and α > 5
4

then global smooth solution exists.

Tao (2007) believes that no "soft" estimate can work includi ng

introduction of regularization. Believes global control o n some

critical or subcritical norm a must.



An alternate Borel based approach

Sobolev methods give no information about solution at t = T ∗

when a priori Energy estimates breakdown.

A more constructive approach is to use ideas of Borel sum, wit h

specific v0, f and ν in mind.

Borel summation is a procedure that, under some conditions,

generates an isomorphism between formal series and actual

functions they represent (Ecalle, ..., O. Costin).

Formal expansion of N-S solution possible for small t:

v(x, t) = v0(x) +
∑∞

m=1 tmvm(x).

Borel Sum of this series, which is sensible for analytic v0 and f ,

leads to an actual solution to N-S (O. Costin & S. Tanveer, ’06 ) in

the form: v(x, t) = v0(x) +
∫ ∞

0
e−p/tU(x, p)dp. This form

transcends assumptions on analyticity of v0 and f or of t small



Borel Summation Illustrated in a Simple Linear ODE

y′ − y =
1

x2

Want solution y → 0, as x → +∞
Dominant Balance (or formally plugging a series in 1/x):

y ∼ − 1

x2
+

2

x3
+ ...

(−1)kk!

xk+1
+ .. ≡ ỹ(x)

Borel Transform:

B[x−k](p) =
pk−1

Γ(k)
= L−1[x−k](p) for Re p > 0

B
[

∞
∑

k=1

akx−k

]

(p) =
∞
∑

k=1

ak

Γ(k)
pk−1



Borel Summation for linear ODE -II

Y (p) ≡ B[ỹ](p) =
∞
∑

k=1

(−1)kpk = − p

1 + p

y(x) ≡
∫ ∞

0

e−pxY (p)dp = LB[ỹ]

is the linear ODE solution we seek. Borel Sum defined as LB.

Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform B[ỹ0](p) analytic for p ≥ 0,

2. e−αp|B[ỹ0](p)| bounded so that Laplace Transform exists .

Remark: Difficult to check directly for non-trivial problem s



Borel sum of nonlinear ODE solution

Instead, directly apply L−1 to equation; for instance

y′ − y =
1

x2
+ y2; with lim

x→∞
y = 0

Inverse Laplace transforming, with Y (p) = [L−1y](p):

−pY (p) − Y (p) = p + Y ∗ Y implying Y (p) = − 1

1 + p
− Y ∗ Y

1 + p

(1)

For functions Y analytic for p ≥ 0 and e−αpY (p) bounded, it can

be shown that (1) has unique solution for sufficiently large α.

Implies ODE solution y(x) =
∫ ∞

0
Y (p)e−pxdp for Re x > α

The above is a special case of results available for generic

nonlinear ODEs (Costin, 1998)



Eg: Illustrative IVP: 1-D Heat Equation

vt = vxx , v(x, 0) = v0(x) , v(x, t) = v0 + tv1 + ..

Obtain recurrence relation

(k + 1)vk+1 = v′′
k , implies vk =

v
(2k)
0

k!

Unless v0 entire, series
∑

k tkvk factorially divergent.

Borel transform in τ = 1/t: V (x, p) = B[v(x, 1/τ ))](p),

V (x, p) = p−1/2W (x, 2
√

p), then Wqq − Wxx = 0

Obtain v(x, t) =
∫

R
v0(y)(4πt)−1/2 exp[−(x − y)2/(4t)]dy,

i.e. Borel sum of formal series leads to usual heat solution.

We have applied these simple ideas to provide an alternate

existence theory for 3-D Navier-Stokes (Costin & T., ’08, Co stin,

Luo & T. ’09)



Generalized Laplace Representation and Results

Solution representation in the form

v(x, t) = v0(x) +

∫ ∞

0

U(x, q)e−q/tn

dq

Gives rise to an integral equation for U(x, q) which was shown to

have global smooth solution for q ∈ R
+

If the solution Û decays for large q, global NS existence follows.

On the other hand, if global smooth NS solution exists, then f or

some large enough n, ‖Û(., q)‖l1 decreases exponentially in q.



Conclusions

Tried to show why theoretical questions of existence, uniqu eness

and well-posedness have a bearing on mathematical model and

their physical predictions.

In particular, a model that is not well-posed is intrinsical ly

deficient in predicting physical reality. Explained this in terms of

the viscous fingering problem. How this 50 year old problem wa s

not recognized to be ill-posed until relatively recently. A lso

showed how a system close to ill-posedness behaves in

unpredictable manner.

Global regularity and singularity of smooth solutions in a t ime

evolution model are also important physically. Explained h ow

arbitrarily small viscosity effects the solution after the invisid

equation becomes singular.

Explained why regularity questions in 3-D Navier Stokes pro blem

is such an important problem to generate the attention of Cla y

Foundation to be named one of the seven millenium problems.
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