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Idealized Hele-Shaw flow model

Gap averaged Stokes flow: u1 = − b2

12µ1

∇p1 in Ω1 and

u2 = − b2

12µ2

∇p2 in Ω2. With φ1 = − b2

12µ1

p1, φ2 = − b2

12µ2

,

incompressibility gives harmonic φ1, φ2. Nondimensionalizing:
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ϕ1∼ x+O(1)
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Ω

On Γ, φ1 − µ2

µ1

φ2 = ǫκ, ∂φ1

∂n
= ∂φ2

∂n
= vn, normal interface speed



Zero viscosity ratio simplification

In this case, we only need consider one domain Ω = Ω1, where

∆φ = 0

Far-field and wall conditions in non-dimensionalized form:

φ ∼ x + O(1) as x → +∞ , and
∂φ

∂y
(x,±1) = 0

Interfacial conditions:

vn =
∂φ

∂n
, and φ = ǫκ

where κ is the curvature and ǫ surface tension coefficient. These

interfacial conditions ignores 3-D thin-film effects. It tu rns out

(Taylor and Saffman,’59), for steady flow, the problem with

nonzero viscosity ratio is equivalent to a zero-viscosity p roblem

with change of parameters.



Conformal map for 1-fluid-channel

Ω

Conformal map from unit−semi−circle
to physical domain Ω in one fluid problem
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Im f = 0 = Imω on (-1,1). Interface condition on |ζ| = 1:

Re

[
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ζZζ

]

= Re
ζWζ

|Zζ|2
, ReW = −

ǫ

|Zζ|
Re
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ζZζζ
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Conformal map for 1 fluid-radial case

by injection of inviscid

X ζ−circle
z=Z(ζ,t)

z=x+iy plane

Viscous fluid displaced

fluid.
Ω

Z(ζ, t) = a(t)
ζ

+ f , W (ζ, t) = − log ζ + ω, where f , ω analytic in

|ζ| < 1. As before on |ζ| = 1:

Re

[

Zt

ζZζ

]

= Re
ζWζ

|Zζ|2
, ReW = −

ǫ

|Zζ|
Re

[

1 +
ζZζζ

Zζ
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Steady finger formulation in co-moving frame

z=x+iy plane

y=

y=1

λ

y=−λ
y=1

Α

Β

C

C AB C
−1 0 1z=Z(ζ)

Ω

ζ− plane

With Z(ζ) = Z0(ζ;λ) + f(ζ), where Z0(ζ;λ) is the ZST solution,

obtain wall condition Im f = 0 on (-1,1) and on interface |ζ| = 1:

Re f = −
ǫ

|f ′ + h|
Re

[

1 + ζ
f ′′ + h′

f ′ + h

]

, where h(ζ) =
1 − (2λ − 1)ζ2

ζ(ζ2 − 1)

Formal expansion f ∼ ǫf1 + ǫ2f2 + .. consistent for λ ∈ (0, 1) !



Formal symmetric steady-finger calculation

To determine λ, we first determine where f ∼ ǫf1 + ǫ2f2 + .. is

invalid. Analytic continuation to |ζ| > 1, assuming boundary to

be analytic (proved by T. and Xie, ’03),

f = ǫI −
2ǫ

(f ′ + h)1/2(f ′(1/ζ) + h(1/ζ))1/2

×

[

1 + ζ
f ′′ + h′

2[f ′ + h]
+

f ′′(1/ζ) + h′(1/ζ)

2ζ {f ′(1/ζ) + h(1/ζ)}

]

,

where I is a nonlocal but analytic term. It is seen

f ∼ ǫf1 + ǫ2f1 + .. not valid where h(ζ) = 0, i.e.

1 − (2λ − 1)ζ2 = 0. Ignoring ǫI , "inner-outer" Kruskal-Segur

(’85) type asymptotic calculation determines O
(

e−ǫ−1/2

)

corrections that determine λ (Combescot et al, ’86, ’87), Tanveer

’87. Justification by Xie & T. ’03, T. & Xie ’03.



Initial Value problem for ǫ = 0

For ǫ = 0, ω = 0; then the equation on |ζ| = 1 becomes

Re

[

Zt

ζZζ

]

= −
1

|Zζ|2

ǫ = 0 dynamics well-studied (Polabarinova-Kochina, ’46, Galin ,

’46, Richardson, Gustaffson, ....) However, ǫ = 0 evolution

ill-posed no continuity with respect to I.C. in a physically reasonable

norm (say H1) Howison (’86), Fokas & T. (’98).

Analytic continuation to |ζ| > 1 results in

Zt = q1Zζ + q2 , q1 =
−ζ

2πi

∮

|ζ′|=1

dζ′

ζ′

(ζ + ζ′)

(ζ′ − ζ)

1

|Zζ′ |2
dζ′

q2 =
−2ζ

Zζ(1/ζ, t)



ǫ = 0 evolution problem

Since q1 and q2 analytic in |ζ| > 1 for as long as a solution exists,

Z(ζ, t) satisfying Zt = q1Zζ + q2 has the same type of

singularities as Z(ζ, 0); the singularities only move according to

ζ̇s = −q1(ζs, t). Further, it is found d
dt

∮

C(t)
Zζdζ = 0 for a

moving curve C(t) advected by the flow ζ̇ = −q1(ζ, t), i.e. there is

no spontaneous generation of singularities.

Since approach of |ζ| = 1 from the outside gives

Re q1

ζ
= 1

|Zζ|2
> 0, from maximum principle, Re q1(ζs(t),t)

ζs(t)
> 0,

implying ζ̇s

ζs
< 0. Therefore singularities on the outside

continually approach |ζ| = 1 which corresponds to the interface.

This is one way to understand the origin of the ill-posedness (T.,

’93). Initial data infinitesimally close to each other for |ζ| ≤ 1 can

have substantially different singular structure in |ζ| > 1; yet

these singularities affect the interface shape later in tim e.



Effect of small ǫ on evolution

Since ǫ = 0 is an ill-posed interface evolution problem, yet

apparently well-posed when the domain is extended to |ζ| > 1, it

was suggested (T. ’93) that a proper-framework to understan d

evolution for ǫ << 1 perturbatively was to consider the evolution

in |ζ| > 1. This is complicated because our knowledge of

nonlinear PDEs in the complex plane is very limited. However ,

some formal results have been obtained, some of which have

been justified (Fokas & T., ’98, Costin & T., ’02).

For isolated singularities of particular types, nonzero ǫ creates a

singularity cluster centered around a point ζs, where ζ̇s = −q1.

For a zero of Zζ(ζ, 0), new singularity cluster is created that move

away from a zero. This implies that generally

limǫ→0 Z
(ǫ)(ζ, t) 6= Z(0)(ζ, t), even when Z(0)(ζ, t) is smooth on

|ζ| = 1, i.e. corresponds to a smooth interface !



Singular effect of ǫ 6= 0 on finger evolution

Evolution of "finger width" Λ = 1/tip speed for a sequence of

decreasing ǫ. Prediction based on formal asymptotics agree with

numerical computation (Siegel et al, 96)



Toy problem for singular ǫ effect on time evolution

Consider the following PDE for Im ξ ≥ 0:

Gt + iGξ = 1 + 2iǫ
[

G−1/2
]

ξξξ
with G(ξ, 0) = 1 − 2iξ

Formal expansion G ∼ G(0) + ǫG(1) + .. gives:

G0(ξ, t) = 2i (ξ0(t)− ξ) , where ξ0(t) = −
i

2
(1 − t)

G1
t + iG1

ξ = 30(2iξ0(t) − 2iξ)−7/2 , where G1(ξ, 0) = 0

G1(ξ, t) = −12 (2iξ0(t) − 2iξ)
−5/2

+ 12 (2iξd(t) − 2iξ)
−5/2

,

where ξd(t) = ξ0(0) + it = −
i

2
+ i t

Note ξd(t) moves faster than ξ0(t) towards real axis



Inner scale and singular effects on real axis

When ξ − ξd(t) = O(B1/3), t = Os(1),

G(ξ, t) ∼ t M−2
{

B−1/3[−i(ξ − ξd(t))]t
1/6

}

,

where M(η) satisfies

−
1

2
M +

1

6
ηM ′ =

[

−
1

2
+ M ′′′

]

M3 with matching condition

The inner ODE admits (η − ηs)
2/3 singularities; corresponding to

(ξ − ξs)
−4/3 singularity for G, clustered near ξ = ξd

These singularities affect evolution on real ξ axis before ξ0(t)

reaches real axis !

Similar singular effects occur for Hele-Shaw cell for small ǫ. Other

regularizations cause similar effect



Bubble evolution in two fluid flow

The conformal mapping approach is not convenient when the

viscosity ratio between the diplacing fluid and displaced flu id is

nonzero. For steady state calculation, this is not an issue s ince

Taylor & Saffman ’59 showed how steady flow with nonzero

viscosity ratio is equivalent to a steady flow with zero visco sity

ratio, simply by change of other parameters. However, this t rick

does not work for time-evolution problem

Therefore, we introduce a boundary integral formulation

convenient in study of nonzero viscosity ratio. This was

introduced by Hou et al in 1993 and has been widely used in

numerical computations. Ambrose ’04 used it for local exist ence

analysis based on this so-called equal arclength formulati on,

which was exploited (Ye & T., ’11) for global existence proof of

translating evolving bubbles.



Geometry of the flow

tau
π/2+α+θ(1+u0 )

y=1/

y=−1/β

β

Η ele−Shaw Bubble evolution in the 
frame of the steady bubble. 

Ω2
π/2+α+θ)i(L e=Ζα

n     Ω1



Formulation of 2-fluid Hele-Shaw problem

Define harmonic φ1, φ2 in Ω1, Ω2 ⊂ R
2,

φ1 ∼ −(u0 + 1)x + O(1), as x → ∞,
∂φ1

∂y

(

x,±
π

β

)

= 0, (1)

On ∂Ω1 ∩ ∂Ω2:

(2 + u0)x + φ1 −
µ2

µ1

φ2 = ǫκ and
∂φ1

∂n
=

∂φ2

∂n
= vn (2)

ǫ, n, vn, µ2

µ1

, 2 + u0 denote surface tension, inwards normal,

interface speed, viscosity ratio and steady bubble speed



Boundary Integral Formulation

We seek representation of the velocity of fluid 1 and 2 in the fo rm

u1,2 − iv1,2 = −(u0 + 1) +
1

2πi

∫ 2π

0

γ(α′)M(z, α′)dα′,

where M(z, α′) = 1
z−Z(α′)

and for β 6= 0,

M(z, α′) =
β

4
coth

[

β

4
(z − Z(α′))

]

−
β

4
tanh

[

β

4
(z − Z(α′))

]

As the free-boundary is approached from fluid 1 and fluid 2

respectively,

u1,2−iv1,2 = −(u0+1)+
1

2πi
PV

∫ 2π

0

γ(α′)κ(α,α′)dα′±
γ(α)

2Zα(α)
,

where κ(α,α′) = M (Z(α), α′)



Boundary Integral Formulation of Hou et al

Normal interface speed U = (u1, v1) · n = (u2, v2) · n is

U = (u0+1) cos (α + θ(α)+Re

(

Zα

2πsα
PV

∫ 2π

0

κ(α,α′)γ(α′)dα′

)

,

Tangent speed as interface is approached for two fluids:

∂αφ1,2 = Re [Zα (u1,2 − iv1,2)] = (u0 + 1)sα sin (α + θ(α))

+Re

(

Zα

2πi
PV

∫ 2π

0

κ(α,α′)γ(α′)dα′

)

±
1

2
γ(α)

We use above relation in the α-derivative of interface relation

(2 + u0)x + φ1 − µ2

µ1

φ2 = ǫκ to obtain a Fredholm integral

equation for γ for given Z(α, t).

Since vn = ∂φ
∂n

, a boundary point Z(α, t) = X(α, t) + iY (α, t)

must have normal speed U , with arbitrary tangent speed T , i.e.

(Xt(α, t), Yt(α, t)) = Un + Tτ .



Hou et al equal arclength choice

Hou et al ’93 noted that if

T (α, t) =

∫ α

0

(1 + θα(α
′, t))dα′ −

α

2π

∫ 2π

0

(1 + θα(α
′, t))dα′,

then |Zα| ≡ sα = L
2π

independent of α. In this equal arclength

formulation, on α-differentiation of (Xt, Yt), obtain

θt(α, t) =
2π

L
Uα(α, t) +

2π

L
T (α, t) (1 + θα(α, t)) ,

Lt = −

∫ 2π

0

(1 + θα(α, t))U(α, t)dα

For given θ, L, Z(α, t) = iL
2π

∫ α

0
exp [iα′ + iθ(α′, t)] dα′ + Z(0, t),

where Z(0, t) = X(0, t) + iY (0, t) satisfies

(Xt(0, t), Yt(0, t)) = U(0, t)n. This is the starting point for global

existence in next lecture.
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