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Navier-Stokes existence—background

- Global Existence of smooth 3-D Navier-Stokes solution is an
Important open problem.

- Deviation from linear stress-strain relation or incompressibility
IS potentially important if N-S solutions are singular

- Usual numerical calculations do not address this issue because
errors are not controlled, rigorously.

- Globally smooth solutions known only when Reynolds number

small

- Generally, smooth solutions for smooth data on [0, T'| known to
exist, for T scaling inversely with initial data/forcing.

- Global weak solutions known since Leray, but not known
whether they are unique. For unforced problem in T3, such a
solution becomes smooth again fort > T,, T, depends on IC



Borel Summation—-background and main idea

- Borel summation generates , under suitable conditions, a
one-one correspondence between series and and functions that
preserve algebraic operations (Ecalle, Costin,..).

- Borel sum can involve large or small variable(s)/ parameter(s).

- Formal expansion for t << 1: v(x,t) = vo(x) + > . _, t™ v, (x)
generally divergent for the initial value problem
vy = N[v] , v(x,0) = vg, N being some differential operator.

- Borel Sum of this series gives actual solution, which transcends
restrictiont << 1

- For Navier-Stokes, the Borel sum is given by

o(e,t) =vo(e) + [ Ul p)e ™/ 'dp

Equation for U obtained by inverse-Laplace transforming N-S.



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Similar
results expected for finite domain with no-slip BC using
eigenfunctions of Stokes operator as basis. In Fourier-Space

By + v|k|?D = —ik,; Py [0;%0] + f(k)

k(k-)
k|2

Py = (I _ ) . (K, 0) = Bo(k)

where P, is the Hodge projection in Fourier space, f(k) IS the
Fourier-Transform of forcing f(x), assumed divergence free and
t-independent. Subscript 3 denotes the j5-th component of a
vector. k € R3 or Z3. Einstein convention for repeated index
followed. * denotes Fourier convolution.

Decompose v = 99 + u(k, t), inverse-Laplace Transform in 1/t
and invert the differential operator on the left side



Integral equation associated with Navier-Stokes
We obtain:

PN p A A A
U(kvp) — L Kj(pa p,;k)Hj(ka p,)dp,—I—U(O)(k,p) =N [U} (ka p)
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01(k) = (—v|k[*do — ik; Py [B0,%00]) + f(K),
%, denotes Fourier Convolution, * denotes Laplace convolution,

while % denotes Fourier followed by Laplace convolution. J; and
Y; are the usual Bessel functions.



Results for Integral equation and Navier-Stokes-1

Introduce norm ||.||,,3 and ||.|| for o > 3, 3 > 0 so that

1@l = sup e?*I(1 + [K|)*|w (k)|
kER3

1Ol = supe™P(1 + p)|U (s p) |,
p>0
Lemma 1: If ||9o]| yt-2,8 and || f|| ., are finite, then an upper bound for cx can be

found interms of ¥ and f so that the integral equation (1) has a unique solution for

p € RT for which ||U|| < oo.

Theorem 1: Under same conditions as in Lemma 1, the 3-D Navier-Stokes has a

unique solution for Re % > «. Furthermore, ¥(+, t) is analytic for Re % > « and

”f’('vt)”u-l-%ﬁ < oofort € [Ova_l)-

Theorem 2 deals with Borel Summability and the nature of the
asymptotic expansion v ~ vg + tv1.. and will not be discussed.



Remarks on Theorem 1

Remark 1: Local existence results in Theorem 1 already known through classical
methods. However, in the present formulation, global existence problem can be cast
Into a question of asymptotics of a known solution to integral equation. A

sub-exponential growth as p — ©© gives global existence.

Remark 2: Errors in Numerical solutions rigorously controlled, unlike usual N-S

calculations. Discretization in p and Galerkin approximation in k results in:

Us(k,m8) =6 > KmmPnHs(k,m's) + U (k, ms)

m’=0

= N; [175} for k; = —N,..N, j=1,2,3

P is the Galerkin Projection into /N -Fourier modes. N5 has properties similar to

N. The continuous solution U satisfies U = Ns {f]} + FE, where F is the

A

truncation error. Thus, U — Ug can be estimated using same tools as in Theorem 1.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

VO(X) — ('Ul(wla L2y I3 0)7 'U2(a317 L2y L3, 0)7 ’03(331, L2y L3, O))

v1(x1, 22, x3,0) = v2(T3, X1, x2,0) = v3(T2, T3, x1,0)

v1(x1, X2, 3,0) = sin x3 (cos 3x3 cos x3 — cos x3 cos 3x3)

fi(x1, X2, x3) = %fvl (1, T2, x3,0)
High Degree of Symmetry makes computationally less expensive
Corresponding Euler problem believed to blow up in finite time;
so good candidate to study viscous effects
In the plots, "constant forcing" corresponds to f = (f1, f2, f3) as
above, while zero forcing refers to f = 0. Recall sub-exponential

growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1

Constant forcing
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|U(.,p)]||4,0 VS. p for v = 1, constant forcing.



Numerical solution to integral equation-plot-2
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|U(.,p)]||4,0 Vs. p for v = 1, no forcing



Numerical solution to integral equation-plot-3
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|U(.,p)]||4,0 VS. p for v = 0.16, constant forcing



Numerical solution to integral equation-plot-4
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|U(.,p)||4,0 VS. p for v = 0.1, constant forcing



Numerical solution to integral equation-plot-5
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U(k,p) vs. pfor k = (1,1,17), v = 0.1, no forcing.



Numerical solution to integral equation-plot-6

Constant forcing

log ||U (., p)||4,0 VS. log p for v = 0.001, constant forcing



Issues raised by numerical computations

Numerical solutions to integral equation available on finite
Interval [0, po], yet N-S solution requires [0, co) interval since

8(kyt) = b0 + [° e=/tU (I, p)dp

Actually, the integral over fé”" gives an approximate N-S solution,
with errors that can be bounded for a time interval [0, T'], if
computed solution to integral equation eventually decreases with
p on a sufficiently large interval [0, po].

Further, a non-increasing U over a sufficiently large interval

[0, po] gives smaller bounds on growth rate a as p — oo.
Therefore, in such cases smooth NS solution exists over a long
interval [0,a™1).

Recall for unforced problem in T3, even weak solution to NS
becomes smooth for t > T,., with T, estimated from initial data.
Hence alobal existence follows under some conditions.



Extending Navier-Stokes interval of existence

For ag > 0, define

o @)

_ —1/2 . N _
€ =V 1/2p0 / y @ = ||'UO||M,B » €= / ”U(O)(-ap)”u,ﬁe “Pdp
Do

— ,—1/2,71/2 (5 v —os || [T d 5
€1 =V Po 0 € | (-vs)”u,ﬁ 3‘|‘||UO||M,B

e_aopo

Do R R R
b= |00 + b0 - Ullupds
Vpo& Jo

Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists in the ||.|| ., 3

space on the interval [0, ™ 1), when & > g is chosen to satisfy

a > €1 + 2ec + \/(el—|—2ec)2—|—4be—e%

Remark: If pg is chosen large enough, €, €1 is small when computed solution in

[0, po| decays with q. Then a can be chosen rather smalll.



Relation of Optimal « to Navier-Stokes singularities

co+1i100
O (k, p) = —— e/t [6(k, t) — Bo(k)] d H

271 co—100 t

Im 1/t

A

a+y

Re 1t

a-ly

Rightmost singularity(ies) of NS solution o(k,t) in the 1/t plane

determines optimal a. v gives dominant oscillation frequency.



Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek
a more general Laplace-transform involves

ok, t) = do(k) + / e~/ T (k, q)dg
0)

We have arguments to show for at least the unforced problem, if
there are complex singularities t; in the right-half plane, but not
on the real axis, then a a nonzero lower bound for | arg ts| exists.
Then, for sufficiently large n, no singularities inthe - =t="
plane in the right-half plane. Hence, U (k, q) will not grow with ¢
U (k, q) satisfies an integral equation similar to the one satisfied

by U (k, p) and Theorems similar to Theorem 1 follow. In the
context of ODEs, change of variable p — q is called acceleration
(Ecalle)



Extending Navier-Stokes interval of existence

For ag > 0, define

er = v N o= [ OO, )l pe 0 0dg
q

o

qo R
e = v/ 2g T/ 2n) (2 / e~ U(., 8) || u,ds + ||fao||u,ﬁ)

e—OﬂOCIO

do

_ TRET LA LT

b= — =1/ (2n) / |UXU + 9o - U||p,pds
do « J0

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the ||.|| 4,3

space on the interval [0, e~ /™), when ac > g is chosen to satisfy

a > €1 + 2ec + \/(el—|—2ec)2—|—4be—e%

Remark: If gg is chosen large enough, €, €1 is small when computed solution in

[0, go| decays with g. Then o can be chosen rather small.



Conclusions

We have shown how Borel summation methods provides an
alternate existence theory for N-S equation

With this integral equation (IE) approach, the global existence of
NS is implied if known solution to IE has subexponential growth.
The solution to integral equation in a finite interval can be
computed numerically with errors controlled rigorously

Integral equation in an accelerated variable g expected to show no
exponential growth unless there is singularity on the real t-axis.
The computation over a finite [0, go] interval, gives a better upper
bound on growth rate exponent « at oo and hence ensures a
longer existence time [0, «~/™) to 3-D Navier-Stokes.
Unresolved issues include Rigorous control of round-off error
and obtaining small enough bounds on truncation error for
manageable step size.



Key points in the proof-|

Define norm : || f(k,p)|| = sup e *P(1 + Pz)“f(-ap)“mﬁ

p=>0
Because of properties
e*P e*P ds Moeo‘p
(1+p%) (1+p°) (1+82)[1+ (p—s)2] 1 + p2
_ Sl Co(p)e Pl
Blkl (1 k) —H Blkl (1 I|)—# 0
e+ DT & [ )T < R

the following algebraic properties follow:

117 (3, 2)I%[G ()]l s < CollF 5 P)lyl1G 1],

3k p _ ~
la * o] < MoCollall||a]| II/0 ik, s)|ds|| < Ca™ |4l




Key points in the proof-ll

From these relations, it is possible to conclude from the integral
equation that if

u(p) = ||f]('ap)||u,ﬁ y A = ||f’0||u,ﬁ ) uo(p) — ||f](0)(-ap)||u,ﬁ ’
then

u(p) < \/iv_p /Op[u *x u + au](s)ds + u(® (p)
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