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Overview: Mathematical models are an important tool for understanding infectious disease dynamics,
and are increasingly used by public health workers and agencies for assessing disease risk and helping
inform intervention strategies. This course provides an introduction to mathematical modeling of infectious
diseases. We will learn techniques for building and analyzing disease models, and discuss calibration and
comparison of models with data.

This course is intended for graduate students in public health or other related disciplines (e.g. ecology,
veterinary medicine) wishing to learn about infectious disease models, for example for incorporating math-
ematical models into their own research. The course is also intended for mathematics students wishing to
learn about infectious disease modeling, including both upper level undergraduates and graduate students
(in particular, MMS Bio students interested in mathematical epidemiology).

Summary of Mathematical Content: Dynamical systems, linear algebra (e.g. Perron-Frobenius),
branching processes, elements of probability. Model construction, working with empirical data. Fitting
dynamic models to data.

Credits: 3. Cross-listed in public health (graduate) and mathematics (MMS; open to upper level under-
graduates).

Prerequisites: 1 year of calculus, or instructor permission. Additional mathematical topics will be
developed in the course as needed.

Textbook: None required; suggested reference is [4]. Notes and additional readings will be supplied.

Assignments / Exams / Project: Problem sets (= 6), midterm exam. Final project (small group,
pairing public health and mathematics students together).

Topics:

1. Basic deterministic modeling frameworks. (5 weeks)

e Basic SIR model. Introduction to compartmental differential equation models. Fixed points,
linearization, stability. Basic reproduction number Rg: biological and mathematical defini-
tions. Next generation matrix. Initial epidemic growth rate, serial interval, and Ry. Incidence
functions. Herd immunity and critical vaccination threshold. Final outbreak size relation.

e Case studies: rotavirus in the U.S. [I3], measles in the U.K. pre- and post-vaccination [3], global
smallpox eradication [1} 5] [15].

2. Age-structured models (1 week)

e Who acquires infection from whom (WAIFW) matrices; age profile for endemic vs. invading
diseases with disease-induced immunity. Age-specific interventions.



e Case study: Age-based vaccination strategies and flu policy in the U.S. [I1].

. Stochastic models (2 weeks)

e Branching process basics; probability of extinction and Rg; demographic fade-out; critical com-
munity size. Gillespie simulations.

e Case studies: contact tracing and SARS [10]. Measles in Iceland [2].

. Heterogeneity (1 week)

e Mixing patterns: mean, variance and Rg. Multigroup models. Core groups; disease hot spots.

e Case study: Gonorrhea in the U.S. [§].

. Spatial models (2 weeks)

e Patch models; metapopulations; gravity models.
e Case studies: measles in the U.K. [7] [14].

. Disease on networks (1 week)

e Basic network terminology. Degree distribution and probability of disease outbreak. Social
networks.

e Case studies: SARS [12]. HIV (relevant portions of 6l 9]).
Parameter estimation (2 weeks)

e Optimization: basic concepts, software (Matlab and R). Sampling models. Maximum likelihood.
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