Solutions for Homework 4, Math 3345

Zhuang He

September 20, 2013

9(f) In the sentence P(x, y), both x and y are free variables.

In $(\forall y)P(x, y)$, only x is free.

In $(\exists x)(\forall y)P(x, y)$, neither x nor y is free.

In $(\exists x)P(x, y)$, only y is free.

In $(\forall y)(\exists x)P(x, y)$, neither *x* nor *y* is free.

10(e) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(xy = 1)$ means "there exists y a real number, such that for every real number x, the product xy equals to 1".

Claim: $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(xy = 1)$ is false.

Proof: It is sufficient to show for every real number y, the sentence $(\forall x \in \mathbb{R})(xy = 1)$ is false. If we fix y a real number, then there is a real number $x_0 = 0$ such that $x_0 y = 0 \cdot y = 0 \neq 1$. Therefore $x_0 = 0$ is a counterexample for the sentence $(\forall x \in \mathbb{R})(xy = 1)$, and hence $(\forall x \in \mathbb{R})(xy = 1)$ is false. Now since y is an arbitrary element of \mathbb{R} , we proved the claim.

10(f) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(xy = 1)$ means "for all real number x, there exists y a real number, such that the product xy equals to 1".

Claim: $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(xy = 1)$ is false.

Proof: It is sufficient to exhibit a value of x such that $(\exists y \in \mathbb{R})(xy = 1)$ is false. In fact, this value can be chosen as x = 0. For x = 0 fixed, for every y a real number, we have $x \cdot y = 0 \cdot y = 0 \neq 1$. Therefore for x = 0 the sentence $(\exists y \in \mathbb{R})(xy = 1)$ is false. This proves our claim.

11(a) Let *S* be the set of real numbers. Then *S* is not bounded above.

Proof: S is bounded above if and only if $(\exists b \in \mathbb{R})(\forall x \in S)(x < b)$. Now we prove it is false. Then we need to prove for every $b \in \mathbb{R}$, $(\forall x \in S)(x < b)$ is false. In fact, if b is fixed, then b+1 is a real number such that b+1 < b is false. Thus $(\forall x \in S)(x < b)$ is false. And we proved the claim that S is not bounded above.

11(b) Let *S* be the set of all number *x* such that some person on earth has *x* hairs on his or her head. Then *S* is bounded above.

Proof: *S* is a finite set since there are only finite people on earth. Therefore, *S* always have a maximal element. Let us assume the maximal element is *n*. Then for all $x \in S$, $x \le n$. Therefore $(\exists b \in \mathbb{R})(\forall x \in S)(x < b)$ is true since b = n is an example. Therefore *S* is bounded above.

13 Proof: We will denote \mathbb{R}_+ as the set of all positive real numbers. Then f is continuous at a iff $(\forall \epsilon \in \mathbb{R}_+)(\exists \delta \in \mathbb{R}_+)(\forall x \in \mathbb{R})(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon)$.

Therefore f is not continuous at a

```
\begin{array}{ll} \mathrm{iff} & \neg(\forall \epsilon \in \mathbb{R}_+)(\exists \delta \in \mathbb{R}_+)(\forall x \in \mathbb{R})(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon) \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)\neg(\exists \delta \in \mathbb{R}_+)(\forall x \in \mathbb{R})(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon) \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)(\forall \delta \in \mathbb{R}_+)\neg(\forall x \in \mathbb{R})(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon) \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)(\forall \delta \in \mathbb{R}_+)\neg(\forall x \in \mathbb{R})\neg(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon) \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)(\forall \delta \in \mathbb{R}_+)(\exists x \in \mathbb{R})\neg(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon) \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)(\forall \delta \in \mathbb{R}_+)(\exists x \in \mathbb{R})(|x-a| < \delta \land \neg(|f(x)-f(a)| < \epsilon)) \\ \mathrm{(by \ negation \ of \ conditional \ sentences)} \\ \mathrm{iff} & (\exists \epsilon \in \mathbb{R}_+)(\forall \delta \in \mathbb{R}_+)(\exists x \in \mathbb{R})(|x-a| < \delta \land |f(x)-f(a)| \ge \epsilon). \\ \end{array}
```

14(a) $(\exists! x \in \mathbb{R})(2x+7=3)$ means "there exists a unique real number x such that 2x+7 is equal to 3".

This sentence is true. By solving the equation 2x + 7 = 3, we find a unique root $x = \frac{3-7}{2} = -2$. Therefore, for x = -2, $2 \times (-2) + 7 = 3$, which means there exists a value of x such that 2x + 7 = 3 is true, and this value is unique for 2x + 7 = 3 to be true. Therefore the sentence $(\exists! x \in \mathbb{R})(2x + 7 = 3)$ is true.

14(b) $(\exists! x \in \mathbb{R})(x^2 - 4x + 3 < 0)$ means "there exists a unique real number x such that $x^2 - 4x + 3$ is less than 0".

This sentence is false. Let x = 2, we see $2^2 - 4 \times 2 + 3 = -1 < 0$. Let x = 2.5, we see $2.5^2 - 4 \times 2.5 + 3 = -0.75 < 0$. Therefore the values of x such that $x^2 - 4x + 3$ is less than 0 is not unique. Thus $(\exists! x \in \mathbb{R})(x^2 - 4x + 3 < 0)$ is false.

- 14(c) $(\exists!x\in\mathbb{Z})(x^2-4x+3<0)$ means "there exists a unique integer x such that x^2-4x+3 is less than 0". This sentence is true. If we factor x^2-4x+3 on \mathbb{R} we get $x^2-4x+3=(x-1)(x-3)$. Therefore, $x^2-4x+3<0$ if and only if (x-1)(x-3)<0. Note that the product of two real number is negative if and only if one of them is positive and the another is positive. Thus if (x-1)(x-3)<0, then x-1<0 and x-3>0, or x-1<0 and x-3>0. That is, x<1 and x>3 or x>1 and x<3. The first case is impossible since x<1 and x>3 are contradictory. Therefore if (x-1)(x-3)<0 is true, then 1< x<3. Now we find the only integer n such that 1< n<3 is n=2, and when n=2, $2^2-4\times2+3=-1<0$. Therefore n=2 is the unique integer that makes (x-1)(x-3)<0 true. Thus $(\exists!x\in\mathbb{Z})(x^2-4x+3<0)$ is true.
- 14(d) $(\exists! x \in \mathbb{R})(x^2 4x + 4 = 0)$ means "there exists a unique real number x such that $x^2 4x + 4$ equals to 0".

This sentence is true. By completing the square, we see $x^2-4x+4=(x-2)^2$. Therefore $x^2-4x+4=0$ iff $(x-2)^2=0$ iff x=2. Therefore x=2 is the unique real number such that $x^2-4x+4=0$. Thus $(\exists!x\in\mathbb{R})(x^2-4x+4=0)$ is true.

14(e) $(\exists! x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ means "there exists a unique real number x such that $x^2 - 4x + 5$ equals to 0".

This sentence is false. By completing the square, we see $x^2 - 4x + 5 = (x - 2)^2 + 1$. Since $(x - 2)^2 \ge 0$ is true for all $x \in \mathbb{R}$, we find $(x - 2)^2 + 1 \ge 0 + 1 = 1 > 0$ for all $x \in \mathbb{R}$. Thus no real numbers x satisfies $x^2 - 4x + 5 = 0$. Thus $(\exists! x \in \mathbb{R})(x^2 - 4x + 5 = 0)$ is false.

14(f) $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(x + y = 0)$ mean "for all real number x, there exists a unique real number y, such that x + y is equal to 0".

This sentence is true. We will prove for all real number x, $(\exists! y \in \mathbb{R})(x + y = 0)$ is true. Because x is fixed, y = -x is a real number that satisfies x + y = 0, and hence an example for $(\exists! y \in \mathbb{R})(x + y = 0)$. Also, if x + y = 0, then y = -x. Therefore y = -x is the only real number satisfies x + y = 0. Thus for the x we choose, $(\exists! y \in \mathbb{R})(x + y = 0)$ is true. Since x is an arbitrary real number, $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(x + y = 0)$ is true.

14(g) $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(xy = 1)$ mean "for all real number x, there exists a unique real number y, such that xy is equal to 1".

This sentence is false. To prove that it is false, it is sufficient to exhibit a value of x such that $(\exists! y \in \mathbb{R})(xy=1)$ is false. We choose x=0. For x=0, every real number y makes $xy=0 \times y=0 \neq 1$. Therefore, x=0 is a counterexample for $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(xy=1)$, which is then false.

14(h) $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{then } (\exists ! y \in \mathbb{R})(xy = 1)]$ means "for all real number x, if x is not zero, there exists a unique real number y, such that xy is equal to 1".

This sentence is true. We will prove for all real number x, $(x \neq 0) \Rightarrow (\exists! y \in \mathbb{R})(xy = 1)$ is true.

By conditional proof, we need only assume $x \neq 0$, and then prove that $(\exists! y \in \mathbb{R})(xy = 1)$ is true. Now $x \neq 0$, therefore $y = \frac{1}{x}$ exists(Note: if x = 0, then $\frac{1}{x}$ does not exist). And $y = \frac{1}{x}$ is the unique real number such that xy = 1. Thus $(x \neq 0) \Rightarrow (\exists! y \in \mathbb{R})(xy = 1)$ is true. Since x is an arbitrary real number, $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{then } (\exists! y \in \mathbb{R})(xy = 1)]$ is true.

14(i) $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(xy = 0)$ mean "for all real number x, there exists a unique real number y, such that xy is equal to 0".

This sentence is false. To prove that it is false, it is sufficient to exhibit a value of x such that $(\exists! y \in \mathbb{R})(xy=0)$ is false. We choose x=0. For x=0, every real number y makes $xy=0 \times y=0$. That is, for x=0, such y that satisfies xy=0 is not unique. Therefore, x=0 is a counterexample for $(\forall x \in \mathbb{R})(\exists! y \in \mathbb{R})(xy=0)$, which is then false.

14(j) $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{ then } (\exists! y \in \mathbb{R})(xy = 0)]$ means "for all real number x, if x is not zero, there exists a unique real number y, such that xy is equal to 0".

This sentence is true. We will prove for all real number x, $(x \neq 0) \Rightarrow (\exists! y \in \mathbb{R})(xy = 0)$ is true.

By conditional proof, we need only assume $x \neq 0$, and then prove that $(\exists! y \in \mathbb{R})(xy = 0)$ is true. Recall that for any two real number a, b, ab = 0 iff a = 0 or b = 0. Now $x \neq 0$, and y = 0 satisfies $xy = x \times 0 = 0$. For other $y \neq 0$, we find $xy \neq 0$. Thus y = 0 is the unique y such that xy = 0 true. Then $(x \neq 0) \Rightarrow (\exists! y \in \mathbb{R})(xy = 0)$ is true. Since x is an arbitrary real number, $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{then } (\exists! y \in \mathbb{R})(xy = 0)]$ is true.