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9(f) In the sentence P (x, y), both x and y are free variables.

In (∀y)P (x, y), only x is free.

In (∃x)(∀y)P (x, y), neither x nor y is free.

In (∃x)P (x, y), only y is free.

In (∀y)(∃x)P (x, y), neither x nor y is free.

10(e) (∃y ∈ R)(∀x ∈ R)(x y = 1) means "there exists y a real number, such that for every real number x,
the product x y equals to 1".

Claim:(∃y ∈R)(∀x ∈R)(x y = 1) is false.

Proof: It is sufficient to show for every real number y , the sentence (∀x ∈R)(x y = 1) is false. If we fix
y a real number, then there is a real number x0 = 0 such that x0 y = 0 · y = 0 6= 1. Therefore x0 = 0 is
a counterexample for the sentence (∀x ∈R)(x y = 1), and hence (∀x ∈R)(x y = 1) is false. Now since
y is an arbitrary element of R, we proved the claim.

10(f) (∀x ∈ R)(∃y ∈ R)(x y = 1) means "for all real number x, there exists y a real number, such that the
product x y equals to 1".

Claim:(∀x ∈R)(∃y ∈R)(x y = 1) is false.

Proof: It is sufficient to exhibit a value of x such that (∃y ∈R)(x y = 1) is false. In fact, this value can
be chosen as x = 0. For x = 0 fixed, for every y a real number, we have x · y = 0 · y = 0 6= 1. Therefore
for x = 0 the sentence (∃y ∈R)(x y = 1) is false. This proves our claim.

11(a) Let S be the set of real numbers. Then S is not bounded above.

Proof: S is bounded above if and only if (∃b ∈ R)(∀x ∈ S)(x < b). Now we prove it is false. Then we
need to prove for every b ∈R, (∀x ∈ S)(x < b) is false. In fact, if b is fixed, then b+1 is a real number
such that b + 1 < b is false. Thus (∀x ∈ S)(x < b) is false. And we proved the claim that S is not
bounded above.

11(b) Let S be the set of all number x such that some person on earth has x hairs on his or her head. Then
S is bounded above.

Proof: S is a finite set since there are only finite people on earth. Therefore, S always have a maximal
element. Let us assume the maximal element is n. Then for all x ∈ S, x ≤ n. Therefore (∃b ∈R)(∀x ∈
S)(x < b) is true since b = n is an example. Therefore S is bounded above.
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13 Proof: We will denote R+ as the set of all positive real numbers. Then f is continuous at a iff
(∀ε ∈R+)(∃δ ∈R+)(∀x ∈R)(|x −a| < δ⇒| f (x)− f (a)| < ε).

Therefore f is not continuous at a

iff ¬(∀ε ∈R+)(∃δ ∈R+)(∀x ∈R)(|x −a| < δ⇒| f (x)− f (a)| < ε)

iff (∃ε ∈R+)¬(∃δ ∈R+)(∀x ∈R)(|x −a| < δ⇒| f (x)− f (a)| < ε) (by De Morgan’s Law)

iff (∃ε ∈R+)(∀δ ∈R+)¬(∀x ∈R)(|x −a| < δ⇒| f (x)− f (a)| < ε) (by De Morgan’s Law)

iff (∃ε ∈R+)(∀δ ∈R+)(∃x ∈R)¬(|x −a| < δ⇒| f (x)− f (a)| < ε) (by De Morgan’s Law)

iff (∃ε ∈R+)(∀δ ∈R+)(∃x ∈R)(|x −a| < δ∧¬(| f (x)− f (a)| < ε))

(by negation of conditional sentences)

iff (∃ε ∈R+)(∀δ ∈R+)(∃x ∈R)(|x −a| < δ∧| f (x)− f (a)| ≥ ε).

14(a) (∃!x ∈R)(2x +7 = 3) means "there exists a unique real number x such that 2x +7 is equal to 3".

This sentence is true. By solving the equation 2x + 7 = 3, we find a unique root x = 3−7
2 = −2.

Therefore, for x =−2, 2× (−2)+7 = 3, which means there exists a value of x such that 2x +7 = 3 is
true, and this value is unique for 2x +7 = 3 to be true. Therefore the sentence (∃!x ∈ R)(2x +7 = 3)
is true.

14(b) (∃!x ∈ R)(x2 −4x +3 < 0) means "there exists a unique real number x such that x2 −4x +3 is less
than 0".

This sentence is false. Let x = 2, we see 22 −4×2+3 = −1 < 0. Let x = 2.5, we see 2.52 −4×2.5+
3 = −0.75 < 0. Therefore the values of x such that x2 − 4x + 3 is less than 0 is not unique. Thus
(∃!x ∈R)(x2 −4x +3 < 0) is false.

14(c) (∃!x ∈Z)(x2 −4x +3 < 0) means "there exists a unique integer x such that x2 −4x +3 is less than 0".

This sentence is true. If we factor x2 − 4x + 3 on R we get x2 − 4x + 3 = (x − 1)(x − 3). Therefore,
x2 −4x +3 < 0 if and only if (x −1)(x −3) < 0. Note that the product of two real number is negative
if and only if one of them is positive and the another is positive. Thus if (x − 1)(x − 3) < 0, then
x −1 < 0 and x −3 > 0, or x −1 < 0 and x −3 > 0. That is, x < 1 and x > 3 or x > 1 and x < 3. The
first case is impossible since x < 1 and x > 3 are contradictory. Therefore if (x − 1)(x − 3) < 0 is
true, then 1 < x < 3. Now we find the only integer n such that 1 < n < 3 is n = 2, and when n = 2,
22 −4×2+3 =−1 < 0. Therefore n = 2 is the unique integer that makes (x −1)(x −3) < 0 true. Thus
(∃!x ∈Z)(x2 −4x +3 < 0) is true.

14(d) (∃!x ∈R)(x2 −4x +4 = 0) means "there exists a unique real number x such that x2 −4x +4 equals to
0".

This sentence is true. By completing the square, we see x2−4x+4 = (x−2)2. Therefore x2−4x+4 = 0
iff (x −2)2 = 0 iff x = 2. Therefore x = 2 is the unique real number such that x2 −4x +4 = 0. Thus
(∃!x ∈R)(x2 −4x +4 = 0) is true.

14(e) (∃!x ∈R)(x2 −4x +5 = 0) means "there exists a unique real number x such that x2 −4x +5 equals to
0".
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This sentence is false. By completing the square, we see x2 −4x +5 = (x −2)2 +1. Since (x −2)2 ≥ 0
is true for all x ∈R, we find (x −2)2 +1 ≥ 0+1 = 1 > 0 for all x ∈R. Thus no real numbers x satisfies
x2 −4x +5 = 0. Thus (∃!x ∈R)(x2 −4x +5 = 0) is false.

14(f) (∀x ∈ R)(∃!y ∈ R)(x + y = 0) mean "for all real number x, there exists a unique real number y , such
that x + y is equal to 0".

This sentence is true. We will prove for all real number x, (∃!y ∈ R)(x + y = 0) is true. Because x is
fixed, y =−x is a real number that satisfies x + y = 0, and hence an example for (∃!y ∈R)(x + y = 0).
Also, if x + y = 0, then y = −x. Therefore y = −x is the only real number satisfies x + y = 0. Thus
for the x we choose, (∃!y ∈ R)(x + y = 0) is true. Since x is an arbitrary real number, (∀x ∈ R)(∃!y ∈
R)(x + y = 0) is true.

14(g) (∀x ∈ R)(∃!y ∈ R)(x y = 1) mean "for all real number x, there exists a unique real number y , such
that x y is equal to 1".

This sentence is false. To prove that it is false, it is sufficient to exhibit a value of x such that (∃!y ∈
R)(x y = 1) is false. We choose x = 0. For x = 0, every real number y makes x y = 0× y = 0 6= 1.
Therefore, x = 0 is a counterexample for (∀x ∈R)(∃!y ∈R)(x y = 1), which is then false.

14(h) (∀x ∈ R)[if x 6= 0,then (∃!y ∈ R)(x y = 1)] means "for all real number x, if x is not zero, there exists a
unique real number y , such that x y is equal to 1".

This sentence is true. We will prove for all real number x, (x 6= 0) ⇒ (∃!y ∈R)(x y = 1) is true.

By conditional proof, we need only assume x 6= 0, and then prove that (∃!y ∈ R)(x y = 1) is true.
Now x 6= 0, therefore y = 1

x exists(Note: if x = 0, then 1
x does not exist). And y = 1

x is the unique
real number such that x y = 1. Thus (x 6= 0) ⇒ (∃!y ∈ R)(x y = 1) is true. Since x is an arbitrary real
number, (∀x ∈R)[if x 6= 0,then (∃!y ∈R)(x y = 1)] is true.

14(i) (∀x ∈ R)(∃!y ∈ R)(x y = 0) mean "for all real number x, there exists a unique real number y , such
that x y is equal to 0".

This sentence is false. To prove that it is false, it is sufficient to exhibit a value of x such that (∃!y ∈
R)(x y = 0) is false. We choose x = 0. For x = 0, every real number y makes x y = 0× y = 0. That
is, for x = 0, such y that satisfies x y = 0 is not unique. Therefore, x = 0 is a counterexample for
(∀x ∈R)(∃!y ∈R)(x y = 0), which is then false.

14(j) (∀x ∈ R)[if x 6= 0,then (∃!y ∈ R)(x y = 0)] means "for all real number x, if x is not zero, there exists a
unique real number y , such that x y is equal to 0".

This sentence is true. We will prove for all real number x, (x 6= 0) ⇒ (∃!y ∈R)(x y = 0) is true.

By conditional proof, we need only assume x 6= 0, and then prove that (∃!y ∈ R)(x y = 0) is true.
Recall that for any two real number a,b, ab = 0 iff a = 0 or b = 0. Now x 6= 0, and y = 0 satisfies
x y = x × 0 = 0. For other y 6= 0, we find x y 6= 0. Thus y = 0 is the unique y such that x y = 0
true. Then (x 6= 0) ⇒ (∃!y ∈ R)(x y = 0) is true. Since x is an arbitrary real number, (∀x ∈ R)[if x 6=
0,then (∃!y ∈R)(x y = 0)] is true.
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