Math 8440—Homework 8, due October 16

(1) Suppose that \(\{a_n\}_{n=1}^{\infty} \) and \(\{b_n\}_{n=1}^{\infty} \) are sequences. Prove that

\[
\sup_n (a_n + b_n) \leq (\sup_n a_n) + (\sup_n b_n).
\]

The following definition may prove useful: \(\sup_n a_n = L \) if \(a_n \leq L \) for all \(n \) and if for any \(\epsilon > 0 \) there exists an \(n \) such that \(a_n \geq L - \epsilon \).

(2) Following similar lines as the previous problem, let \(\{a_{n,m}\}_{n,m=1}^{\infty} \) consist of positive numbers. Prove that

\[
\sup_n \sum_{m=1}^{\infty} a_{n,m} \leq \sum_{m=1}^{\infty} \sup_n a_{n,m}
\]

provided that all sums are convergent.

(3) For an arbitrary fibred system with transformation \(T \) and a cylinder set \(C_s \), prove that, for any \(r \in \mathbb{N} \), we have

\[
\lim_{n \to \infty} \frac{\# \{0 \leq i \leq n-1 : T^i x \in C_s \}}{n} = \lim_{n \to \infty} \frac{\# \{0 \leq i \leq rn-1 : T^i x \in C_s \}}{rn}
\]

provided the latter limit exists.

(4) Using the bounded convergence theorem, show that for an arbitrary fibred system on a probability space with transformation \(T \) and a disjoint collection of cylinder sets \(C_s \), we have

\[
\lim_{n \to \infty} \frac{\# \{0 \leq i \leq n-1 : T^i x \in \bigcup C_s \}}{n} = \sum_{C_s} \lim_{n \to \infty} \frac{\# \{0 \leq i \leq n-1 : T^i x \in C_s \}}{n}
\]

(5) Suppose that \(x \) is base-\(b \) normal and that \(r \) is rational. Using Weyl’s criterion and not Pyatetskii-Shapiro, prove that \(x + r \) is base-\(b \) normal.

(6) Suppose that \(x \) is base-\(b \) normal and that \(m \) is a non-zero positive integer. Without using Weyl’s criterion or Pyatetskii-Shapiro prove that \(mx \) is also base-\(b \) normal.