HOMEWORK 2

(1) Exercise 3 of chapter 9 of Rudin.
(2) Exercise 5 of chapter 9 of Rudin.
(3) Define $F=\prod_{i=1}^{\infty} \mathbb{R}$ to be the set of infinite sequences $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ of real numbers. Set $E=$ $\bigoplus_{i=1}^{\infty} \mathbb{R}$ to consist of all elements in F in which all but finitely many of the slots are zeroes. Prove that E and F are vector spaces.
a) Prove that E has a countable basis.
b) Prove that if S is a countable subset of F, then S cannot span all of F.
(4) Let E be a vector space such that it has a countable basis $B=\left\{e_{i}\right\}_{i \in I}$. Assume we can find any another basis $S=\left\{f_{j}\right\}_{j \in J}$. Prove that the cardinality of I and J is the same.
Hint: Prove by cases, first for I finite. And then for I infinite. Assume cardinality of J is bigger than I. Then assign for each index of J a finite subset of elements of I (why?) and take the union of all these finite sets.
(5) Prove that every vector space has a basis.

Hint: We need to use Zorn's Lemma to prove this. Zorn's Lemma: Assume C is a collection of subsets of some fixed unnamed set, and assume that C has the property that whenever there is a chain $S_{1} \subset S_{2} \subset \ldots$ of sets in C, the union of this chain also belongs to C. Then Zorn's Lemma says that C contains a maximal element. This means that C contains some set M which is not properly contained in any other set in the collection C. In fact, Zorn's lemma implies that every set S in C is contained in some maximal set M, because we can apply Zorn's lemma to the subcollection of sets in C containing S. Now consider C to be the collection of all linearly independent subsets of a vector space V.

