MATH 5202-HOMEWORK 3

Homework:
(Notation: We write 0 to represent the number 0 as well as the zero vector in \mathbb{R}^{m}.)
(1) (a) Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $F(0)=0$ and $F(t \bar{x})=t F(\bar{x})$ for any $\bar{x} \in \mathbb{R}^{m}$ and $t \neq 0$. Prove that F has all directional derivatives at the origin and that:

$$
\frac{\partial F}{\partial \bar{v}}(0)=F(\bar{v})
$$

(b) Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $F(t \bar{x})=|t| F(\bar{x})$ for any $\bar{x} \in \mathbb{R}^{m}$ and $t \in \mathbb{R}$. Assume F is differentiable at the origin. Prove that $F(\bar{x})=0$ for all $\bar{x} \in \mathbb{R}^{m}$.
(2) Let $U \subset \mathbb{R}^{m}$ open and $F: U \rightarrow \mathbb{R}$ differentiable at a point $\bar{a} \in U$.
(a) Prove that there exist $\epsilon>0$ and $M>0$ such that for all $|\bar{h}|<\epsilon$ then $\bar{a}+\bar{h} \in U$ and $|F(\bar{a}+\bar{h})-F(\bar{a})|<M|\bar{h}|$.
(b) Prove that the following modification is not true: There exist $\epsilon>0$ and $M>0$ such that if $|\bar{y}-\bar{a}|<\epsilon,|\bar{x}-\bar{a}|<\epsilon$ then $|F(\bar{y})-F(\bar{x})|<M|\bar{y}-\bar{x}|$.
(3) Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ differentiable at any point such that $F(\bar{x} / 2)=F(\bar{x}) / 2$ for all $\bar{x} \in \mathbb{R}^{m}$. Prove that F is linear.
(4) Let $F: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}$ for U open subset of \mathbb{R}^{m}. Define $F^{k}: U \rightarrow \mathbb{R}$ as $F^{k}(\bar{x}):=(F(\bar{x}))^{k}$ for any $k \geq 1, k \in \mathbb{Z}$. Prove that $D F^{k}(\bar{x})(\bar{v})=k F^{k-1}(\bar{x}) D F(\bar{x})(\bar{v})$.
(5) Problem 12 of Chapter 9 of Rudin.

Challenge problem:
Let $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ a continuous function such that F has all directional derivatives at any point of \mathbb{R}^{m}. Assume $\frac{\partial F}{\partial \bar{u}}(\bar{u})>0$ for all $\bar{u} \in \mathbb{R}^{m}$ for which $|\bar{u}|=1$. Prove that exists a point $\bar{a} \in \mathbb{R}^{m}$ such that $\frac{\partial F}{\partial \bar{v}}(\bar{a})=0$ for all $\bar{v} \in \mathbb{R}^{m}$.

