MATH 5202 - HOMEWORK 3

Homework:

(Notation: We write 0 to represent the number 0 as well as the zero vector in \mathbb{R}^{m} .)

(1) (a) Let $F : \mathbb{R}^m \to \mathbb{R}$ such that F(0) = 0 and $F(t\overline{x}) = tF(\overline{x})$ for any $\overline{x} \in \mathbb{R}^m$ and $t \neq 0$. Prove that F has all directional derivatives at the origin and that:

$$\frac{\partial F}{\partial \overline{v}}(0) = F(\overline{v}).$$

(b) Let $F : \mathbb{R}^m \to \mathbb{R}$ such that $F(t\overline{x}) = |t|F(\overline{x})$ for any $\overline{x} \in \mathbb{R}^m$ and $t \in \mathbb{R}$. Assume F is differentiable at the origin. Prove that $F(\overline{x}) = 0$ for all $\overline{x} \in \mathbb{R}^m$.

- (2) Let U ⊂ ℝ^m open and F : U → ℝ differentiable at a point ā ∈ U.
 (a) Prove that there exist ε > 0 and M > 0 such that for all |h
 | < ε then ā + h ∈ U and |F(ā + h) F(ā)| < M|h|.
 (b) Prove that the following modification is not true: There exist ε > 0 and M > 0 such that if |y
 ā| < ε, |x
 ā| < ε then |F(y) F(x)| < M|y
 x|.
- (3) Let $F : \mathbb{R}^m \to \mathbb{R}$ differentiable at any point such that $F(\overline{x}/2) = F(\overline{x})/2$ for all $\overline{x} \in \mathbb{R}^m$. Prove that F is linear.
- (4) Let $F: U \subset \mathbb{R}^m \to \mathbb{R}$ for U open subset of \mathbb{R}^m . Define $F^k: U \to \mathbb{R}$ as $F^k(\overline{x}) := (F(\overline{x}))^k$ for any $k \ge 1, k \in \mathbb{Z}$. Prove that $DF^k(\overline{x})(\overline{v}) = kF^{k-1}(\overline{x})DF(\overline{x})(\overline{v})$.
- (5) Problem 12 of Chapter 9 of Rudin.

Challenge problem:

Let $F : \mathbb{R}^m \to \mathbb{R}$ a continuous function such that F has all directional derivatives at any point of \mathbb{R}^m . Assume $\frac{\partial F}{\partial \overline{u}}(\overline{u}) > 0$ for all $\overline{u} \in \mathbb{R}^m$ for which $|\overline{u}| = 1$. Prove that exists a point $\overline{a} \in \mathbb{R}^m$ such that $\frac{\partial F}{\partial \overline{v}}(\overline{a}) = 0$ for all $\overline{v} \in \mathbb{R}^m$.